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Abstract

Event-based cameras are neuromorphic sensors capa-
ble of efficiently encoding visual information in the form
of sparse sequences of events. Being biologically inspired,
they are commonly used to exploit some of the computa-
tional and power consumption benefits of biological vision.
In this paper we focus on a specific feature of vision: vi-
sual attention. We propose two attentive models for event
based vision: an algorithm that tracks events activity within
the field of view to locate regions of interest and a fully-
differentiable attention procedure based on DRAW neural
model. We highlight the strengths and weaknesses of the
proposed methods on four datasets, the Shifted N-MNIST,
Shifted MNIST-DVS, CIFAR10-DVS and N-Caltech101 col-
lections, using the Phased LSTM recognition network as a
baseline reference model obtaining improvements in terms
of both translation and scale invariance.

1. Introduction
Convolutional neural networks (CNNs) are currently the

state of the art in a variety of challenging computer vision

tasks that involve the extraction of visual features. These

include, among the others, image classification [28, 7, 26],

object detection [22, 21, 8, 13] as well as semantic scene la-

beling [12, 2, 11]. When video sequences captured by con-

ventional frame-based cameras are considered, CNNs great

performance in terms of accuracy, however, is achieved at

the cost of a high computational and time complexity. In-

deed even while capturing static scenes, these devices out-

put a stream of mostly identical frames, requiring CNNs to

process the same redundant data several times.

On the other hand, primates are able to achieve remark-

able results in most vision tasks while using a fraction of

energy and computational power with respect to their arti-

ficial counterparts. As an attempt to reproduce the benefits

of biological vision, research is now focusing on develop-

ing vision systems based on neuromorphic, or event-based,

cameras, i.e., a type of sensors that tries to emulate the func-

tioning of biological retinas. Unlike conventional cameras,

these devices output sequences of asynchronous events that

efficiently encode pixel-level brightness changes caused by

objects moving inside the scene. The result is a sensor

able to produce a stream of events e = 〈x, y, ts〉 indicat-

ing the time instant ts, the position (x, y) and the polarity

p ∈ {−1, 1} of every change detected inside the scene.

A key characteristic of biological vision systems is their

ability to selectively focus their attention on the salient por-

tions of the scene, drastically reducing the amount of in-

formation that needs to be processed. Selective attention

mechanisms that mimic this behavior are nowadays widely

adopted in several vision tasks, like for instance in image

and video captioning [29, 3, 4], image generation [6], ob-

ject recognition [15, 27] and person re-identification [24].

A similar effort has been made in the design of attention

mechanisms able to directly process event-based informa-

tion produced by neuromorphic cameras [25, 20]. These de-

vices are indeed inherently able to detect relevant portions

of the field of view as they emit events only when something

changes. Events encode important information regarding

the objects contained inside the scene and can thus be used

to precisely locate them in space and time.

These neuromorphic systems make often use of Spik-

ing Neural Networks (SNNs) [14], a type of artificial neural

networks based on units that communicate with each other

through spikes and perform computation only when and

where needed. However, a big limitation of these models is

that they are not differentiable. When multiple processing

layers are involved, this makes the training procedure much

more complex than the back-propagation algorithm used in

conventional neural networks. For this reason, another ap-

proach adopted in literature makes use of conventional con-

volutional or recurrent networks properly adapted to handle

event based information [18, 16, 1]. Despite being easier to

train, however, such networks usually require the scene to

be reconstructed as a sequence of frames, thus potentially

ignoring all the advantages of the events encoding.

In this paper we focus on enhancing conventional archi-

tectures by designing attention mechanisms that can be used

to make these networks focus only on relevant instants of

events recordings and only on the salient portions of frames,
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limiting the increased data redundancy caused by the frame

integration process.

The main contributions of this paper are:

• An algorithmic attention mechanism which monitors

the events activity within the scene to extract patches

from reconstructed frames (Section 3).

• An adaptation of the popular DRAW [6] attention

mechanism for image classification able to recognize

objects within reconstructed frames (Section 4.1).

• An event-based variant of the previous network which

directly uses events to locate the relevant portions of

the frame (Section 4.2).

2. Background
This section presents three basic tools adopted to de-

sign the attention mechanisms proposed in this paper: the

Phased LSTM Network, the DRAW attention mechanism

and the Leaky Frame Integrator.

