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Abstract. Indoor Environmental Quality (IEQ) is a key issue in the design and renovation of any 

indoor building environment. It is comprised of different aspects (e.g. visual, thermal, acoustic 

comfort, etc.), which directly affect the building occupants’ wellbeing. Studies on this topic have 

grown rapidly in recent years, as the time that occupants spend indoors is increasing. In this 

regard, indoor luminous conditions are crucial for providing sufficient task illuminance as well 

as to stimulate the human circadian system. Insufficient lighting conditions have been proven to 

be related with reduced productivity/learnability, mood swings and health disorders, thus 

emphasizing the necessity for further research in this field. Therefore, proper performance 

evaluation criteria for managing and optimizing lighting spectral composition is needed. For 

instance, indoor lighting conditions can be evaluated by quantity, intensity, and/or uniformity, 

but also by spectral content, which determines the energy conveyed and the level at which the 

human body is stimulated. This spectral content can vary depending on the preferred or prevalent 

light source, interior finishes and glazing properties generating a singular indoor lighting 

environment. Thus, a preliminary study on the variation of the indoor daylight spectral content 

is conducted using a scaled model, applying various glazing types and interior finishes. Then, 

daylight simulations are performed on a calibrated virtual model to evaluate the effect of various 

environmental conditions. Results show a considerable impact of the interior finishes as well as 

glazing type on the attained circadian potential of studied indoor environment. 

1. Introduction 

It is becoming exceedingly acknowledged that light induces not only visual responses but also non-

visual, photo-biological responses on human body. Exposure to light, particularly to daylight, is crucial 

for maintaining circadian rhythms, since it directly affects the internal biological clock in the Super 

Chiasmatic Nuclei (SCN) [1]. The latter is responsible for regulating body temperature, melatonin and 

serotonin secretion, etc. If the functioning of the SCN is disrupted, it can cause potential health issues 

like fatigue, sleep disorders, increased risk of cancer, etc. [2][3]. Furthermore, inappropriate luminous 

conditions (i.e. intensity and/or spectral composition) might also cause changes in alertness, 

performance and mental wellbeing [4][5][6]. Circadian photo-transduction is predominantly enabled by 

the photo-pigment Melanopsin [7] located in the intrinsically photosensitive Retinal Ganglion Cells 

(ipRGC). Contrary to the human visual system response (light transduced by cones and rods), which has 

a peak sensitivity at 555 nm.  The circadian system’s response to light peaks at shorter wavelengths of 

the visible spectrum [8][9][10]. Therefore, if a human is exposed to light with a richer blue spectrum, 

the light has an advancing and more pronounced effect on the circadian system than blue diminished 
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light. Overall, the circadian response to light is exceedingly complex, as in addition to the spectral 

composition and intensity of light source, also the exposure timing plays a considerable role in activating 

the appropriate body responses. This complexity of results in the situations where the same amount of 

light stimuli in the morning hours may maintain our 24-hour biological cycle, while on the other hand 

the same stimuli received during the evening may disrupt it. In order to facilitate the assessment of the 

described non-visual impact of light, several metrics have been introduced in recent years. The most 

widely used is the Circadian Stimulus [11], expressing biologically weighted effects and the weighted 

luminous values expressed through melanopic lux [12]. Despite extensive research done in this field 

during the last two decades, an absolute quantity, quality and timing of “the healthiest” light exposure 

has not yet been defined.  

It is evident that the introduction of electrical lighting induced a drastic decrease in time spent 

outdoors by the building occupants. This resulted in the increased possibility that building occupants 

will become disconnect with the Earth’s day and night cycle. Daylight in particular has been 

demonstrated as superior “zeitgeber” (i.e. timer) for our circadian system and cannot be simply replaced 

by artificial luminaires [13]. It was shown through a field study investigating luminous conditions in 

spaces for dementia suffering persons, conducted by Konis [14], that better day lit spaces offer greater 

circadian potential than poorly day lit ones with additional artificial luminaires. Hence, it is essential to 

assess indoor luminous properties of received daylight in the context of buildings, because various 

architectural characteristics (e.g. room geometry, window size, material properties, etc.) will affect the 

potential for circadian daylighting. In particular, internal surface reflectance seems to have a significant 

impact on the circadian potential of a particular indoor environment, as established by Cai et al. [15]. 

