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ABSTRACT
Providing efficient protection against energy consumption based
side channel attacks (SCAs) for block ciphers is a relevant topic
for the research community, as current overheads are in the 100×
range. Unprofiled SCAs exploit information leakage from the out-
most rounds of a cipher; we propose a solution encasing it between
keyed transformations amenable to an efficient SCA protection.
Our solution can be employed as a drop in replacement for an un-
protected implementation, or be retrofit to an existing one, while re-
taining communication capabilities with legacy insecure endpoints.
Experiments on a Cortex-M4 µC, show performance improvements
in the range of 60×, compared with available solutions.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose and ap-
plication based systems—Smartcards; E.3 [Data]: Data Encryp-
tion—Code breaking; K.6.5 [Management of Computing and In-
formation Systems]: Security and Protection—Physical security

Keywords
Side Channel Attacks, Software Countermeasures, Embedded Sys-
tems Security, Compiler Techniques

1. INTRODUCTION
Embedded computation devices in the modern age are becoming

increasingly pervasive and are often required to perform security
critical tasks where providing data or communication confidential-
ity is a mandatory requirement. The prime choice to do so is to
employ symmetric block ciphers, due to their high efficiency even
when limited computing resources are available, e.g., on low end
microcontrollers and RFID chips. As a direct consequence of the
pervasiveness and low cost of the embedded devices, a practical at-
tacker model is the one considering the possibility of seizing one
of such devices with the purpose of extracting the secret key of
the block cipher, thus invalidating completely the provided security
guarantees. Direct access to the device allows the attacker to ex-
ploit information encoded in environmental parameters of the com-
putation, e.g., its energy consumption. Such an attack is commonly
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known as a passive Side Channel Attack (SCA) and has been shown
to be remarkably efficient in breaching the security of widely de-
ployed products [15]. SCAs exploit the information measured on a
computing device to retrieve the secret key guessing it piecewise.
In particular, the dependence of the energy consumption of a de-
vice from the values of the data being processed is employed as an
unintended communication channel. To this end, an intermediate
value of the computation, which can be obtained as a combination
of the input and a small amount of the secret key (e.g., a single-
byte xor), is guessed for all the possible values of the involved
key portion. Such guesses are then employed to predict the side
channel measurement, and compared against the actual one via a
statistical test, obtaining a ranking of the tested key guesses: the
one providing the best fitting prediction is the one relying on the
actual key. The prediction of the side channel measurement is typi-
cally done with an a-priori model, e.g., the Hamming weight of the
computed value or its Hamming distance from the value previously
stored in the same register. The alternate way, involves exploiting
an a-posteriori model obtained profiling the side channel behav-
ior of another instance of the device under attack, which is fully
controlled by the attacker [15].

Provably secure countermeasures against such attacks [12, 15,
19, 20] provide a way of performing the computation of the block
cipher in a redundant fashion, employing the addition of unpre-
dictable random values to it. The modified computation strategy
provides a correct output, while ensuring that intermediate values
depend on both the inputs and the random values added.

Consequentially, to lead a successful SCA when these counter-
measures are in place, the information coming from the side chan-
nel leakage of more than one intermediate value must be combined
to build a model which is independent from the random values
involved. Such a combination is performed subtracting the mea-
surements (e.g., power consumption) obtained from the side chan-
nel when the materialization of the random values is performed,
from the measurement where they have been all combined to the
intermediate value to be attacked. The result is shown to be pro-
portional to the xor combination of all the aforementioned val-
ues [15], which does not contain the contribution of the random
values, as they are added twice to the same intermediate value (once
by the protected algorithm and once by the combination). The diffi-
culty of such an attack, known as High-Order (HO) attack, is quan-
tified in terms of either the number of different side channel leakage
values, d, which are combined to perform it, or of the degree, d, of
the statistical moments of the leakage at a single point in time [15].

In [17], the authors show that, in case it is possible to extract
the Hamming weight of the values being loaded and stored into a
µC SRAM exploiting information coming from a profiled attack, a
SCA will succeed in recovering the secret key employed in the de-
vice even in the presence of arbitrarily complex countermeasures,
and without knowledge of the inputs and outputs. However, the



profiled attack in [17], which succeeded on an 8-bit PIC16F877
µC (etched with a 500nm technology node), has been proven no
longer feasible on a more recent 32-bit ARMv7 CPU [4], as a con-
sequence of the difficulty of obtaining accurate enough profiling
information induced by both technology scaling and a higher com-
plexity of the target device. The authors of [18] report that in a
1, 530 transistors, 65nm, ASIC implementation of the AES cipher,
process variation prevented the extraction of the correct Hamming
weight profile. In the light of these results, we will be considering
the widely accepted attacker model where only the knowledge of
either the input or the output values of the cipher is required, and
the computational effort required to perform an (un-profiled) SCA
against an unprotected implementation grows exponentially in the
number of key bits to be guessed. In this model, it is possible to
reduce the application of the countermeasures only to the first and
last rounds of a block cipher, as predicting a value in the remain-
ing portion of the cipher would imply guessing the value of the
entire key [1, 2]. The computational burden required by the coun-
termeasures grows with the maximum order of the attack d against
which the designer chooses to be protected. Indeed, the number
of measurements (which depends on the noise standard deviation)
required to perform a d-th order attack against an implementation
grows exponentially with the exponent being d+1 [16].

