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Characterization of beam stiffness matrix with embedded
piezoelectric devices via generalized eigenvectors

Claudio Brillantea, Marco Morandinia,∗, Paolo Mantegazzaa

aPolitecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, via La Masa 34,
20156 Milano, ITALY

Abstract

The formulation described in this paper leads to the electro-elastic character-
ization of the sectional properties of elastic anisotropic prismatic beam with
embedded piezoelectric devices. The related matrix is derived by analyzing
a set of two-dimensional electro-elastic problems defined on the beam section.
These problems allow to compute both the so-called beam de Saint-Venant’s
solutions and the beam deformation field induced by an electric potential dif-
ference imposed between the piezoelectric conductive laminae. The results are
compared to those obtained with three dimensional finite element models.

Keywords: Smart structures, active beam, beam section characterization,
stiffness matrix, piezoelectric; de Saint-Venant.

1. Introduction

Piezoelectric devices are used for many different applications, either as ac-
tuators or sensors. Their relatively high operational bandwidth makes them
suitable for applications where a reduction of structural vibration and noise ra-
diation is sought (e.g. T C Manjunath, 2006; ur Rahman and Alam, 2012). A
still valid review, albeit not very recent, about piezoelectric structures model-
ing can be found in (Benjeddou, 2000). Many applications involve piezoelectric
devices embedded into slender beams. As an example, piezoelectric patches can
be used to actively twist helicopter rotor blades. This solution should allow to
reduce loads and vibrations in the fuselage, as shown by Shin and Censik (2007)
and Ghiringhelli et al. (2008).

Three dimensional finite element models are often used to predict the re-
sponse of beams with embedded piezelectric patches, e.g. in Rao et al. (2012).
However, many works strives to avoid the complexity and cost of a full three
dimensional model through simpler yet reliable models are being sought. The
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simplest beam model is based on the Euler-Bernoulli approximation, as in Car-
penter (1997), and R. Zemcik (2007). These works accounts only for the axial
beam strain, and not for the change of dimension of the beam section. This
allows to obtain an analytical expression for the cross-section properties. This
kind of models can be improved by accounting for shear deformations, as pro-
posed by Benjeddou et al. (1997) and Elshafei and Alraiess (2013). The former
proposes a Timoshenko model for the core section and neglects the shear defor-
mation for the external layers; the latter accounts for a parabolic distribution
of the shear strain. It must be noted, though, that many of these specialized
formulations must resort to constitutive equations specialized for an axial stress
state. This fact, by itself, somewhat limits their applicability to the case of
complex sections made of laminated composite materials. The use of mixed
variational principles have been advocated by Maurini et al. (2004) to overcome
the intrinsic limitations of the Euler-Bernoulli kinematic approximation.

In recent years countless papers on the beam sections structural properties
characterization have been published; the interested reader can find a recent,
partial overview in (Chakravarty, 2011). A general procedure for computing the
stiffness matrix of a beam of arbitrarily complex geometry and made of compos-
ite materials was proposed by Giavotto et al. (1983). The procedure is based on
a semi-analytical expansion of the unknown displacement field, with the stiffness
matrix computed from the set of the so-called de Saint-Venant’s solutions. To
do so, the cross-section is discretized into finite elements, and the null eigenvalue
solutions of a system of homogeneous second order differential equations along
the beam axis are sought. Since then, many similar works have been published
on the subject, some of them specializing the theory to the case of thin-walled
beams. Among them, it is worth mentioning the works published by Hodges and
his co-workers, who approach the problem aiming for an asymptotically correct
solution. Their work is summarized in Hodges (2006). Following Giavotto et al.
(1983) and Hodges (2006) extensions to the case of integrated piezoelectric de-
vices were proposed by Ghiringhelli et al. (1997), Censik and Ortega-Morales
(2001) and Roy et al. (2007).

A slightly different approach for the beam section characterization was pro-
posed by Morandini et al. (2010). Starting fro Giavotto’s work, Morandini et al.
(2010) departs from it because they resort to the Hamiltonian structure of the
solid beam differential equations, and do not add any (redundant) section rigid
motion field to the section finite element displacement. This approach is strongly
linked to Mielke’s works on the de Saint-Venant’s solutions (e.g. Mielke, 1991).
A similar procedure, based on the works by Zong and co-workers, (e.g. Wanxie
et al., 1996; Yao et al., 2009), was proposed by Bauchau and Han (in press).