Phased LSTM Recognition Network The Phased

LSTM recognition network [16] is a simple architecture for

object classification with event-based cameras. It is based

on Phased LSTM (pLSTM) cells, a variant of the vanilla

LSTM which makes use of a time gate to learn the time

scales of incoming events, and uses of a word embedding

layer to extract relevant features from a stream of events.

Its structure is depicted in Figure 1.

Despite achieving good results on simple datasets, how-

ever, the network lacks in the ability to extract general fea-

tures as its embedding layer is only able to learn simple

mappings between coordinates and learned sets of features.

This results in a model with poor translation and scale in-

variance properties. This paper focuses on improving its

performance in conditions where objects may appear with

multiple scales and in different portions of the field of view.

DRAW Selective Attention The Deep Recurrent Atten-
tive Writer (DRAW) [6] is a network for image generation

that makes use of a novel fully-differentiable procedure to

focus attention on the salient portion of a frame. Its core

components are a recurrent neural network (RNN), usually

an LSTM, and the selective attentive operator read.

The read operator is used to force the network to only

see a certain portion of the original frame. Using the ab-

stract representation encoded by the RNN, the parameters

of a grid of 2D Gaussian filters are first computed and then

used to extract a N ×N patch of the image. The final patch

is obtained through a fixed number of progressive refine-

ments in which the RNN, starting from the whole frame at

the beginning, progressively modifies its previous represen-

tation to better zoom on the salient portion of the image.

Varying the stride and variance of the filters, the network

can adaptively enlarge or reduce its field of view while still

extracting patches of a fixed dimension.

hT
<x, y, ts, p>t

41
C

Softmax
layer

Embedding

p

+
Phased
LSTM

ts

Figure 1: Phased LSTM recognition network.

More specifically, denoting as ht the output of the RNN

at the time t, a patch is extracted as it follows:

read(x,hdec
t ) = γ (FY xFT

X) (1)

where FY and FT
X (with dimension N ×Hf and Wf ×N

respectively) are the Gaussian filters obtained using a linear

transformation of ht, x is the original Hf ×Wf frame, and

γ is a scalar.

Even if originally designed for image generation, this

procedure can also be used as an attention mechanism in

object recognition architectures. Please refer to the original

DRAW paper [6] for a detailed description of the model.

Leaky Frame Integration All the attention mechanisms

designed to improve the pLSTM Recognition Network pro-

posed in this paper are based on the frame reconstruction

procedure described in [1]. This simple mechanism, in-

spired by the functioning of spiking neurons, integrates

events in time producing a sequence of frames on which

conventional computer vision techniques can be applied.

The pixel values of the reconstructed frame are updated

whenever a new event e = (xe, ye, ts)
t arrives, as it fol-

lows:

qtxm,ym
= max(pt−1

xm,ym
− λ ·Δts, 0) (2)

ptxm,ym
=

{
qtxm,ym

+Δincr if(xm, ym)t = (xe, ye)
t

qtxm,ym
otherwise

,

(3)

where Δts = tst − tst−1 decrements the whole frame of a

quantity that depends on the time elapsed between the last

received event, tst, and the previous one. As in the original

YOLE paper [1], we fix Δincr = 1, varying only λ based

on the dataset to be processed and in particular on the speed

at which objects move.

3. Patch Extractor Recognition Network
By monitoring the events activity inside the field of view

of the neuromorphic camera, regions of interest can be de-

tected and used as candidates for the object recognition pro-

cess. For this purpose, we developed an algorithm that

detects peaks of events activity and uses them to extract

patches from reconstructed frames. This approach takes

inspiration from the spiking recognition network proposed

in [30], where a peak detection mechanism is used to decide
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Figure 2: The detection of a peak in position Rw and the

confidence interval, as a blue line, are represented at the top

of the figure. For simplicity, windows are grouped together

into an activity matrix.

when to output predictions. Instead of leaky integrate-and-
fire neurons, however, our method makes use of region-wise

events statistics to identify and localize peaks.