Despite the possibility of reducing the application of provably
secure SCA countermeasures only at-the-ends of the block cipher,
execution time slowdowns greater than 100× are not uncommon
in software implementations, due to the difficulty of protecting ei-
ther the nonlinear operations or the table lookups present in the ci-
pher [1,7]. In the case of hardware implementations such computa-
tion time penalties are less severe, although this is usually obtained
at the cost of a significant increase in the occupied area.

A promising research direction is the one aiming at designing
a totally novel cipher, which is conceived to be both mathemati-
cally secure and easy to protect against SCA. A prominent exam-
ple of such ciphers is the one proposed in [10]. However, such
an approach needs to face the tradeoff between the mathematical
strength of the cipher (e.g., against linear and differential crypt-
analyses) and the efficiency of the SCA protection (provided by a
low algebraic degree of the nonlinear functions employed in the
cipher design) [11].

Our proposal in this work follows a different direction, namely,
we encase a block cipher within two keyed transformations, which
are easy to protect against side-channels and do not affect adversely
the mathematical security of the encased primitive. Protecting the
keyed transformations with a provably secure SCA countermeasure
will thus leave an attacker unable to break it, and thus with the only
option of guessing the entire key employed in one of them to lead an
SCA against the encased cipher. This approach has the advantage
of exploiting existing and well scrutinized block ciphers to provide
the mathematical security required from the construction, although
it results in the output value of the augmented primitive not match-
ing the one of the encased cipher alone. From a more practical
perspective, it is possible to employ the proposed augmented ci-
pher as a drop-in replacement for an unprotected one, as it matches
its block size, while the extra key material can be securely obtained
employing the approach described in [14]. In particular, the keys
of both the cipher and the keyed transformations can be computed
from the original secret key feeding its concatenation to two, dif-
ferent and equally long prefixes to two instances of a cryptographic
hash function. The proposed approach can be implemented in both
hardware and software solutions, taking care of implementing the
encasing primitive accordingly. A viable software implementation
is also to retrofit existing block cipher instances with the proposed
protection, both in case of software libraries and separate block
cipher co-processors, as it may be realized wrapping at-the-ends

the existing artifact computing the primitive. Consequentially, it
is possible to have an implementation which is protected, and may
function (if needed) in a legacy-supporting (i.e., unprotected) fash-
ion, skipping the computation of the keyed transformations. This
strategy is akin to the one of the triple DES (TDEA [13]) cipher in
encryption-decryption-encryption mode, which was proposed both
to strengthen the aging single DES cipher and to provide a fall-
back compatibility mode employing the same key in all three DES
executions. We note that, in a similar fashion to triple DES, our
encased block cipher proposal should be treated as an atomic prim-
itive when employed in any mode of operation to process inputs
larger than a single block.
Contributions. In this work we propose to provide protection
against energy-consumption-based SCAs encasing a cipher imple-
mentation between two keyed transformations, and applying coun-
termeasures only to them. We designed an efficient-to-protect keyed
transformation which allows us to achieve performance gains greater
than 60×, when compared with the current state of the art of block
cipher implementations protected with provably secure counter-
measures, on our experimental platform. We also propose an au-
tomated method to remove transition leakage from software im-
plementations through zeroing out the contents of a the destination
register of an operation, allowing the developer to consider value
leakage alone when protecting the keyed transformation. We pro-
vide an implementation of our contributions as a C++ template li-
brary and a modified LLVM compiler toolchain, and evaluate its
effectiveness with respect to the current state of the art of the side
channel countermeasure approaches.
Organization of the work. The remainder of the work is orga-
nized as follows: Section 2 provides a recap of the state of the art
of provably secure countermeasure strategies against side channel,
the concept of transition-leakage vulnerability and our proposed so-
lution to cope with it. Section 3 describes our proposed encased ci-
pher construction, detailing the design of the encasing keyed trans-
formation and its security guarantees, together with the methodol-
ogy applied to automatically prevent transition leakage due to reg-
ister reuse in software implementations. Section 4 provides an ex-
perimental campaign on a commercial grade platform, comparing
our performance results with the current state of the art proposals.
Finally, Section 5 draws our conclusions.

2. SCA COUNTERMEASURES
In this section we will provide the background on the SCA coun-

termeasures, which we will be employing to secure the keyed trans-
formation, and their computational cost. Among the significant
number of countermeasure strategies proposed in open literature,
we chose the two approaches providing a constructive scheme to
design a d-th order resistant countermeasure. We also describe our
contribution on effectively and efficiently implementing them in
software, preventing the so-called transition leakage.
Provably Secure Countermeasures. Among the possible protec-
tion schemes, the Ishai-Sahai-Wagner masking (ISW masking) [12]
and Threshold Implementations (TI) [19] are the two methodolo-
gies providing constructions backed by a security proof stating their
soundness up to d-th order attacks. Their structure is related, and
the explicit link between them has been analyzed in [19], highlight-
ing possible implementation issues in hardware and software.

Both schemes rely on encoding each one of the inputs to the al-
gorithm to be protected as a set of s≥2 shares taking uniformly
distributed bit values during the computation. Typically, such en-
coding is performed adding via bitwise xor s−1 independent ran-
dom values to each input to obtain the first share, and taking the
s−1 random values as the remaining ones. Once the encoding is
completed for all inputs, the computation of the algorithm itself is



adapted to be performed on the encoded values, obtaining a result
which is also split over multiple shares. The adaptation of the al-
gorithm is performed considering it as a set of Boolean functions
of its inputs. The result is reconstructed adding via bitwise xor all
its shares. Care should be taken not to combine all the shares of an
intermediate value of the algorithm, lest its value be disclosed.