They demonstrated that change in corneal illuminance is significantly affected by interior surface 

reflectance and to a lesser degree by glazing type properties. Specifically, differently coloured walls 

with the same average reflectance have dissimilar impacts on the resulting circadian potential (e.g. blue 

wall colour maintains higher melanopically weighted illuminance than red colour) [16]. Although 

glazing properties have smaller impact on the circadian potential, it was shown by Hraška et al. [17] that 

patients in hospital rooms with amber coloured windows produced more melatonin than patients in 

rooms equipped with spectrally neutral glazing.   

The research body on the topic of the circadian potential in buildings is quite extensive. Nevertheless, 

it is still not clear to what degree the glazing light transmittance properties and indoor colour finish 

selection impact the quantitative (i.e. illuminance levels) and particularly the qualitative (i.e. spectral 

composition resulting in melanopically weighted light levels) aspects of indoor luminous environment. 

Furthermore, even when the stated features are investigated, they are usually only simulated and/or 

studied in the context of case specific environments [18], thus limiting the potential for extrapolating 

generic patterns from the derived results. In this respect, the main objective of the presented study is to 

experimentally evaluate the exerted impact of various glazing types and wall colours on the spectral 

composition and illuminance levels of indoor daylight at eyelevel of a hypothetical occupant. In addition 

to the experiments, a calibrated virtual model will be developed for the purpose of evaluating visual and 

circadian daylighting aspects under standardized conditions (i.e. CIE standard sky types and 

illuminants).  

2. Methodology 

The evaluation of the quantitative and qualitative aspects of indoor luminous environment under 

different conditions of spectral wall reflectance and glazing spectral transmittance was executed using 

experimental measurements and calibrated computer simulations. The experimental results acquired 

under real world conditions on a scaled model of a typical cellular office were used to develop and 

validate the simulation model built using Rhinoceros and Grasshopper algorithm for Honeybee [19] and 

Lark [16] plug-ins enabling the evaluation of the visual and circadian daylighting. The model enables 

the analysis of the indoor luminous environment under different standardised conditions, thus offering 

a far greater flexibility than real life experiments. This means that simulations can be used to evaluate 

the effect of further configurations under standardised CIE sky conditions at far greater speed and lower 

cost. 
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2.1. Experimental setup 

The experimental scale model (600 x 800 x 520 mm) is a representation of a small office at a scale of 1 

to 5, corresponding to a real life size room of 3 by 4 by 2.6 m (Figure 1) oriented towards north. The 

scale model is equipped with a single north oriented window opening of 280 by 180 mm (i.e. real-life 

size of 1.4 x 0.9 m), resulting in a window to wall ratio of 16 % and window to floor ratio of 10.5 %. 

Internal wall and ceiling surfaces were painted white, floor was left untreated (natural wood). For the 

purpose of the experiments, three different glazing types were used, while the impact of internal spectral 

colour reflectance on the luminous environment was investigated by changing the colour of the east 

internal wall only. Optical material properties of indoor surfaces, and the exterior ground surface, are 

presented in Table 1. Opaque material surface reflectance (Rvis) and glazing light transmittance in the 

visual spectrum (τvis) were determined using the spectrophotometer measurements.  

 

Table 1. Optical material properties of the experimental scale model and virtual model. For the blue, 

orange and grey wall colours the L*a*b* colour space coordinates are also presented. 

Opaque surface Rvis Glazing type τvis 

White wall and ceiling a 0.87 Double pane, without coatings b 0.80 

Wooden floor a 0.61 Double pane with low-e 0.76 

Blue wall (L*a*b*: 76, -4, -23) 0.59 Triple pane with low-e 0.46 

Orange wall (L*a*b*:77, 24, 44) 0.56   

Grey wall (L*a*b*: 76, 0, 0) 0.54   

Exterior ground a 0.20   
a Constant in all scenarios (except for east-wall) 
b Constant only for second cycle experiments and simulations 

 

 

 

Figure 1. The geometry of the scale 

model and the experimental 

measurements setup. The coloured 

internal wall marks the internal surface, 

the spectral reflectivity of which was 

varied during the second cycle 

experiments. 