3.1. Peak Detection Algorithm

The Peak Detection Algorithm we designed subdivides

the Hf ×Wf field of view into a grid of possibly overlap-

ping Hr ×Wr regions spaced by a fixed stride sr. A mov-

ing window in time of length Lw is associated to each tile;

each activity value of Lw represents the number of events

received inside the region within a certain interval of length

Lbin. These activity windows are used to detect peaks of ac-

tivity inside each region by comparing the value contained

in a fixed position Rw of the window, which we call rep-
resentative value, with the remaining activity values in the

same window. As time passes, each activity value slides

through the activity window and therefore, at some time,

each value becomes the representative value Rw. We usu-

ally set Rw to be the middle point in the window, but other

configurations are also possible.

Periodically, each activity window is checked in order to

determine the presence of peaks. A peak of activity is de-

tected in a certain region whenever Rw becomes the max-

imum value inside the window. In this case, the interval

(t1, t2), with t2 = t1 + Lbin, corresponding to the repre-

sentative value is considered a peak and a patch extraction
algorithm is used to extract N×N patches inside this region

using the frame reconstructed at the time instant t2.

Since Rw is usually not the first element of the window,

the algorithm must wait the following Lw − Rw + 1 in-

tervals before (t1, t2) becomes the representative value and

can consequently be analyzed. Being the peak detection de-

layed of Lw−Rw+1 intervals, a buffer of integrated frames

must be maintained to allow the extraction of patches from

the right frame.

Every time a new event e = (xe, ye, tse) arrives, the

frame in the most recent position of the buffer is updated,

(a) (b)

Figure 3: Comparison between patches extracted with the

two versions of the patch extraction algorithm. (a) The fol-

lower and (b) centered variants.

as described in Section 2, as well as all the activity windows

associated to regions in which e is contained. Peak detec-

tion is only performed if the current interval has finished

(i.e., tse is more that Lbin time instants after the beginning

of the current interval) and at least Lw activity values have

been accumulated. In this case all the activity windows are

checked and patches are extracted whenever a peak is de-

tected. At the end of this process, the oldest frame in the

buffer and the oldest values in all activity windows are re-

moved to make room for the next interval.

To avoid false detections caused by noisy events received

during time intervals of poor events activity and increase the

robustness of the algorithm, we enhanced the peak detec-

tion procedure with a moving average approach. A peak is

considered to be valid if its value x is above the confidence

interval x > μt + α · σt where α is a parameter and μt, σt

are the mean and standard deviation statistics of the whole

field of view.

These are updated at the end of each interval as it fol-

lows:

μt =
sumval

Nval
, σt =

√
sumval2

Nval
− (μt)2 (4)

where sumval and sumval2 are respectively the sum of the

activity values and the sum of their squares, and Nval =
Nint ∗A ∗B, with Nint the number of processed intervals.

Both sumval and sumval2 are incrementally updated at the

end of each interval. The equation of σt is obtained from the

relation between the mean and the variance of a stochastic

variable, namely V ar[X] = E[X2]− E[X]
2
.

3.2. Patch Extraction Algorithms

We developed two mechanism for patches extraction.

One that covers the whole object by centering a patch on

activated regions, which we called Centered Patch Extrac-
tion, and the other one which instead extracts small de-

tails by following the contours of the objects, which we

called Follower Patch Extraction. Examples of patches ex-

tracted with these two methods are shown in Figure 3. A

video showing the detection of peaks and the extraction

of patches on similar event-based recordings is available at

https://youtu.be/BV_ikdS4m3g.

1129



<x, y, ts, p>t
Patch

extraction

leak

Extracted
patches

32

64

Conv
Layer

5x5x32 
Maxpool 

2x2

Conv Layer
5x5x64 
Maxpool 

2x2

40

Fully
connected

layer

<patch, ts>t

Softmax
layer

N

N

hT

C

Phased
LSTM

ts

Figure 4: The convolutional network used to classify the

sequence of extracted patches.

Centered Patch Extraction The result provided by the

peak detection unit is a two-dimensional boolean matrix

that indicates which regions of the A × B grid activated,

i.e., in which of these regions a peak has been detected. The

goal of the Centered Patch Extraction algorithm is to extract

patches which cover as much as possible the detected ob-

ject. For this reason, active regions are grouped into macro-
regions by joining together adjacent active regions. For

each macro-region one or multiple equally spaced N × N
patches are extracted by covering the entire activated re-

gion. This procedure is performed for every group of active

regions and all the extracted patches are labeled with the

timestamp associated to the frame from which they have

been extracted.