The ISW masking [12] provides a constructive method to com-
pute Boolean and and not bitwise operations on share-split vari-
ables given the desired protection order d. Its security proof relies
on the fact that the values of any d variables of the adapted algo-
rithm computation (in any given time instant) could be the simu-
lated by the output of a random number generator (RNG). As a
consequence, a d-th order attacker has no knowledge whatsoever
on the actual values being computed by the algorithm. To achieve
the aforementioned security level, the ISW masking requires to
split each of the unencoded inputs into s=2d+1 shares. The au-
thors of [12] also propose a tweaked masking scheme (tweaked
ISW masking henceforth) allowing to limit the number of shares to
s=d+1, at the cost of a higher pressure on the RNG.

TIs [19] take a different approach at providing the desired d-
th order security, modifying the algorithm computation so that, in
no time instant the computation of a share of an intermediate re-
sult depends on more than s−d shares of the encoded input, a
property named d-non-completeness. Applying the scheme to turn
the algorithm into a TI yields a computation of the shares of the
result, both respecting the d-non-completeness property, and sat-
isfying the fact that the xor recombination of all of them pro-
duces the correct value, i.e., the TI is correct. It is known that,
for a generic Boolean function of degree t, it always exist a d-
secure TI which encodes each input into sin=td+1 shares, yield-
ing the result split over sout=

(
td+1
t

)
ones. However, there is no

known result on the optimal values of sin and sout to minimize
sin+sout, for a TI of a Boolean function [5], other than having
sin≥d+1 and sout≥d+1 to enable d-non-completeness. The au-
thors of [19] provide a specific TI to compute the Boolean and
(i.e., a Boolean function with degree t=2) with d=1 and d=2, em-
ploying sout=sin=3 and sout=sin=5, respectively. The TI of the
Boolean not operation can be trivially obtained complementing
the value in a single share of a split variable.

Both in the case of the ISW masking and the TI, computing a
Boolean and on share-split variables requires O(s2in) operations,
computing a not requiresO(1) operations, and computing an xor
requires O(sin) operations. The reason for the lower cost of the
xor computation is the fact that the share split encoding of the
input itself is performed via xor. Consequentially, a Boolean func-
tion having a low degree when expressed in Algebraic Normal Form
(ANF) can be protected more efficiently than another one having a
higher degree. We considered both ISW masking and TIs as pro-
tection strategies for our keyed transformation, as the tweaked ISW
masking provides a scheme to perform a d protected computation
with only s=d+1 shares, while no TI has been proposed to do so
for all values of d. By contrast TIs are computationally cheaper
w.r.t. an ISW implementation with the same number of shares by a
factor linear in sin depending on the specific form of the TI, possi-
bly allowing a better computational tradeoff at low ds. To provide
a fair evaluation of their efficiency, in Section 4 we compared both
approaches for d between 1 and 4.

Whenever it is needed to protect a tuple of Boolean functions
acting on the same inputs, as in the case of the nonlinear layer of a
block cipher (e.g., the AES SUBBYTES), it is possible to represent
the functions as a lookup table, and protect the load operations
performed from it. In [7] a protection scheme for such load op-
erations is proposed, and proven secure under the same attacker
model as the ISW masking, showing that such a protection tech-
nique is profitable whenever computing the tabulated outputs of the

Boolean function requires a significant amount of and operations.
In particular, the cost of a protected load operation with the algo-
rithm in [7] is proportional to O(4s2inw), where w is the number of
elements of the lookup table.
Transition Leakage Vulnerability. Both ISW masking and TI
tackle the issue of making the information coming from the inter-
mediate values of a computation, also known as value leakage, use-
less for an attacker. While this provides security in fully combina-
torial hardware, in case memory elements are reused in a sequential
implementation, a new information is leaked on the side channel,
namely the so-called transition leakage. Such a leakage is typical
of software implementations, where it occurs often due to the natu-
ral reuse of the registers, which happens in a general purpose CPUs,
when the liveness interval of the variable allocated into one of them
ends. Whenever this happens, the general purpose register will be
reused to store the value pertaining to a different variable, resulting
in a side channel leakage proportional to the Hamming distance be-
tween the two values. Although the frequency of this reuse highly
depends on the amount of register pressure of the code point, and
the register allocation policies of the compiler, it is possible that
two shares of the same variable are stored in the same register thus
yielding a leakage of their xor combination, effectively undermin-
ing both the ISW masking and TI countermeasures.

A quantification of the reduction of the security margin due to
transition leakage is provided in [3], where the authors prove that
a countermeasure scheme with a d-th order security margin against
value leakage will provide b d

2
c-th order security against transition

leakage. In this work we provide a contribution to mitigate this
security margin loss for software implementations, providing a so-
lution which is more efficient than doubling the order of the protec-
tion of the countermeasure. This solution relies on the following:

LEMMA 1 (FROM TRANSITION- TO VALUE-LEAKAGE).
Let V be the set of intermediate variables of a d-th order protected
implementation and T the set of expressions obtained combining
via xor every variable pair (v1, v2)∈V×V . The transition leak-
age, i.e., the one stemming from elements of T , is a subset of the
value leakage, i.e., the one stemming from elements V , if ∀ t∈T at
least one of the two variables in t is substituted with zero.

PROOF. Let t∈T be an expression t=va⊕vb, with va, vb∈V .
Replacing vb with the constant 0, the expression t yields t=va⊕0
=va for any possible value of va, and is thus contained in V . Anal-
ogously, replacing va yields t= vb∈V . Each element t∈T is con-
tained in V after the substitution is performed on either one of the
variables present in t.