 

 

 

In order to evaluate the indoor luminous environment, the illuminance and spectral irradiance data 

were collected simultaneously. As shown in Figure 1, illuminance was recorded at three positions – 

rooftop sensor (L1) measuring global illuminance (EEh), interior sensor (L3) at 240 mm of height 

measuring vertical illuminance (EIv) and interior horizontal sensor (L2) recording the illuminance (EIh) 

on the floor level. The melanopic lux values (EM) were calculated using Irradiance Toolbox developed 

by Lucas et al. [20] with measured EIv values as input.  Illuminance values were recorded, using Almemo 

FLA603-VL4, V(λ) calibrated lux meters (absolute error ±1 lx) connected to Almemo 5690-2 data 

logger [21], for simultaneous measurement and recording of data at all positions. Spectral irradiance 
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data in the visible spectrum (380 – 780 nm) were acquired by two calibrated StellarNet BLACK-Comet 

[22] concave grating spectrometers at 1.5 nm spectral resolution at two positions. The first spectrometer 

(position S1 in Figure 1) was positioned outside the model, pointing towards the sky, with an 

unobstructed view recording sky spectral irradiance data. The second one was coupled with the 

illuminance sensor at position L2 (Figure 1), measuring internal vertical spectral composition of 

daylight. 

Experimental data were collected during 30th of January 2019 in Ljubljana, Slovenia (lat.: 46.05°N, 

long.: 14.5° E) at an unobstructed location (rooftop of the Faculty of Civil and Geodetic Engineering 

building) with predominantly intermediate sky conditions throughout the experiment. Due to the 

changeable nature of daylight, each of the model variations was continuously measured for 2 minutes 

and a median value was derived for each interval recording. The experiment was carried out in two 

cycles:  

• The first cycle was executed between 9:20 and 9:40 am, with L3 sensors facing the window 

(Figure 1). The internal surface reflectance was fixed during the first cycle measurements, while 

the glazing types were varied (Table 1).  

• The second cycle took place between 11:50 am and 12:23 pm, with L3 sensors facing the east 

internal wall (Figure 1). During the second cycle measurements, the glazing properties were 

fixed (i.e. double pane glazing without coatings, see Table 1), while the surface spectral 

reflectance of the eastern wall was varied by applying white, blue, orange and grey wall coatings 

(Table 1). 

2.2. Simulation model and presumption 

The virtual model was created with Rhinoceros v5 based on the dimensions of the experimental scale 

model, including the position at which it stands over the ground. In order to consider the reflected rays 

coming from the rooftop’s ground surface, its reflectance was set at Rvis of 0.20 for Red, Blue and Green 

colour channels, whereas the influence of other obstructions was ignored. Following the completion of 

the geometric model, the Radiance model was built for the foreseen simulations using built-in functions 

comprised within Grasshopper and specific Honeybee and Lark plug-ins. In order to obtain accurate 

simulation results, the sky must be modelled appropriately. Thus, a custom CIEBR sky [23] was created 

with the Radiance sky description generator gensky -B -R option, for each scenario and time step. The 

generated sky was modelled as either intermediate or overcast (depending on the weather conditions of 

the simulated day), while its intensity was defined by the direct and diffuse irradiance data obtained 

from Slovenian Environment Agency [24] for the calibration simulations, or from the EPW file for 

Ljubljana [25] for the simulations with the generic weather conditions. All simulations were done under 

the Daylight Coefficient (DC) method (with medium quality settings), implemented inside Radiance 

with ambient bounce (–ab) parameter set at 3.  

Material spectral properties of the virtual model were defined according to the experimentally 

determined Rvis and τvis and using the specific Lark component, which delivered the primitive void 

plastic and void glass material type [26] for all surfaces, with a specific Rvis for each colour channel 

without specularity and/or roughness assigned. Similarly, the non-monochromatic sky was created using 

one of the components offered by Lark, requiring a normalized illuminant spectrum for defining the 

spectral composition of the light generated by the source (i.e. sky), diffuse and direct horizontal radiation 

with the EEh at the specific moment computed by an initial Radiance analysis. For the model calibration 

simulations, the measured spectral composition of total exterior daylight was used as input, while for 

other simulations a standard D65 illuminant composition was assumed. Because the simulation analysis 

was focused on the study of generic environmental conditions, a preliminary analysis of the weather 

data was performed to identify days with the least/most frequent sky cover and the maximum/minimum 

global horizontal illuminance.  