Follower Patch Extraction In the Follower variant of the

Patch Extraction algorithm we choose the dimensions of the

patches so that only small object details are extracted. We

then extract patches by following the object outline with a

simple recursive algorithm that extracts a patch as soon as

an uncovered object pixel is visited. As for the centered

version of the algorithm, the timestamp of the frame from

which patches have been obtained is also saved.

3.3. Classification network

The sequence of extracted patches constitutes the input

of the recognition network that uses the timestamp informa-

tion to correlate patches over time by means of a pLSTM

layer (Figure 4). The network is similar to the original

pLSTM recognition network from [16], where the word em-

bedding layer has been replaced with a convolutional neural

network. We used feature vectors of the same length of the

ones extracted by the original embedding layer. However,

no polarity information is added in this case.

The structure of this network is based on the idea that

the patch extraction algorithm can be used as a way to con-

volve filters sparsely in space and time, driven by the events

activity. Each extracted patch can indeed be considered as

a single receptive field on which a small portion of a wider

convolutional network, that potentially covers the whole in-

put frame, is applied. The patch extraction algorithm, by

monitoring the events activity during time and selecting the

active receptive fields, allows to compute an event-based

convolution of the filters only when and where a peak of

activity has been detected. Features extracted from these

receptive fields are then used by the pLSTM to reconstruct

the global appearance of the object and its output is finally

used for the overall prediction. We used the same network

with both versions of the patch extraction algorithm.

4. N-DRAW Recognition Network
The patch extraction algorithm we presented in the pre-

vious section effectively extracts patches from integrated

frames coming from neuromorphic cameras. The fact that

patch extraction is driven by the events activity and that

patches are computed and analyzed only when enough in-

formation has been accumulated, make the algorithm fit

well in event-based scenarios.

However, both patch extraction networks require the tun-

ing of dataset-specific parameters and are not able to adapt

to objects of variable dimension. To improve the perfor-

mance of this network, which still achieve better results

than the pLSTM baseline when objects are not centered in

the filed of view, we extended the patch extraction network

obtaining a trainable procedure based on DRAW [6] and

whose functioning is similar to the original procedure. Be-

ing designed on top of a recurrent neural network that grad-

ually encodes visual information and being able to gradu-

ally adjust its predictions over time, DRAW naturally fits

the sequential nature of event-based imaging. We finally

used the networks presented in the previous sections as ad-

ditional baselines to evaluate how much the network perfor-

mance improves when a patch extraction procedure able to

automatically adjust to changes is used.

We designed the N-DRAW patch-based network by com-

bining the architecture of the previous patch extraction al-

gorithm with the DRAW recognition model. Then, we de-

signed a second variant, i.e., the N-DRAW event-based net-

work, that directly uses the sequence of events as input to

the encoder network.

4.1. Patch-based model description (p-N-DRAW)

We modified the original DRAW network to detect ob-

jects captured with event-based cameras by using a frame

reconstruction mechanism as the first layer of our architec-

ture (Figure 5). The read operation takes as inputs the most

recent frame framet and the output of the encoder at the

previous time step ht−1
enc . This extracts the parameters of 2D

Gaussian filters and uses them to transform the A×B input

frame into a fixed size N ×N patch. The timestamp tst as-

sociated with the current frame is used as an additional input

for the recurrent network. In contrast to the original archi-

tecture that uses a simple LSTM network, we use a pLSTM

layer as the encoder so that the timestamp associated with

each patch can also be exploited. By doing that, the network

learns to sparsely update its internal representation based on

the timing of the input features.
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Figure 5: The p-N-DRAW recognition network.

predict reset predictreset

Figure 6: The top row shows 8 consecutive 68× 68 frames

and, in red, the grid of 12×12 2D Gaussian filters, whereas

the bottom one the corresponding extracted patches. In this

example, the encoder state is reset every 4 frames, which

causes the filter to reposition itself to cover most of the

frame.

Differently from the original model, where the image is

static, we deal instead with a sequence of integrated frames

that may slightly differ from each other. The read operation,

therefore, has to decide where to attend at the current time

step by using the encoder output produced while observing

the previous frame, where the object may be in a slightly

different position. We found, however, that this does not

constitute a problem for the recurrent architecture since it

can learn to compensate the objects movement by compar-

ing consecutive frames.