A practical, and conservative, way to meet the condition specified
in Lemma 1, is to materialize the constant 0 in the destination reg-
ister rd of any CPU instruction before a new value is stored into
it. This can be obtained efficiently either storing in rd the value
rd xor rd, or copying the value 0 from a fixed value regis-
ter, whenever this is available (e.g., the register R0 in the MIPS
ISA), and ensuring that the register allocator never reuses one of
the operand registers as the destination. We note that load and
store operations can be protected from transition-based leakage
taking care of loading a 0 value stored in memory, and storing a 0 in
the destination location, respectively. Such an action will reset the
value of the memory data register on the CPU side, before a further
load/store operation is attempted. We also note that, in case
of load operations, the 0 value should be loaded from the same
memory bank of the load to be protected, so that, the memory
data register present on the memory bank is also set to the constant
value. Augmenting the protected code with such instructions can
be effectively, and automatically, done as a compiler pass. Such a
program transformation pursues the direction of providing reduced
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Figure 1: Proposed encasing for a block cipher E , with key KE and block size b, within two keyed transformations T , with key
KT , |KT |≥|KE |≥b (a), detail of the keyed transformation T (b), and detail of the Feistel F function in T , taking Il, K1 as input (c)

overhead and low development time SCA countermeasure applica-
tion pointed out in several works, such as [3]. The observation
that pre-charging a register prevents transition leakage has been
proven effective in [6]. In particular, in [6] the so-called random
pre-charging strategy is applied to a fully unprotected implemen-
tation, and realized filling the contents of a register with random
values obtained from an RNG. Employing random pre-charging in
our case would still be effective, although at the unneeded cost of a
significant amount of randomness from the RNG.

3. AUGMENTED CIPHER CONSTRUCTION
In this section we provide the details of the encasing strategy

proposed to protect a block cipher E , describing the keyed transfor-
mation T employed to do so, detailing its functional and security
features, and the added SCA resistance. We report the methodol-
ogy to provide automated support for transition leakage mitigation
modifying the compiler employed to produce the binaries.

3.1 Encasing Strategy
Willing to protect a block cipher E with a b-bit wide block and

secret key KE , we propose to encase it between two instances of
a b-bit wide keyed transformation T employing a key KT (with
|KT |≥|KE |), so that the plaintext P fed to the construction is first
processed by T , and its output is fed into the encased cipher E .
Subsequently, the output of E is employed as input to another in-
stance of T to produce the ciphertext C, as depicted in Figure 1(a).

In [9], the authors show that a construction made of a single,
fixed, bijective function encased between two xor KEY ADDI-
TIONs is necessary to properly define a block cipher primitive, as
removing each one of them results in a cryptographically broken
cipher. A somewhat similar intuition was exploited in [14], where
an efficient method to strengthen the DES cipher against bruteforce
attacks was proposed. The authors of [14] propose to encase the
DES cipher between two KEY ADDITIONs (via xor) involving 64
extra key bits each, thus raising the security margin against exhaus-
tive key search to ≈2120 trials from the original 256 ones.

The design presented in this paper differentiates from both [9]
and [14] in assuming that the primitive to be protected E is secure,
and relies on it to provide the mathematical security of the construc-
tion. Indeed, our approach aims at endowing the encased primitive
with side channel resistance, a feature that no current block cipher
is enjoying by construction.

3.2 Keyed Transformation
To the end of providing side channel resistance to the block ci-

pher primitive of choice E , encasing it between a simple pair of
bitwise xor KEY ADDITIONs as proposed in [14], and endow-
ing such KEY ADDITIONs with provable side channel protection in
their implementation, would not reach the purpose. Indeed, such a
strategy would only increase by one the number of key bits to be
guessed in an SCA aiming at the ends of the encased cipher [1]. In
designing a more complex encasing transformation T , it should be
kept into consideration that the side channel protections applied to
it have a cost growing quadratically in the degree of the ANF rep-
resentation of its output bits (see Section 2). To this end, reducing
the number of Boolean ands in its ANF expression will provide
substantial performance benefits.

Our design of the encasing keyed transformation T provides the
following functional and security features:

(F1). T is bijective for any given KT .

(S1). The cascade T ET presents a security margin against exhaus-
tive key search greater or equal than the one of E alone.

(S2). KT cannot be derived from P and C without an exhaustive
performing an key search of KE , assuming no side channel
information is used.

(S3). An SCA predicting a single input/output bit of T should re-
quire guessing at least |KE | key bits of KT .

(S4). An SCA exploiting an xor-combination of the side channel
information coming from a set of output bits of T should
require guessing at least |KE | key bits of KT .



The resistance of T against statistical mathematical cryptanalysis
techniques (e.g., against linear, differential and impossible crypt-
analysis) is not required as such techniques need pairs of inputs-
outputs coming from T , to which the attacker has no access to in
our scenario.

Figure 1(b) and Figure 1(c), report the detailed structure of the
keyed transformation T , of which we will now describe how it has
been designed to have the aforementioned features, and which as-
pects of the security guarantees are obtained through them.