Lark is designed to split the traditionally analysed monochromatic light into different channels (9 

channel analysis was used in this work to assure greater accuracy [18]), each channel representing a 

different portion of the visual spectrum. Consequently, each channel requires a Radiance analysis tracing 

the light rays across the modelled domain and estimating the quantity of light that strikes the analysed 

test points L2 and L3 (Figure 1). Grid-based illuminance analysis was executed for the L2, while the 
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image-based luminance analysis was carried out for the L3 test point for each time step and specific 

glazing and wall finish configuration. As final simulation outputs, the values of illuminance levels (EIh 

and EIv) and circadian daylighting potential expressed in melanopic lux were calculated. 

It is important to acknowledge that the use of medium quality, and –ab = 3, might result in difference 

between the simulated values reported herein, and the experimentally measured ones under the same 

conditions. However, these deviations can be tolerated as more granular analysis would considerably 

increase the required computational time. Furthermore, the use of a unique standard illuminant (i.e. D65) 

for the light source spectral composition, and the assumption of a monochromatic reflectance of the 

external ground surface, introduce further uncertainties in the simulation results. In addition, the scaling 

of the model might also affect the results, because smaller size of the calculation domain might limit the 

allowance of ray influx. Nevertheless, the scope of this work was not focused on the determination of 

exact quantity of light falling on the test points, or amount of stimulus generated at the eye level for the 

specific gaze direction, but on the relative impact that the variance of the glazing and interior surface 

finishing properties might have. Therefore, the virtual model performance was evaluated according to 

the ratios EEh/EIh and EEh/EIv, while the use of a standard illuminant source type becomes convenient, 

because it enables simulations without time consuming experiments that are dependent on case specific 

weather conditions. 

3. Results 

This section presents separately the conducted simulation and the experimental results. The 

experimental data regarding the impact of the glazing spectral transmittance and indoor wall finish 

spectral reflectivity on the luminous environment of the scale model will be presented through the 

measured illuminances as well as spectral composition of daylight. For the simulation part, firstly the 

validation of the virtual model in relation to the experimental results will be presented. Secondly, the 

calibrated model was used to simulate indoor conditions during extreme days of the year adopting 

standardised weather files and CIE sky types with CIE D65 illuminant. Therefore, the simulations’ 

results provide a more generic overview of the impact of the studied parameters on the achieved indoor 

luminous conditions.   

3.1. First cycle experiments 

For the first cycle experiments, executed between 9:20 and 9:40 am on the 30th of January 2019, the test 

point L3 was positioned at the centre of the scale model facing the window (Figure 1). Placement of the 

L3 test point corresponds to a sited hypothetical occupant with an eye high of 1.20 m positioned 1.45 m 

from the external wall, with a view oriented directly towards the window. The internal surfaces were 

kept neutral during the first cycle experiments, with white walls and ceiling (Rvis = 0.87) and floor in 

natural wood finish (Rvis = 0.61), while the orientation of the window was due north. During the entire 

period of the first cycle experiments the sky conditions were intermediate with external global horizontal 

illuminance (EEh) measured at test point L1 in the range between 17 and 26 klx (Table 2), with 

corresponding spectral composition captured at S1 test point presented in Figure 2. The acquired 

measurements of illuminance at the analysed test points L1, L2 and L3 are presented in Table 2, while 

spectral composition of daylight recorded at test points S1 (i.e. spectrometer facing towards the sky) and 

L3 (i.e. spectrometer facing towards the glazing) are presented in Figures 2 and 3.  

The results of the first cycle experiments clearly indicate that the application of spectrally neutral 

glazing that was investigated during the conducted experiments does not substantially impact the 

circadian potential of a room, compared to the visual potential. This is evident if the EM/EIv ratio is 

observed in Table 2, where the values close to 1.0 mean that non-visual intensity of daylight expressed 

through equivalent melanopic lux is comparable to the measured illuminance (i.e. visual impact of 

daylight). However, in the case of the triple pane glazing with low-e coatings, the impact on non-visual 

daylight intensity is more substantial, as EM/EIv is 0.909 (Table 2). The reason for the greater impact of 

the triple glazed window is its smaller transmittance at shorter wavelengths, evident from spectral 

daylight composition captured at the L3 test point and presented in Figure 3. Therefore, the results 

indicate that the relative impact of glazing on the circadian potential of indoor environment will be 

mostly due to the spectral transmittance properties of specific glazing and far less due to the overall τvis 
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value. In turn, this means that optical properties of applied low-e and spectrally selective films as well 

as colouring of glass can have an important impact on the achieved indoor circadian potential of a room.  