This work extends Morandini et al. (2010) to electro-elastic beams. The
related problem is first reformulated accounting for both the structural and the
electric virtual work. It is then shown that, when piezoelectric effects have to be
accounted for, the governing second order system of equations is no more homo-
geneous. Rather, it has the charge per unit span imposed on the electrodes as a
forcing term. The generalized beam stiffness can thus be computed by account-
ing for both the homogeneous and the particular solutions of the system. Along
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a similar line it is worth citing the work of Leung et al. (2008). They adopt the
same formalism of Morandini et al. (2010), and recognize that piezoelectric ma-
terials can be accounted for by considering not only the solutions of the system
but also the particular ones. However, they look for the analytical solution of
a clamped beam, obtained accounting for both of the null eigenvalue solutions
and of the decaying ones. They neither perform a finite element discretization
of the beam section nor attempt to compute the generalized stiffness matrix of
the beam.

The proposed approach should give, with the same mesh and finite element
family, the same results that can be obtained by following Ghiringhelli et al.
(1997), Censik and Ortega-Morales (2001) or Roy et al. (2007). The main
difference between the proposed approach and the above mentioned works is
conceptual. As explained above, all these works define the three dimensional
displacement field by superposing a warping field onto the section motion. With
the proposed approach, instead, the unknown displacement filed is defined with-
out any redundancy. It is thus not necessary to further impose the indefinite
equilibrium equations of the beam solving the three dimensional beam problem
for a set of self-equilibrated internal forces, as in Ghiringhelli et al. (1997). As
a consequence, it is no more required to assume that the average section mo-
tion of the three dimensional model coincides with that of the mono-dimensional
beam model. Moreover, departing from Ghiringhelli et al. (1997), the electrodes
equipotentiality constraint is naturally accounted for, without the need of mod-
ifying the equation set any more. Furthermore, each independent electrode
requires now the solution of a single additional system of linear equations, while
two were required in Ghiringhelli et al. (1997). Differently from Censik and
Ortega-Morales (2001) and Roy et al. (2007), no asymptotic expansion is car-
ried out. Thus, the result of the proposed procedure naturally leads to a beam
stiffness matrix that does account for the shear deformation. In other words, it
gives the actual stiffness matrix, computed from the so-called de Saint-Venant’s
solutions, of a given section, regardless of the beam length.

The paper is articulated as follows: the kinematical model and the equilib-
rium equations of the beam are first revised. The procedure to compute the
stiffness matrix is then presented, and explained in three steps. Finally, some
numerical examples are discussed.

2. Kinematical model and constitutive laws

Consider a geometrical model of a beam with the conventions of Fig. 1. Let
x(ξ1, ξ2, ξ3) be the position of a point in the reference configuration, where ξ3
represents the coordinate along the straight axis of the beam and ξ1 and ξ2

are two local coordinates on the beam section. Assume the local coordinate
ξ3 to be perpendicular to the plane defined by ξ1 and ξ2 and, without loss of
generality, coincident with the curvilinear abscissa s. The covariant base vector
g3 = ∂x/∂ξ3 is thus equal to the versor n, normal to the ξ1, ξ2 plane; the
covariant base vector coincides with and to the contravariant one, g3 = g3 = n.
Let x′(ξ1, ξ2, ξ3) be the position of a point in the deformed configuration, so that
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ξ1

ξ2

ξ3 ≡ s

Figure 1: Straight beam geometry.

u = x′ − x is the displacement of the point. The deformation gradient F
is given by

F = x′/⊗ = x′/⊗S + x′,3 ⊗ g3 (1)

where gi are the three contravariant base vectors relative to the coordinates
on the beam, x′/⊗ stands for the gradient of vector x′, x′/⊗ = x′,i ⊗ gi and
x′/⊗S = x′,1⊗g1+x′,2⊗g2. The somewhat awkward notation x′/⊗S is introduced
in order to decompose the deformation gradient F into a component along the
direction of the beam axis and a term on the section plane. We are interested
in the analysis of straight beams, with constant contravariant base vectors gi
along the span. The virtual variation of the deformation gradient is given by