The keyed transformation T is a 2-round Feistel network, em-
ploying a 2|KE |+b-bit long key KT split into two halves K1, K2
each one used in a separate Feistel function instance F (see Fig-
ure 1(b)). The choice of a Feistel network design for T was made
to allow freedom in the design of the Feistel F , as the network
structure guarantees feature (F1) for any possible choice of F . In
particular, T −1 is obtained employing the same structure of T ,
with the keys K1,K2 input in reverse order. As a consequence, it
is always possible to decipher a plaintext encrypted with the keyed
transformation T ET via the inverse transformation (T ET )−1=
T −1E−1T −1, employing KE and KT properly. Note that alternate
constructions for T , e.g., by employing a Substitution-Permutation
Network, may exist: the investigation of a general form of T is
beyond the scope of this work.

Concerning feature (S1), it is crucial for the mathematical se-
curity of the T ET construction that the application of the keyed
transformation T to the input and output of the encased cipher E
does not revert the effect of E . To analyze whether this holds, we
follow a line of reasoning similar to the one reported in [8] for
the security of cascade ciphers, and assume E to be a strong ci-
pher, i.e., a random permutation of the input space for each KE .
Such an assumption is commonly maintained to be met by mathe-
matically unbroken block ciphers. As a consequence, in the T ET
construction, for any possible value of the key KT employed by T ,
the probability that E−1

KE
=TKT holds (for at least one value of KE )

is: 2|KT |· 2
|KE|

(2b)!
. In our case |KT |=2|KE |+b, and |KE |≥b (see Fig-

ure 1(a) and Figure 1(b)), as the block cipher key typically meets or
exceeds its block size. Therefore, the probability of T inverting the
effect of E is≈ 24b

(2b)!
, which is negligible for any typical size b≥64

of a block cipher input. As a consequence, the cascade T ET has a
security margin against exhaustive key search greater or equal than
the one of the encased cipher alone.

Concerning feature (S2), the crucial point is that the attacker
should not be able to derive the value of KT without resorting to ei-
ther the exploitation of side channel leakage or an exhaustive search
over KE . An attacker, knowing the value ofthe plaintext P , should
derive the knowledge of both the value of the output of the first in-
stance of T and the corresponding value of KT (see Figure 1(a)).
Since T is bijective for any given KT , it is possible to find at least
one value for KT for any possible output of T . Since the output
of T is unknown to the attacker, all the key guesses relying on P
alone are equally valid. In order to validate a key guess κ for KT ,
the attacker will need to compare Tκ(P ) with the result of the fol-
lowing computation on the ciphertext C: E−1

KE
(T −1
κ (C)). Under

the assumption of E being an unbroken block cipher, the aforemen-
tioned condition can be checked for correctness only performing
an exhaustive search for the value of KE . A similar point on the
possibility for an attacker to derive KT starting from the ciphertext
C can be made simply swapping the roles of the input and output
of T . It is not possible to retrieve the value of KT without resorting
to an exhaustive key search for KE , or to side channel information.

While employing different keys for the two instances of T de-
picted in Figure 1(a) would still provide feature (S2), there is no
evident security loss in employing the same key twice [14].

To have T fulfill features (S3) and (S4), namely the need to guess

at least |KE | bits of KT to compute the value of either an output bit
of T or an xor-linear combination of them to perform an SCA,
we designed the inner structure of the Feistel function F as shown
in Figure 1(b) and Figure 1(c). Considering that one of the two
output halves of the T function, namely Ol = F(Il, K1) ⊕ Ir , is
influenced by the output of a single F function (see Figure 1(b)),
it is necessary for a single computation of F to fulfill features (S3)
and (S4) itself. As a consequence of the Feistel structure of T and
the use of the two unrelated keys K1, K2 in it (see Figure 1(b)), the
remaining output half of T , Or will be compliant with features
(S3) and (S4) too if F enjoys them.

To attain this, we designed F as a composition of three layers,
applied each one to the result of the precedent (Figure 1(c)). The
first layer adds, via bitwise xor (⊕), b

2
-bit sized portions of K1 in⌈

2|KE |
b

⌉
+1 iterations (with |K1|=|KE |+ b

2
), combining via bitwise

and (∧) the result of each xor with a rotated version of itself. The
reason for the insertion of the and-combination is that performing
the xor addition of two key slices K1,i, K1,i+1 in a row would al-
low an attacker to consider them as a single kequiv=K1,i⊕K1,i+1,
in turn reducing the number of effective key bits. The reason for ro-
tating one of the operands of the and-combination is that not doing
so would result in the and-combination outputting the unchanged
value of its operands. The rotation coefficients ρi are obtained via
exhaustive search, checking when features (S3) and (S4) are satis-
fied on the ANF representation of the output bits of F .

Following the key addition layer, a diffusion layer, realized as a
sequence of xor combinations of the intermediate state with a ro-
tated copy of itself by amounts equal to 2i, i∈{0, . . . , log2(b)−3},
is present. The reason for the rotation indexes being limited to the
aforementioned values is to avoid term cancellation due to double-
xor-additions of the same monomials. Examining the ANF of the
output bits of the diffusion layer, we obtain that each single one
depends on at least |KE | key bits. As a consequence, F satisfies
already feature (S3) since predicting any single output bit of it re-
quires guessing at least |KE | key bits of KT . This implies, according
to the security model in [1], a computational effort of 2|KE | to per-
form a side channel attack targeting one of such bits as intermediate
value. Consequentially, leading a side channel attack targeting any
intermediate value of the encased cipher will require a higher com-
putational effort than obtaining its key via exhaustive search [1].