 

Table 2. First cycle  illuminance values and corresponding melanopic lux (EM [eml]) values measured 

at the scale model with variable glazing and fixed neutral wall colour. 

Glazing type EEh [lx] EIv [lx] EIh[lx] EIv/EIh EIv/EEh EM [eml] EM/EIv 

no glazing 22485.5 2030.0 960.5 2.11 0.090 1986.0 0.978 

double pane 18518.0 1481.7 789.0 1.88 0.080 1478.5 0.998 

double pane low-e 21392.5 1299.7 679.0 1.91 0.061 1275.5 0.981 

triple pane low-e  25487.5 1099.4 549.1 2.00 0.043 999.8 0.909 

 
Figure 2. Spectral composition of total exterior 

daylight (S1 test point) during the first cycle 

experiment. 

 

 
Figure 3. Internal spectral light composition at 

L3 test point  during the first cycle experiment. 

Note that each measurement was taken at 

different EEh (i.e. different time instants), refer 

to Figure 2.  

3.2. Second cycle experiments 

During the second cycle experiments conducted between 11:50 am and 12:23 pm on the same day as 

the first cycle experiments, the influence of changing the colour of one of the internal walls (Figure 1) 

on the resulting indoor luminous conditions was investigated. In general, the configuration of the 

experiment was the same as in the case of the first cycle measurements, only the position and the view 

orientation of the hypothetical occupant were changed. Specifically, the L3 test point was positioned in 

such a way to simulate a sited occupant 1.45 m from the opening and 2.25 m from the internal east wall, 

looking directly towards this wall (Figure 1). During the experimental run, the spectral reflectance of 

the east wall was varied by applying differently coloured papers, while double pane glazing without 

low-e coating (Table 1) was used for all measurements. The sky conditions throughout the second cycle 

were comparable to those in the first cycle experimental run (i.e. intermediate sky), with somewhat less 

cloudy sky. This is observable through more pronounced shorter wavelengths in spectral composition 

of the total exterior daylight captured at test point S1 (Figure 4). Nonetheless, because the second cycle 

was executed during midday, the absolute values of EEh were higher, reaching values between 37 and 

53 klx (Table 3).  

Observing the results of indoor illuminance values captured at the L2 and L3 test points presented in 

Table 3, it becomes evident that the spectral reflectivity (i.e. colour) of internal room surfaces have a 

substantial influence on the achieved circadian potential. This is clearly demonstrated if the ratio 

between EM and EIv for orange coloured wall (EM/EIv = 0.800) is compared to the grey and white 

coloured walls (EM/EIv = 0.906 and 0.982). The latter two wall finishes have a spectrally neutral 

reflectance, meaning that they reflect approximately the same amount of light regardless of the 
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wavelength, which means that the spectral composition of reflected daylight is unaffected by the 

properties of the wall. This, however, is not true for the case of the orange coloured wall, which, as 

evident from Figure 5, absorbs more light at shorter wavelengths while reflecting more of it at longer 

wavelengths. Consequently, the non-visual intensity of daylight (EM) at the L3 test point with orange 

coloured wall is substantially smaller than the recorded illuminance (EIv). In effect, this means that for 

a hypothetical occupant positioned at the L3 test point the orange wall would have a negative effect on 

the circadian potential of the room in comparison to the spectrally neutral grey wall with comparable 

Rvis (Table 1). A similar conclusion with an opposite effect can be drawn for the blue coloured wall. In 

this case, high reflectivity at shorter wavelengths (Figure 5) has a positive effect on the resulting EM 

mirrored in the highest attained relative non-visual impact (EM/EIv = 1.070) of all of the studied surfaces 

(Table 3), because the melanopically weighted illuminance is higher than visually weighted illuminance 

at lower wavelengths, as presented by [16]. Based on the presented experimental results it can be 

concluded that the indoor surface spectral reflectivity at comparable values of Rvis will have a significant, 

either positive (e.g. blue wall) or negative (e.g. orange wall), influence on the circadian potential of 

indoor environments. 

         

Table 3. Second cycle  illuminance values and corresponding melanopic lux (EM [eml]) values 

measured at the scale model with variable wall colour and fixed glazing (double pane without low-e 

coating). 