δF = δx′/⊗S + δx′,3 ⊗ g3 (2)

Assuming infinitesimal deformation and displacement field, the small strain ten-
sor can be computed as

ε = 1
2

(
F + F T

)
− I (3)

Linear constitutive laws are considered for both the structural and the piezo-
electric regions. The relation between the Cauchy stress tensor S and the small
strain tensor ε is given by

S = E : ε. (4)

The piezoelectric constitutive law is{
S
D

}
=

[
E −ET231

E ε

]{
: ε
·E

}
, (5)

where E and ε are the piezoelectric and the dielectric tensors, D is the dielectric
displacement, the electric field E is equal to minus the gradient of the electric
potential V ,

E = −V/⊗ = −V/⊗S − V,3g3, (6)

and the operator (·)T231 applied to the third-order tensor E = Eijkgi ⊗ gj ⊗ gk
transforms it into ET231 = Eijkgj ⊗ gk ⊗ gi.
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3. Virtual work principle

Consider the virtual work principle (VWP) for a beam of length L with end
loads and electric charges qC per unit surface imposed on the surface boundary
∂VP´

V
δε : SdV +

´
Vp
δE ·DdVP =

´
A
δx′(L) · f(L)dA+

´
A
δx′(0) · f(0)dA

+
´
AP

δV (L)q(L)dAP +
´
AP

δV (0)q(0)dAP +
´
∂VP

δV qCd∂VP
(7)

where VP is the volume of the piezoelectric regions, E = −V/⊗ is understood,
and q and qC are the electric charges on the beam ends and the beam lateral
surface, respectively. The electric charges are equal to the normal component
of the electric displacement D, q = D · n. The integral

´
∂VP

δV qCd∂VP on
the piezoelectric surface boundary ∂VP is understood to be carried out only on
the surface where the potential V is left free, i.e. where the surface charge can
be imposed; wherever the potentials were imposed the electric charge would be
unknown.

Following a well-consolidated procedure (e.g. Giavotto et al. 1983; Moran-
dini et al. 2010) Eq. (7) can be transformed by integrating by part all the terms
that have, as virtual variation, the derivative with respect to ξ3 of either the
deformed position vector x′ or the electric potential V . This allows to trans-
form Eq. (7) into a set of two differential equations in the ξ3 direction. In
doing so the volume integral involving the contravariant base vector g3 can be
evaluated as

´
V
(·)g3dV =

´
L

´
A
(·)ndAdξ3, where A is the surface spanned by

{ξ1, ξ2}|ξ3=const. Integration by part leads to

−
´
VP
δV/⊗S ·DdVP +

´
VP
δV n ·D,3dAPdξ3 −

[´
AP

δV (n ·D − q) dAP
]
L

+
[´
AP

δV (n ·D − q) dAP
]
0
=
´
∂VP

δV qCd∂VP ,
(8)

−
´
V
δx′ ⊗ n : S,3dAdξ3 +

´
V
δx′/⊗S : SdAdξ3

+
[´
A
δx′ · (S · n− f)

]
L
−
[´
A
δx′ · (S · n− f)

]
0

= 0.
(9)

Equation (9) is derived taking into account the symmetry of the stress tensor, so
that δε : S = δF : S. Using the constitutive law Eq. (5) and the definitions of
the small strain tensor ε and electric field vector E, Eqs. (3, 6), into Eqs. (8, 9)
introduces the second derivative of the deformed position and electric potential,
x′,33 and V,33, and brings the equations to their final form. The terms at the
boundary are nothing but the definition of the natural boundary conditions.

Equations (8, 9) can be reduced to a set of second order ordinary differential
equations with a finite number of unknowns by using a finite element approxi-
mation. To do so, the unknown displacement u = x′ − x and electric potential
V are interpolated over the cross sections by means of suitable interpolating
functions Npi and Ni, and the nodal values of the electric potential Vi and
displacement ui are assumed to be functions of the ξ3 coordinate:

V =
∑
iNpi(ξ

1, ξ2)Vi(ξ
3),

u =
∑
iNi(ξ

1, ξ2)ui(ξ
3).