We want our network to be able to recognize objects as

soon as enough information has been accumulated. For this

reason, we decided to perform a prediction regularly rather

than after having seen the whole sequence, as opposed to

the standard DRAW architecture. Since using every patch

for prediction may prevent the network to learn a good ex-

traction mechanism (not having the encoder a fixed reason-

ing period which can be used to gradually zoom and refine

the prediction), we perform instead a prediction every M
successive frames.

If M is not too large (we used M = 4 in our experi-

ments), the network can still generate predictions quite of-

ten allowing the model to be used for continuous classifi-

cation. After the fixed M steps, the internal state of the en-

coder can either be reset or maintained as a starting point for

the next prediction. We found to be beneficial to maintain

the internal state when objects do not move too much, as

the network can continue to refine the previous prediction.

However, if objects move fast the network performs better

when the state is reset, as this allows it to see the whole

frame and progressively re-locate the object. An example is

shown in Figure 6.
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Figure 7: The e-N-DRAW architecture. The projected coor-

dinates (x∗e, y
∗
e) are used to guide the attention mechanism

in finding the filters parameters (loop connection at the top

of the figure).

4.2. Event-based model description (e-N-DRAW)

N-DRAW event-based extends the DRAW attention

mechanism to directly process the stream of incoming

events and uses it as a reference to locate the relevant part

of the scene, in a similar way as in the patch extraction al-

gorithm. This variant, depicted in Figure 7, makes use of

two read operations: event-based read, the modified atten-

tion mechanism that processes events, and read, the vanilla

DRAW’s operation that extracts patches from reconstructed

frames. The sequence of events is partitioned into intervals
of equal temporal length T . Events are used both to recon-

struct frames through the frame integration procedure and

to detect the relevant part of the scene by means of the re-

current pLSTM layer. Once the whole sequence of events

inside the interval has been processed by the encoder, its

output hT
enc, is used to extract a N ×N patch from the last

integrated frame frameT using the standard extraction pro-

cedure read. The extracted patch is then processed as usual

by applying a sequence of convolutional layers and by using

the extracted representation to predict the class label.

The event-based read projects the input coordinates into

the patch space to provide the encoder network a feedback

on the transformation applied by the Gaussian filters. Given

an event at location (xe, ye) in the input space, the event-
based read produces as output a new event with the same

timestamp ts, but having as coordinates (x∗e, y
∗
e) those that

the original event has in the N × N patch space. In this

way the encoder network progressively follows the events

activity and modifies its internal state so that the extracted

patch will be centered on the object.

The operation performed by the event-based read pro-

cedure is based on the original transformation. A frame

containing a single positive pixel in correspondence of the

incoming event coordinates (xe, ye) is considered. A patch

is extracted from this frame by means of the original read
operation using the set of Gaussian filters obtained from the

encoder output at the previous step ht−1
enc . This patch con-

tains a possibly blurred dot in a certain location whose co-

ordinates (x∗e, y
∗
e) can be obtained by looking at the bright-

est pixel of the patch. In particular, the output coordi-

1131



nates are defined as (x∗e, y
∗
e) = argmax(x,y) γ

(
FY xFT

X

)
,

where FY and FX are the set of extracted Gaussian fil-

ters. The event-based read and read operations share the

same linear transformation that allows the encoder output

to be transformed into the filter parameters. In this way, the

same transformation learned while observing the sequence

of events will be also used to extract the actual patch from

the reconstructed frame.

As it happens with the original attention mechanism, the

network starts by considering a patch that roughly covers

the whole frame so that most of the incoming events will

be contained in the extracted patch. As more events arrive,

the network becomes more confident about the position of

the object and it starts reducing the dimensions of the fil-

ter ignoring irrelevant events. Events that are not contained

inside the filter’s region, i.e., those for which the patch ex-

tracted with the event-based read operation is completely

blank, are ignored by the network that skips them during

the recursive execution. This is in line with the original

DRAW patch extraction procedure which ignore the part of

the scene not contained inside the extracted patch. Figure

8 shows the successive stages of the event-based patch ex-

traction procedure on some Shifted N-MNIST examples.