Wall colour EEh [lx] EIv [lx] EIh[lx] EIv/EIh EIv/EEh EM [eml] EM/EIv 

White wall 45730.0 1444.0 1446.6 1.00 0.032 1308.7 0.906 

Grey wall 37690.0 1009.0 1116.6 0.90 0.027 990.3 0.982 

Orange wall 46430.0 1080.0 1207.9 0.89 0.023 863.7 0.800 

Blue wall  52800.0 1174.6 1286.5 0.91 0.022 1257.7 1.071 

 
Figure 4. Spectral composition of total exterior 

daylight (S1 test point) during the second cycle 

experiment. 

 

 
Figure 5. Internal spectral light composition at 

L3 test point  during the second cycle 

experiment. Note that each measurement was 

taken at different EEh (i.e. different time 

instants), refer to Figure 4.  

3.3. Simulations 

The performed simulations were divided into three stages. The first stage included the initial calibration 

of the virtual model in order to match the results obtained during the experiments. The other two stages 

encompassed the evaluation of indoor luminous conditions of the test cell under selected two dates 

representing extreme conditions of the year for the location of Ljubljana. During these two stages, the 

impact of different glazing types and interior finish spectral reflectivity on the indoor illuminance and 

circadian stimulus was investigated for the hours between 8:00 am and 12:00 pm. For the purpose of 
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identifying the relevant test days with appropriate climate conditions, a quick weather data analysis was 

carried out. The objective was to identify two days when the combination between the lowest daylight 

availability and the highest sky cover, as well as the highest daylight availability and the lowest sky 

cover were achieved.

3.3.1. Calibration procedure. The comparison between the simulated results acquired by the cali-

brated model and experiments is presented in Table 4. The results demonstrate that a high accuracy 

of the simulation model was achieved. The difference between the simulated and the measured Eeh 

values amounts only to 0.32 % with a similar difference of 3.75 % for the EIv/EIh ratio. These results 

confirm that the luminous sky distribution and indoor visual luminous environment were properly sim-

ulated by the virtual model. For the non-visual part of the simulations, the comparison between the cal-

culated and the measured values resulted in extremely small differences of 0.0006 % for the EM and 

0.008 % for the EM/EIv ratio.  Therefore, it can be concluded that the developed virtual model faithfully 

reflects the real conditions and can therefore be used for further work.
 

Table 4. Experimental and simulated values of the calibration procedure with white internal wall 

finishes and view facing towards the window (30th of January 2019, 10:35 am).

 Glazing type Eeh[lx] EIv[lx] EIh[lx] EIv/Eih EIv/EEh EM [eml] EM/EIv

Experiment  triple pane low-e 25487.5 1099.4 549.1 2.00 0.043 999.8 0.909 

Simulation  triple pane low-e 25405.2 1092.0 526.2 2.08 0.043 1000.4 0.916

3.3.2. Climate analysis. Using the weather data file for Ljubljana [25], the global horizontal 

illuminance and sky cover throughout the year were analysed and the day ranges for both daylight 

availability and scarcity were identified according to the global horizontal illuminance and sky 

cover values. The outcome of the performed climate analysis identified as the most suitable dates the 

21st of July (i.e. best conditions) and the 21st of November (i.e. worst conditions). The data, provided 
by the utilised weather file, for the EIh and sky cover for the morning hours of 8:00 am to 12:00 pm are 

presented in Table 5. It can be concluded that for the 21st of July an intermediate sky type would be 

suitable for the simulations, while for the 21st of November an overcast sky would be appropriate.
 

Table 5. Weather file data for global horizontal illuminance and sky cover for the selected days for the 

simulation analysis (21st of July and 21st of November, 8:00 am to 12:00 pm).

 21st of July 21st of November

Hour EIh[lx] Sky cover[%] EIh[lx] Sky cover[%] 

8:00 60700 10 2700 100

9:00 76000 10 6000 100

10:00 90800 10 8600 100

11:00 96700 0 9900 100

12:00 99500 0 9600 100

3.3.3. Effect of glazing optical properties on the circadian stimulus. Glazing optical proper-

ties decisively impact the quality (i.e. spectral composition) and quantity (i.e. intensity) of daylight en-

tering internal environments. Therefore, it is important to not only consider τvis as a single value cal-

culated over the whole visible spectrum but to investigate the impact of spectral transmissivity of the 
glazing, because it could be selective only at certain wavelengths. This might be exceedingly impor-

tant in the case of potential adverse impacts of glazing on the circadian stimulus of daylight 

in indoor environments. In this context, it is of interest to evaluate the impact of individual glazing 

technologies on the achieved light availability and light quality.