(10)
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The final result is the following set of second-order differential equations in the
nodal unknowns:[

Muu MuV

MT
uV −MV V

]{
u,33
V ,33

}
+

 (
CT
uu −Cuu

) (
CT
V u −CuV

)(
CT
uV −CV u

) (
CV V −CT

V V

) { u,3
V ,3

}
+

[ −Euu −EuV

−ET
uV EV V

]{
u
V

}
=

{
0
QC

}
,

(11)
or, with a more compact notation,

M

{
u,33
V ,33

}
+H

{
u,3
V ,3

}
+E

{
u
V

}
=

{
0
QC

}
. (12)

Explicit expressions for the matrices of Eq. 11 are reported in the Appendix.
Note that the matrix Euu is four times singular because of three rigid trans-
lations and of the rigid rotation around the beam section ξ3 axis. These rigid
body motions must be constrained. The matrix EV V is singular as well, be-
cause the electric potential is defined up to an independent constant for each
independent electric region. Thus, it is singular as many times as the number
of the independent piezoelectric regions. Conductive surfaces, i.e. equipotential
surfaces, are not modeled explicitly, but they are represented by the nodes on
the boundaries of each piezoelectric device. The same equation number is given
to the nodes which represent the same electrode, so to satisfy the equipotential-
ity constraint along the section plane1. Therefore, each electrode has a unique
electric potential. Constraining the potential value of one electrode for each
independent piezoelectric region brings matrix EV V to full rank.

4. Beam section characterization

Consider the internal work of the piezoelectric beam

δLi =
´
V
δε : SdV +

´
Vp
δE ·DdVP (13)

By following the same steps of the previous sections but without integrating by
part, the internal work is equal to

δLi =
´
L


δu,3
δV ,3

δu
δV


T 

Muu MuV CT
uu CT

V u

−MT
uV MV V −CT

uV CT
V V

Cuu CuV Euu EuV

−CV u CV V −ET
uV EV V



u,3
V ,3

u
V

 dξ3 ,

(14)
or, with a shorter notation

δLi =
´
L
δqTKFEMqdξ3, (15)

1Equipotentiality along the beam axis will be imposed in the stiffness matrix computation.
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where q =
{
uT,3 V T

,3 uT V T
}T is the (N × 1) vector of state vari-

ables.
As in (Morandini et al., 2010), the stiffness matrix of the beam is recovered by

projecting the three dimensional problem into a suitable vector space. Therefore
the six generalized deformations ψ of the beam energetically conjugated to the
internal forces and to the electric potentials applied on the nC independent
electrodes V C become the new generalized coordinates. We then assume that
the state variable q can be approximated as

q ≈
[
QstQp

]{ ψ
V C

}
, (16)

where matrices Qst and Qp are (N × 6) and (N ×nc), respectively. The matrix
Qst represents the beam section behavior for a null electrode electric poten-
tial, i.e. for null forcing terms in Eq. (11). The matrix Qp, instead, describes
the beam behavior whenever an electric potential is applied, i.e. describes a
particular solution of Eq. (11). Substituting (16) into Eq. (15) leads to

δLi =
´
L
δ

{
ψT

V T
C

}[
QstQp

]T
KFEM

[
QstQp

]{ ψ
V C

}
dξ3. (17)

The virtual work per unit length of the beam is the work of the generalized
internal forces ϑ and of the imposed electrodes charges Qc for the virtual vari-
ations of the beam generalized deformations δψ and of the electrodes potential
δV c, respectively. It must be equal to the virtual work of the corresponding
three dimensional solid, i.e. to the integrand of Eq. (17). For a beam with linear
constitutive laws the internal forces ϑ and electric charges Qc can be computed
as {

ϑ
Qc

}
=

[
Kψψ KψV

−KT
ψV KV V

]{
ψ
V C

}
,

where the section stiffness matrix Kψψ, the actuation/sensor matrix KψV and
the capacitance matrixKV V define the overall generalized stiffness of the beam
section and have dimension of (6 × 6), (6 × nC) and (nC × nC), respectively.
Theerefore, the following relation must hold{

δψ
δV C

}T [
Kψψ KψV

−KT
ψV KV V

]{
ψ
V C

}
=

{
δψ
δV C

}T [
QstQp

]T
KFEM

[
QstQp

]{ ψ
V C

}
(18)

for every possible δψ, δV C , ψ and V C , so that the beam section stiffness matrix
can be computed as[

Kψψ KψV

−KT
ψV KV V

]
=
[
QstQp

]T
KFEM

[
QstQp

]
.