Concerning feature (S4), the F function should be designed so
that an xor-combination of its outputs cannot be computed without
guessing less than |KE | bits of KT . To this end, the final component
of the F function (i.e., the non-linear combination in Figure 1) is a
bitwise and of its state bits with a copy of themselves rotated by
b
4
−1. We picked the rotation amount equal to b

4
−1 after check-

ing via symbolic computation that the aforementioned value yields
good results in terms of producing a significant amount of mono-
mials which are appearing only once in the ANFs of all the output
bits of F . A viable way to confirm fulfillment of feature (S4), is to
check that the ANF of each output bit of F contains at least |KE |
monomials, each of which involves a different bit of KT , and never
appears in the ANFs of the other output bits of F . If the aforemen-
tioned condition holds true, there is no xor-combination of output
bits that will make the unique monomials vanish in its result.

Obtaining a set of values of the rotation coefficients ρi making
features (S3) and (S4) hold for the whole F with an encased ci-
pher key size and block size equal to |KE |=b=128, |KT |=384, took
1200 CPU-hours on a dual Intel Xeon E5-2630 v3, with 128 GiB
of DDR4-2133. The constants found are ρ1=1, ρ2=3, ρ3=53, and
can be used for all block ciphers with the aforementioned block and
key size. We note that any other configuration satisfying features
(S3) and (S4) would be equally fine.



Table 1: Comparison among SCA countermeasure strategies applied to our T transformation to protect AES-128

(d, s)
AES-T AES-S AES-C

Time Slowdown Time Slowdown Time Slowdown
(µ s) (µ s) (µ s)

None (0, 1) 16.9 ×1.00 78.4 ×1.00 1020 ×1.00
T ET (0, 1) 24.2 ×1.43 89.1 ×1.14 1030 ×1.01
TL-ISW-t (1, 2) 95.2 ×5.63 165.2 ×2.11 1117 ×1.10
TL-ISW (1, 3) 204.0 ×12.07 274.8 ×3.51 1226 ×1.20
TL-TI (1, 3) 110.1 ×6.51 180.0 ×2.30 1131 ×1.11
ISW (1, 5) 393.2 ×23.26 468.3 ×5.97 1416 ×1.39
TI (1, 5) 189.3 ×11.20 255.5 ×3.26 1201 ×1.18
TL-ISW-t (2, 3) 250.3 ×14.81 321.0 ×4.09 1272 ×1.25
TL-ISW (2, 5) 559.6 ×33.11 612.1 ×7.81 1563 ×1.53
TL-TI (2, 5) 322.0 ×18.95 387.8 ×4.95 1339 ×1.31
ISW (2, 9) 2105.0 ×124.56 2222 ×28.34 3095 ×3.03
TL-ISW-t (3, 4) 441.9 ×26.15 511.0 ×6.51 1462 ×1.43
TL-ISW (3, 7) 1089.0 ×64.44 1166 ×14.87 2118 ×2.08
ISW (3, 13) 3402.0 ×201.30 3590 ×45.79 4402 ×4.32
TL-ISW-t (4, 5) 754.4 ×44.63 824.5 ×10.52 1776 ×1.74

STATEMENT 3.1 (SCA RESISTANCE OF T ET ). Let T ET be
a construction with a T transformation satisfying features (F1),
(S1)-(S4) protected with d-th order SCA countermeasures. The
computational effort required to recover the encased cipher key
KE is lower bounded by the minimum one between an exhaustive
search for KE and a d+1-th order SCA against T .

To perform an SCA with order smaller than d+1 trying to retrieve
a portion of KE , the attacker will need to recover either a portion of
the input to E , i.e., TKT (P ) or a portion of its output, i.e., T −1

KT
(C).

This is a consequence of the fact that provably secure d-th counter-
measures are unconditionally secure against any SCA with order
lower than d+1, and thus nothing can be gathered from the side
channel information coming from the computation of any of the
intermediate values of the protected T [12], leaving only the side
channel information coming from the ends of the computation of
T to be fruitfully exploited. Since T satisfies (S3) and (S4), any
SCA trying to predict the value of one of its output bits or a com-
bination thereof will incur in a computational effort O(2|KE |), the
same required for an exhaustive key search of KE .

In case the attacker is able to carry out a d+1 order attack, it
is possible for him to retrieve the value of KT extracting it in suit-
ably sized portions (e.g., bitwise), possibly faster than an exhaus-
tive search for the value of KE . The number of measurements to
perform a d-th order attack against an implementation grows expo-
nentially with the exponent being d+1 [16]. Since the value of d is
chosen by the designer, it is possible for him to choose the most fit-
ting tradeoff between the computational overhead imposed by the
SCA countermeasures and the desired security margin. As sum-
marized in Section 2, such computational overhead grows quadrat-
ically in the number of boolean and to be computed, linearly in
the number of xors. The computation of T involves only a limited
amount of b

2
-bit wide Boolean ands, namely 2(2|KE |/b) + 2. For

instance, encasing a b = 128 bit block cipher with b=|KE |=128,
requires only only 8, 64-bit wide, and operations for each compu-
tation of T , resulting in a greater ease in the application of the SCA
countermeasures described in Section 2 with respect to the current
state of the art methods, such as the ones proposed in [1, 7, 20].
Although we do not claim the proposed solution is minimal either
with respect to the amount of nonlinear operations, nor with respect
to the amount of key material employed in KT , the experiments in
Section 4 show that significant gains can be achieved employing it.

3.3 Automated Countermeasure Instantiation

We realized the SCA protected keyed transformation T as a
C++11 template library providing the possibility of choosing the
employed countermeasure strategy (ISW masking, tweaked ISW
masking or TI, as described in Section 2) and the protection order d.
Our template library providing the protected T takes as a parameter
d, the countermeasure strategy, b and the base type of the array with
which both the cipher state and the key are represented, together
with the number of such elements constituting KE .