The simulated results of glazing type impact on the achieved indoor visual and non-visual daylighting 

confirm the findings of the experiments presented in section 3.1. From Figures 6 and 7 it can be clearly
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seen that the differences between the achieved EIv and EM are relatively small, with achieved ratios of 

EM to EIv consistently close to or above 1.00 (maximum difference ~2 %), depending on the type of 

glazing, hour of day and sky conditions. As in the case of the experimental results, the only exception 

to the above described trend is the triple pane low-e glazing, which consistently exhibits the lowest vales 

of the achieved EIv and EM (Figure 6 and 7) with the EM/EIv ratio below 1.00 at all times. However, the 

absolute illuminance values achieved under different glazing types vary significantly. For instance, on 

the 21st of November at noon, the use of double pane low-e glazing results in EM = 878.0 eml, but when 

a triple pane low-e glazing is used, the achieved circadian stimulus drops by ~37 % (EM = 554.9 eml). 

The same reduction occurs during the analysed summer day; the only difference is that the effect would 

be less significant, because the excess of light would still allow the occupants to obtain appropriate 

circadian stimulus. Meanwhile, changing from a double pane to a triple pane low-e glazing, generates a 

reduction of ~39 % in the EM values, while switching from double pane to double pane with low-e 

coating glazing results only in ~2 % variance. In general, the results of the simulations demonstrated 

that for the investigated glazing types the achieved circadian potential expressed through EM under 

generic sky conditions is more or less proportional to the difference of the overall τvis of the studied 

glazing types. 

 
Figure 6. Simulated values of EM and EIv at L3 

test point facing the window, between 8:00 am 

and 12:00 pm on 21st of July in relation to 

different glazing types. 

 

 
Figure 7. Simulated values of EM and EIv at L3 

test point facing the window, between 8:00 am 

and 12:00 pm on 21st of November in relation 

to different glazing types. 

3.3.4. Effect of interior finish optical properties on the circadian stimulus. As mentioned above, 

the internal daylight distribution is also governed by the light reflections from the internal room sur-

faces. Therefore, the spectral composition of the reflected light (i.e. spectral reflectivity) will influ-

ence the resulting circadian potential of the indoor environment. The importance and potential substan-

tial impact of the colour of internal surfaces was exposed through the experimental results (see sec-

tion 3.2) in the case of the orange (negative influence) and blue (positive influence) wall finishes. 

Therefore, the main objective of the executed simulations was to investigate the relation between 

relative impact of the investigated specific colours and generic sky conditions. In the case of 

experiments, the glazing properties for the simulations were fixed at double pane glazing without 

low-e coating.

The simulated results for the 21st of November and 21st of July presented in Figures 8 and 9, 

respectively, go along with the results found for the validation procedure (i.e. small differences between 

EM and Elv for winter conditions), and demonstrate that the largest impact of wall colour on the resulting 

circadian potential in the analysed model is achieved in the case of the orange wall, when compared to 

the spectrally neutral white wall. For instance, under the same daylighting conditions and fixed glazing 

type properties, variation in the resulting EM values between the white and orange wall are in the range 

of ~15-16 % (e.g. 21st of July at 12:00 pm: EM for white wall = 969.9 eml, EM for orange wall = 

817.1 eml). For other colours, the change of the simulated EM values are less pronounced, with variance
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between white and grey at ~6-10 % and white and blue at ~10-16 %. However, it has to be stressed that 

a white coloured wall has a higher Rvis value than the rest of the analysed colours (Table 1). This means 

that at least part of the variance in the resulting EM values presented in Figures 8 and 9 is the result of 

change in the Rvis value of the wall. Therefore, the impact of different spectral reflectivity of wall finishes 

on the ensuing circadian potential of the model is best observed by comparing the results for grey (Rvis 

= 0.54) orange (Rvis = 0.56) and blue (Rvis = 0.59) colours that have comparable Rvis values. In this 

context, the change from a blue wall finish to an orange one results in the reduction of EM value by 

~10 %, while switching from grey to orange wall colour would result in ~6 % reduction of the EM value. 