The problem is to compute meaningful matrices Qst and Qp, such that
Eq. (16) do well approximate the overall beam behavior. The procedure, al-
ready explained in Morandini et al. (2010) for the matrix Qst, is discussed
in the following paragraphs. The two matrices Qst and Qp can be computed
independently and the computation of the stiffness matrix requires three steps:
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1. a linear combination Q̃st of the columns of Qst is determined in Sec-
tion 4.1 by exploiting the homogeneous problem of equations (11) with
the electrodes of each independent piezoelectric region short–circuited;

2. the matrix Qp is determined in Section 4.2 by computing the particular
solution of the problem (11); this can be accomplished either by imposing
the electric charge per unit length on the electrodes, and solving for the
unknown independent electrodes potential, or by directly imposing the
potentials and computing the unknown charges.

3. the matrix Qst is computed from Q̃st in Section 4.3 by imposing that
the beam generalized deformations must be, by definition, energetically
conjugated to the internal forces computed for the three dimensional beam
model.

The procedure is detailed in Sections 4.1–4.3 below.

4.1. Homogeneous solution
Equations (12) can be reduced to a system of first order differential equations[

M 0
0 I

]
q,3 =

[
−H −E
I 0

]
q +

{
QC

0

}
(19)

or, with a shorter descriptor form notation

Dq,3 = Aq +BQC . (20)

The first term of the vector base Q̃st can be determined through the solution
of the homogeneous problem of Eq. (20) with short–circuited electrodes. The
piezoelectric electrodes equipotentiality along the beam axis implies that not
only the electrode potentials are null, but also their derivatives. The homoge-
neous short–circuited problem

q̃,3 = Ãq̃ (21)

has 12 null eigenvalues, as shown in (Morandini et al., 2010). The solutions
corresponding to the null eigenvalues are organized in four polynomial Jordan
chains; each chain originates from one of the four rigid body motions of the
section, and represent the central solution of the beam. Two polynomial chains
grows up to a third order polynomial, while the other two grow up to a linear
polynomial. All the remaining solutions of the homogeneous short–circuited
problem are exponentially decaying, and are called extremity solutions. Since
we are neglecting end effects we are interested in the polynomial solutions only.
The sought fourth polynomial solutions assume the following form

q̃ =
[
x1 x2 x3 x4

]


1 ξ3
(ξ3)2

2
(ξ3)3

6

0 1 ξ3
(ξ3)2

2
0 0 1 ξ3

0 0 0 1

k, (22)
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where vector k defines the amplitude of each polynomial. The generalized eigen-
vectors xi, i = {1, 2, 3, 4} of the homogeneous problem can be computed by
resolving a set of system of linear equations:

Ed0 = 0
Ed1 = −Hd0
Edi = −Hdi−1 −Mdi−2, i ≥ 2

(23)

Note that a similar approach was suggested also by Aldraihem and Khdeir
(2000). The initial eigenvectors d0 are known beforehand: they represent the
four rigid motions stemming from the null space of E. In fact, matrix E is four
times singular and has to be constrained while resolving the Jordan chains. The
resulting generalized eigenvectors are computed as follows

x1 =

[
0
d0

]
. . . xi =

[
di−1
di

]
(24)

Once the 12 generalized eigenvectors are computed, the vector base Qst is con-
structed by using only the 6 eigenvectors which contribute to the deformation
of the beam. These vectors are respectively the last two vectors associated to
the bending and the last vector related to the axial and to the torsional rigid
motions:

Q̃st =
[
x3bend1 x4bend1 x3bend2 x4bend2 x2axial x2torsional

]
. (25)