To tackle the transition leakage (described in Section 2) and the
possible pitfalls which may take place in the encoding phase of the
countermeasures we modified the LLVM compiler toolchain allow-
ing it to lower two opaque built-ins, __builtin_crypto_xor
and __builtin_crypto_and, into intrinsic operations employed
by our template library to compute all the xor and and operations
in T and the encoding/decoding phases enclosing it.

Both intrinsic instructions are lowered by the instruction selec-
tion pass of the LLVM backend of the desired target ISA (ARM-
Thumb2 in our case) into appropriate pseudo-instructions, which
specify the constraint that the destination register should be dis-
tinct from both source ones. This constraint is imposed so that it
is possible, through a local transformation only, to precharge the
destination register to 0 before the result is actually stored, with-
out damaging either operand of the instruction. We note that this
transformation is possible assuming that the target ISA supports
three-operands instructions, such as it is the case of ARM (both
classic and Thumb/Thumb2) and MIPS. We also note that no other
constraint is imposed by our approach on the target ISA making it
easily applicable to other ones.

Right after the register allocation pass has been run, we tackle
the issue of protecting the transition leakage of memory opera-
tions in the functions of the source code where the keyed trans-
formation is called. We recall that the register allocation pass may
perform spill actions, i.e., push the contents of a register onto the
stack, whenever the set of useful registers to store a variable are
exhausted. Symmetrically, whenever the spilled value is required
to compute an instruction, the value is subject to a fill action, load-
ing it back into an available register. To this end, we add an extra
stack-slot to the allocated ones which will be used to store the con-
stant 0 at the beginning of this function. Moreover we reserve R9
as our support register to materialize the constant 0 whenever it is
needed to protect spill operations; we note that such a reservation
is not needed for ISAs which have a dedicated register set to 0 such
as R0 in the MIPS ISA. Subsequently, the code of the function to



Table 2: Comparison among the execution time of the proposed countermeasure and the existing ones as a function of the protection
level d. The results are clustered according to the implementation strategy employed for the AES-128 cipher: a single T-Table (AES-
T), a single tabulated S-Box (AES-S), and a fully computational implementation (AES-C). All slowdowns are computed w.r.t. the
corresponding unprotected (d=0) implementation. All absolute running times and slowdowns are provided on a Cortex-M4 based
µC clocked at 84MHz save for the AES-S column marked with † from [1], which are reported from experiments running on a 1.2GHz
Cortex-A9 due to the lack of publicly available source code

AES-T AES-S AES-C
[This work] [This work] Ref. [1]† Ref. [7] Ref. [20]

d Time Slowdown Time Slowdown Time Slowdown Time Slowdown Time Slowdown
(ms) (ms) (ms) (ms) (ms)

0 0.01 ×1.00 0.07 ×1.00 0.06 ×1.00 0.07 ×1.00 0.3 ×1.00
1 0.09 ×5.63 0.16 ×2.11 0.33 ×5.48 88.4 ×1151.2 6.6 ×20.0
2 0.25 ×14.81 0.32 ×4.09 0.98 ×16.17 217.5 ×2830.5 15.6 ×47.2
3 0.44 ×26.15 0.51 ×6.51 1.98 ×32.62 400.7 ×5214.7 28.7 ×86.4
4 0.75 ×44.63 0.82 ×10.52 – – 637.8 ×8300.3 45.6 ×137.6

be protected is augmented adding an extra store operation into the
stack-slot dedicated to the constant 0 before each spill is performed,
and an extra load operation from the 0-dedicated stack-slot into the
destination register of each fill operation before the fill itself.

Finally, right before the assembly emission pass is run, we pro-
cess all the pseudo-instructions, inserting an instruction setting the
destination register rd to 0 via storing rd xor rd into it. Fol-
lowing the insertion of the zeroing of the destination register, we
also insert, right after the computation of the pseudo-instruction,
a zeroing action for each one of its operands which will be no
longer used. As a last action, we change the opcode of the pseudo-
instruction lowering it into the actual one of the corresponding
ARM/Thumb2 instruction.

4. EXPERIMENTAL EVALUATION
In this section we validate our approach on an ARM Cortex-

M4 based µC. Our platform of choice is the STM32F407 µC, with
192kiB SRAM, 1MiB Flash on a commercial grade STM32F4 Dis-
covery board, clocked at 84MHz. The µC is equipped with an
RNG able to provide 32 bits of randomness every 2 clock cycles
in our experimental setting. We employed three C implementa-
tions of the AES-128 block cipher. The first one, AES-T, relies
on a single T-Table to speed up all the non-key-related operations
of the AES round at the cost of a 768B increase in data memory;
the second one, AES-S employs a single S-Box, and the third one,
AES-C, does not rely on any tabulated nonlinear function, com-
puting explicitly the SUBBYTES primitive, matching one of the
two approaches proposed in [1]. All the implementations were
encased between two keyed T employing 384 bits of key mate-
rial, to provide at least 128-bit equivalent security against SCA.
The rotation constants ρ1=1, ρ2=3, ρ3=53 of theF function were
obtained through exhaustive search, as reported in Section 3. The
implementations were compiled with our modified LLVM 3.4 com-
piler and release-grade (-O3) optimizations before being loaded on
the board, producing binaries both with our transition leakage pro-
tection (marked as TL in the tables), and without. We checked
that, after the templates were instantiated, and the full set of re-
lease grade optimizations acted on the code, no instrumental code
from the templates was left, other than that of the desired protec-
tion. We obtained the timing results measuring the time between
the assertion of a GPIO at the beginning of the execution, and its
deassertion at the end sampling it with a Picoscope 5203 DSO, at
a sampling frequency of 1GSa/s. All the timing measurements are
averaged over 30 executions, and exhibit a sample standard devia-
tion lower than 1% of the sample mean. Table 1 reports the result
of the comparison of the execution time and code sizes obtained
applying different side channel attack countermeasures to the T