 
Figure 8. Simulated values of EM and EIv at L3 

test point facing the wall, between 8:00 am and 

12:00 pm on 21st of July in relation to different 

wall finishes. 

 

 
Figure 9. Simulated values of EM and EIv at L3 

test point facing the wall, between 8:00 am and 

12:00 pm on 21st of November in relation to 

different glazing types. 

4. Discussion and conclusions 

The main objective of the presented analysis was to investigate the relative impact of selected glazing 

types and wall colours on the ensuing circadian potential as well as achieved indoor illuminance of a 

daylit room. The subject was approached through experiments conducted on a scale model setup, as well 

as simulations executed on a virtual model calibrated using experimentally derived data and later used 

for calculations under generic environmental conditions (i.e. CIE sky types and CIE D65 illuminant). 

The obtained results are directly relatable to a small cellular office with a window to wall ratio of 16 % 

and north orientation, located at Ljubljana, but can also be generalized to some degree to other situations, 

locations and configurations. Furthermore, results could guide designers to select a proper combination 

of glazing technologies and interior finish types, which could enhance the utility, productivity and/or 

convenience of the room for specific activities (e.g. recovering patients in a hospital requiring certain 

light spectrum content). 

Based on the acquired experimental and simulation results, it can be concluded that for the analysed 

spectrally neutral glazing types the resulting impact on the achieved circadian potential of the indoor 

environment, measured in the equivalent melanopic lux, is more or less proportional to τvis of a specific 

type of glazing. However, both experiments and simulations using generic environmental conditions 

have exposed a considerable negative impact on the circadian potential in the case of the triple glazed 

low-e glazing. For instance, double pane, double pane low-e and triple pane low-e glazing displayed EIh 

within the recommended ranges during 21st of July however, for 21st of November triple pane low-e 

fails to deliver enough daylighting between 8:00 and 9:00 am, with concurrent lowest EM values 

(EM = 151 lx), which is potentially harmful during this period of the year in which the daylight 

availability is reduced by intensity and duration throughout the day. In this case the application of two 

low-e films affects the spectral transmissivity at shorter wavelengths to such degree that under all 

investigated external conditions the indoor melanopic illuminance (EM) recorded at the position of a 

hypothetic occupant’s eye is consistently lower than vertical illuminance (EIv). Based on these results, 
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although in the case of the spectrally neutral glazing types the resulting EM is conditioned by τvis of 

glazing, this is most probably not true for glazing types that non-uniformly affect the spectral 

composition of daylight (e.g. solar protective glazing, coloured glazing, coloured embedded shading, 

etc.). The second part of the executed study investigated the impact of different spectral reflectivity of 

wall coverings on the indoor luminous conditions in the case of a hypothetical occupant facing the 

coloured wall with a window to the side (i.e. daylight entering from the left). The results demonstrated 

a substantial influence of colour on the achieved circadian potential of the scale model. In particular, it 

can be deduced from the results that blue colour hues can have a positive impact on the achieved level 

of EM when compared to spectrally neutral colour at comparable Rvis. On the contrary, the orange tones 

have a distinct negative impact, considerably reducing EM values when compared to EIv as well as EM 

achieved under spectrally neutral wall finish. The obtained results of the relative impact of wall finish 

spectral reflectivity on the achieved circadian potential of the indoor environment is in line with the 

findings reported by Cai et al. [15].   

Based on the reported findings of the presented study it could be concluded that colour of internal 

surfaces has a greater impact on the achieved circadian potential in the indoor environments than does 

the glazing type. Nonetheless, it should be stressed that the direction of occupant’s view can potentially 

significantly influence the resulting final circadian impact. In other words, if the hypothetical occupant 

presumed in the present analysis did not face directly towards the coloured wall, but rather towards the 

window, the resulting impact would be far smaller or even marginal. On the other hand, if the glazing 

type was not spectrally neutral, as it was in the case of the conducted experiments and simulations, its 

relative impact could be greater. Both above exposed notions point towards the need for further research 

that would enlighten the range of impacts exerted by various spectrally neutral and spectrally selective 

glazing types as well as wider range of wall colours, and combinations, on the achieved circadian 

potential of daylight in indoor environments.  Concurrently, also the impact of occupant view direction 

and the interactions between glazing type, shading systems, and wall colour need to be considered, as 

they might have a decisive impact when dealing with the circadian aspects exerted by the built 

environment. 
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