This attention procedure resemble the patch extraction

algorithm we presented in the previous section; the spatial

location of the events is directly used to discover regions

of interest in the input scene which are then used to ex-

tract patches from integrated frames. This new mechanism

has the advantage of being a trainable procedure that can be

learned together with the rest of the classification network

thanks to its fully-differentiable nature. As for the patch ex-

traction algorithm, though, this mechanism only bases its

predictions on the events activity, without any visual feed-

back, as opposed to the patch-based architecture. This char-

acteristic limits the network performance in scenarios in

which the background is also moving with respect to the

camera and the attention mechanism has to discriminate be-

tween events emitted by the object and those emitted by

the rest of the scene, as we registered testing the network on

CIFAR10-DVS [10] and N-Caltech101 [17] datasets. More-

over, we found that this network has difficulties in centering

and zooming on the object with respect to the patch-based
one, as reported in the next section.

5. Experiments
Datasets The performance of the proposed attention-

based networks have been tested on four datasets avail-

able in literature, the N-MNIST [17], MNIST-DVS [23],

CIFAR10-DVS (CIF10) [10] and N-Caltech101 (Cal101)

[17] collections. These datasets have been obtained by dis-

playing original images in front of a neuromorphic cam-

era and by moving them, or the camera itself, follow-

ing a predefined trajectory that resemble human saccades.

Figure 8: The filter changes during the successive stages

of the patch extraction process on two Shifted N-MNSIT

examples. Contrary to Figure 6, we do not see the filter

gradually zooming in, since in this case the network uses

the sequence of events to progressively refine its prediction.

When the filter is first applied to the frame, it has already

been perfected.

Table 1: Patch extraction algorithm parameters.

S-DVS S-N CIF10 Cal101
sc4 sc8 sc16 sc4+8 all

centered
sr 11 24 24 24 24 5 10 10

Wr=Hr 24 32 32 32 32 23 48 48
N 29 55 105 55 105 29 105 105

follower
sr 5 15 24 24 24 5 12 12

Wr=Hr 9 23 32 32 32 9 32 32
N 13 23 53 23 53 13 75 75

Since these MNIST datasets are quite simple, especially N-

MNIST, we also considered the Shifted N-MNIST (S-N) and

Shifted MNIST-DVS (S-DVS) variants [1] in which the orig-

inal digits (i.e., the sequence of events representing them)

are placed in a random location of a bigger field of view.

5.1. Experiments Setup

All the results presented in this paper were obtained by

optimizing the cross entropy loss function using Adam [9]

with default parameters (β1 = 0.9, β2 = 0.999, ε = 10−8)

and learning rate 10−4. Networks parameters were ini-

tialized using the mechanism proposed in [5] and early-

stopping was applied to prevent overfitting.

Patch extractor networks Due to the high number of pa-

rameters on which the patch extraction algorithm depends,

we decided to fix part of their values manually by inspect-

ing the quality of the results produced by the patch extrac-

tion process, i.e., the sequence of extracted patches. Even

though this approach does not provide a complete explo-

ration of the space of possible values and does not allow to

compare the recognition performances of the final model in

response to the change of every single parameter, it enabled

us to quickly analyze their effects and determine the way

these parameters interact with each other.

The parameters of the activity windows were chosen by

analyzing the rate of events generated from the event-based

camera during the entire recording period. As reported

in [17], N-MNIST peaks of activity are correlated with the

speed of the objects moving inside the scene. Since the

same set of movements has been used to record the entire

dataset, the activity outlines are very similar between ex-
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amples. For these reasons we used Lw = 101, Rw = 51
and Lbin = 1ms, obtaining an activity window that covers

101ms, which is roughly the temporal length of the saccade

movement used to record digits. We used the same param-

eters also with N-Caltech101 samples, as they have been

recorded with the same procedure, and with CIFAR10-DVS

recordings. MNIST-DVS digits, instead, being registered

using a different and more noisy procedure, do not show a

clear activity outline. To cope with the higher variability

of event peaks and make a more reactive detection, we de-

cided to use a smaller window with parameters Lw = 81,

Rw = 41, and the same interval length Lbin = 1ms.

Regions parameters were chosen in order to cover a good

portion of the objects and also to make regions overlap be-

tween each other to obtain good translation invariance prop-

erties. The patch dimension N × N was chosen in such a

way to extract the entire object with the centered patch ex-

traction procedure, and to cover only small details of each

object in the follower variant. Table 1 reports the specific

parameters we used.