transformations in the augmented ciphers to provide protection up
to d=4, together with the required number of shares s. In particu-
lar we provide results on the regular ISW masking, and its tweaked
version (marked with –t) trading off extra pressure on the RNG for
a lower amount of shares. We provide results employing the TI
pointed out in [19] for all the degrees having available formulas.

Table 1 shows how the TL protected tweaked ISW masking yields
the lowest possible overhead per protection level (i.e., value of d)
on our target platform (corresponding rows are marked in gray),
closely followed by the TI of [19]. It is noteworthy to mention
the fact that the employed TIs requires 2d+1 shares to achieve the
same protection level of the tweaked ISW, and comparing its com-
putational requirements with the ones of the regular ISW shows that
TIs are able to provide the same protection level with about half of
the overhead, in turn confirming their greater efficiency with re-
spect to an ISW scheme employing the same amount of shares s.
As there are currently no openly available, high-order TI instances
providing d-th order security employing d+1 shares only, nor there
is a formal constraint prohibiting such a construction, we deem the
direction of designing such a TI a promising one to provide ef-
ficient countermeasures. Data in Table 1 provided show that, on
our platform, the tradeoff offered by the tweaked ISW is favorable
with respect to its regular version, as the throughput of the RNG
is high enough not to penalize the tweaked implementation for re-
quiring more random values. Indeed, the tweaked ISW protection
is roughly twice less demanding than the un-tweaked one. Finally,
applying our automated protection against transition leakage al-
lows significant gains with respect to employing a higher number
of shares in any of the protection schemes. The gain increases with
the protection level, as an increase in the number of shares implies
a quadratic growth in overhead, while our transition leakage pro-
tection has a linear cost in the number of protected instructions.

Table 2 reports the comparison of the proposed approach with
the results available in open literature on applying high-order SCA
countermeasures to software implementations of the AES block ci-
pher. In particular, the results of both [7] and [20] were obtained
running the C implementation available from [7] on our platform,
taking care of replacing the call to a software PRNG with a load
operation from the platform hardware RNG for the sake of a fair
comparison. We report the results of [1] on its experimental plat-
form, namely a 1.2GHz Cortex-A9 SoC (TI-OMAP4460). The
results in Table 2 show how our approach compares favorably in
terms of performance both to the one of [7] where a software AES
implementation with a single S-Box is protected performing table
re-computation in a provably secure fashion, and the one of [20]
where an AES implementation exploiting a computational S-Box
is protected employing ISW masking and tailoring the computa-



Table 3: Slowdowns of the fastest protected implementation of
each work compared with the unprotected (d=0) AES-T (the
fastest unprotected implementation)

AES-T AES-S AES-S AES-C
[This work] Ref. [1]† Ref. [7] Ref. [20]

d Slowdown Slowdown Slowdown Slowdown
0 ×1.00 ×3.59 ×4.54 ×19.63
1 ×5.63 ×19.72 ×5234.3 ×394.3
2 ×14.81 ×58.20 ×12869.8 ×928.4
3 ×26.15 ×117.36 ×23710.1 ×1698.2
4 ×44.63 – ×37739.6 ×2703.6

tion of the S-Box so to be efficient with it. In both cases, our ap-
proach provides speedups greater than an order of magnitude, with
growing gains when higher order implementations are considered.
The comparison with the approach of [1] where provably secure
countermeasures, namely the ISW masking, are applied automati-
cally only to the first and last rounds of a computational S-Box im-
plementation of the AES cipher is favorable: 2.11× in our S-Box
based implementation versus 5.48 for the case of d=1 and growing
with d up to 6.5× versus 32.6× for the highest protection level pro-
vided by [1]. This highlights how protecting the T transformation
is more efficient than protecting a few rounds of AES.

In Table 3 we report the comparison in terms of computation
time among the best solutions available in [1, 7, 20] and ours with
the unprotected AES-T implementation, which is the fastest one on
our target platform. The provided data show how our solution is the
one having the lowest slowdowns for all ds, even when compared
against results obtained on a faster platform, such as the ones of [1].
In particular, we note that comparing our implementation against
the fastest from [1], a portion of the speedup is to be be ascribed
to the possibility of employing the T-Tables AES variant, which is
inherently faster than the one relying on S-Boxes used in [1]. How-
ever, a direct comparison of our protected AES-S implementation
with the one in [1] (see Table 2) reports speedups in the ×2 (d=1)
to ×3.8 (d=3) range, regardless of our implementation running on
a significantly less performant platform.

5. CONCLUDING REMARKS
We presented a protection strategy against SCA relying on en-

casing a block cipher implementation between two SCA-protected
keyed transformations T . The experimental campaign showed sig-
nificant performance improvements w.r.t. alternative solutions pro-
viding the same security margin through the use of provably secure
countermeasures. The performance gains are due to the lightweight
nature of the keyed transformation T , and the reduced amount of
expensive-to-protect nonlinear operations in it.
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