N-DRAW networks The hyperparameters for the N-

DRAW architectures were chosen using a “greedy” ap-

proach for parameter optimization. We focused on the op-

timization of a single parameter at the time by gradually

changing its value and registering the resulting effect in net-

work performance.

Since N-MNIST and scale4 (sc4) MNIST-DVS digits

were recorded to have roughly the same dimensions of the

original MNIST digits, we decided to use the same patch

size, i.e., 12 × 12, that was used with the original DRAW

architecture [6] to process Cluttered MNIST [15] digits, a

variation of MNIST in which digits are placed in a ran-

dom location of a bigger frame, similarly to the Shifted N-

MNIST and Shifted MNIST-DVS collections. Given that

digits of a certain MNIST-DVS scale are roughly double

the size of the previous scale, we used 24× 24 and 48× 48
patches for scale8 (sc8) and scale16 (sc16) examples. We

finally used 48 × 48 patches also for N-Caltech101 and

CIFAR10-DVS samples since they both feature objects that

occupy most of the 128 × 128 frame, similarly to scale16
MNIST-DVS samples.

The number M of recursive iterations was instead deter-

mined by using a simplified version of the network, which

resembles the original DRAW classification network. We

found M = 4 to be the optimal value.

Finally, to process the extracted patches, we used the

same set of convolutional layers we used in the patch extrac-

tor architectures, i.e., two convolutional layers and a fully

connected layer that maps features into 40-dimensional vec-

tors. The size of the encoder network was set to be equal to

the number of cells used in the original pLSTM recognition

network, i.e., 110.

Table 2: pLSTM’s baseline accuracy on the Shifted N-

MNIST.

Frame Embedding Encoder Augmented Test Accuracy

34× 34 (original) 41 110 No 97.4
68× 68 41 110 No 26.0
68× 68 101 200 No 81.7
68× 68 101 200 Yes 90.3

Table 3: Comparison between the performances of the pro-

posed models.

S-DVS S-N CIF10 Cal101
sc4 sc8 sc16 sc4+8 all

pLSTM 82.20 87.01 81.60 86.60 83.63 90.30 17.10 1.39

p. centered 98.30 95.90 96.30 95.90 95.53 97.37 44.10 21.39
p. follower 91.30 90.50 95.10 - - 91.07 37.40 18.47
e-N-DRAW 91.35 96.50 95.69 96.74 95.10 92.30 36.89 28.95
p-N-DRAW 94.81 96.88 95.32 97.96 93.19 96.42 38.17 27.69
p-N-DRAW

(reset)
94.10 97.39 96.71 96.61 98.24 95.15 41.29 27.70

5.2. Results and Discussion

Baseline We compared the performance of the proposed

models with the results obtained by the Phased LSTM ob-

ject recognition network described in [16]. All the proposed

networks are indeed based on pLSTM cells and they were

originally designed to overcome some limitations of the

original pLSTM model. Since the pLSTM architecture only

uses an embedding layer to extract features from events, it

does not show any scale or translation invariance property,

as reported in Table 2. The loss in performance reduces

when an augmented Shifted N-MNIST dataset, obtained

randomizing the position of each digit after every epoch,

and therefore using a higher number of training samples, is

used to train the model.

Table 3 reports the results obtained on the Shifted

N-MNIST, Shifted MNIST-DVS, CIFAR10-DVS and N-

Caltech101 datasets, using the same layers configuration

described in [16]. To reduce the size of the model (which

depends on the frame size due to the presence of the em-

bedding layer) and speed up training, we cropped the cen-

tral portion of MNIST-DVS examples obtaining smaller

samples containing only the digits. In particular we used

35 × 35, 65 × 65 and 100 × 100 field of views for the sc4,

sc8 and sc16 examples respectively. In case of mixed scales

we used the size of the bigger scale in the dataset.

Results Table 3 shows the results we obtained on multiple

datasets using the proposed models. All the models achieve

better results w.r.t. the pLSTM architecture, highlighting

the advantages of using attention mechanisms to improve

translation invariance.

As expected, the follower variant of the patch extraction

network achieved worse results with respect to the centered
version. While the use of smaller patches allows the net-

work to maintain its event-based nature, reacting to small

details as soon as they become visible, the task the pLSTM
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layer needs to learn is much harder. The overall appearance

of the object needs indeed to be reconstructed by only look-

ing at the sequence of details, whose order is not always

the same among objects of the same class since it depends

on where and when peaks are detected. Note that we did

not test the follower patch-extraction algorithm on mixed

MNIST-DVS scales because, being patches of fixed dimen-

sions, this would have meant to extract small details in sc16

samples, or the entire digit in sc4 samples.

The N-DRAW patch-based variant performed better than

its event-based counterpart in almost all datasets. This dif-

ference in accuracy is explained by the fact that the encoder

of the event-based architecture predicts the final set of filters

parameters only based on the sequence of incoming events.

This mechanism does not provide any visual cue regarding

the effect that the set of predicted filters have on the actual

extracted patch. However, even if it does not reach the same

classification accuracies of the N-DRAW patch based algo-

rithm, this mechanism still represents a valid event-based

attention mechanism being able, by only using the events

sequence, to identify regions of interests inside the scene.

Using this procedure we obtained indeed similar results of

the ones achieved using the centered patch extraction net-

work in almost all datasets.

When evaluated on datasets composed of multiple

scales, the N-DRAW architecture outperforms the patch ex-

tractor network but using a fully trainable model. N-DRAW

allows indeed to adaptively zoom on the objects and enables

the extraction of patches containing a reduced variability of

objects dimensions. Large objects are extracted as they are

whereas smaller ones are enlarged to better fit the patch.

This behavior is depicted in Figure 9.

We also tested the proposed models on more challeng-

ing datasets in terms of both background noise and objects

complexity, N-Caltech101 and CIFAR10-DVS. All the pro-

posed networks achieve better results than the pLSTM base-

line, showing advantages on the use of convolutional layers

and attention mechanisms. The obtained results, however,

do not achieve the state of the art accuracy obtained using

the DART [19] descriptor (65.43 ± 0.35% on CIFAR10-

DVS and 65.6% on N-Caltech101). This lack of perfor-

mance can be traced back to the poor capabilities of the

proposed extraction algorithm to distinguish between back-

ground and foreground events in very noisy environments

(where the moving average approach is not enough) and to

the need of a greater number of samples to allow the train-

able DRAW mechanism to learn effective filter transforma-

tions. When evaluating models on the two original image

based collections, the lack of training samples is indeed usu-

ally addressed using pre-trained feature extractors obtained

from larger collection of samples, which however are still

missing in the neuromorphic field.

Figure 9: The DRAW attention procedure learned by a sin-

gle network trained to recognize all MNIST-DVS scales.

6. Conclusions and Future Works

In this paper we proposed two approaches for event-

based visual attention. The first one makes use of a simple

algorithm to identify regions of interest from events while

improving the translation invariance properties of the origi-

nal pLSTM model. The second one is a fully-differentiable

procedure based on the popular DRAW attention mecha-

nism which improves the scale invariance properties of the

first network. Using the proposed methods we were able to

obtain promising results in improving the effectiveness of

conventional CNNs for event-based computation obtaining

an architecture capable to deal with real-world applications

where it is likely to find objects in different positions and

scales.

As a first improvement of the proposed models, we plan

to extend the original leaky frame integration procedure

with an adaptive procedure able to dynamically vary the

leak parameter and adapt the trained model to the speed of

observed objects. Moreover, as we aim to design a fully

event-based network which does not rely on reconstructed

frames to recognize objects, we are also considering to ex-

tend the event-based N-DRAW model by directly process-

ing the filtered coordinates with an additional pLSTM layer,

as in the original Phased LSTM recognition network [16],

without making use of frames to extract features. The net-

work could indeed still maintain good translation and scale

invariance properties by exploiting the ability of its event-
based read to filter out irrelevant events while maintaining

and centering the relevant ones in the network field of view.

As a final remark let’s note that the feasibility of the

proposed approach is also supported by the features of ad-

vanced many-core architectures, e.g., high-performance and

low-latency communication subsystems [32] and caches

able to dynamically adapt their memory capacity [31], that

allow to efficiently process the asynchronous and bursty se-

quence of events imposed by the event-based cameras.
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