4.2. Particular solution
In order to compute the vector base Qp we exploit the particular solution

of Eq. (12). This allows to compute the solution when an electric potential
is applied to the electrodes. Since the applied potential V c is constant, the
particular solution is constant as well. Considering Eq. (12), the particular
solution is given by

E

{
u
V

}
pt

=

{
0
QC

}
. (26)

As stated before, the matrixQp can be computed either by imposing the electric
charge per unit length on the electrodes, or by directly imposing the electric
potentials. If the first approach is used, unit and opposite charges QC are
applied at the master and slave electrode for each piezoelectric region and the

solution
{
u
V

}
pt

is then computed. Since we are interested in the behavior of

the beam under unit applied electric potential at the electrodes V C , and not
to unit charge, the matrix built with the different solutions as columns must be
multiplied on the right by the inverse matrix of the electrodes electric potentials.
If the second approach is used instead, i.e. if the solution is directly computed
by applying unit electric potential difference on each piezoelectric region, no
post-processing is required.
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Since the particular solution is constant, its derivative is zero and the sought
vector base Qp is

Qp =

 0{
u
V

}
pt

 (27)

4.3. Computation of the generalized beam stiffness matrix
Having computed the generalized eigenvectors Q̃st and the solution Qp for

applied unit potential on the electrodes V C the state variable vector q can be
approximated as

q =
[
Q̃stQp

]{ kd
V C

}
(28)

where vector kd defines the amplitude of the 6 eigenvectors. However, vec-
tor kd is not, in general, energetically conjugated to the internal forces of the
beam. A further step is thus needed in order to compute the correct stiffness
matrix. Following the same approach of Morandini et al. (2010), a coordinate
transformation G is sought for the short–circuited solutions so that

kd = Gψ. (29)

This is equivalent to trasnform the state variable vector q through a linear
combination of the columns of matrix Qst = Q̃stG. Consider the internal work
per unit length of the beam (15) projected onto kd:

δL̃i = δψTGT Q̃
T

stKFEMQ̃stGψ = δψTGT K̃Gψ. (30)

The transformation matrix G is obtained by imposing that the internal work
of Eq. (30) must be equal to the external work. Since the piezoelectric regions
are kept short–circuited the external work is equal to the product of the virtual
generalized deformations and the internal forces of the beam,

δL̃istruct = δψTϑ, (31)

where the internal forces are defined as

ϑ =

ˆ
A

[
I
x×

]
S · ndA. (32)

Consider the constitutive law S = Eε−eTE and Eqs. (1) and (6). The structural
external work can be computed as

δL̃istruct = δψT
[
LT Y T RT ZT

]
Q̃stkd = δψT

[
LT Y T RT ZT

]
Q̃stGψ,

(33)
where the matrices L, Y , R and Z are computed from Eq. (32) with the finite
element discretization of Eq. (10). Equating Eqs. (30) and (33) leads to

δψTGT K̃Gψ = δψT
[
LT Y T RT ZT

]
Q̃stGψ. (34)
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Piezoelectric (PZ21)
E11 = E22, Gpa 5.9017E+1
E33, GPa 4.0906E+1
ν12 0.3413
ν13 = ν23 0.3856
G12 = G23 = G13, GPa 2.2E+1
E311, C/m2 -5.3979
E322, C/m2 -5.3979
E333, C/m2 2.2836E+1
ε11 = ε22, F/m 3.1892E-8
ε33, F/m 1.3846E-8

Table 1: Piezoelectric material properties.

Note that only the structural deformations have to be transformed. Equation
(34) must be verified for every possible deformation Gψ, so it is equivalent to
a system of linear equations

K̃
T
G = Q̃

T

st

[
LT Y T RT ZT

]T
. (35)

Then the sought coordinate transformation G can be found by solving Eq. (35).
The generalized stiffness matrixK of the beam section can finally be computed
as

K =

[
G 0
0 I

]T [
Q̃stQp

]T
KFEM

[
Q̃stQp

] [
G 0
0 I

]
. (36)

5. Examples

The first two examples deal with beams made of homogeneous material and
thin piezoelectric patches. The host structure material is an isotropic epoxy
resin with elastic modulus E = 3.5 GPa and Poisson coefficient ν = 0.34. An
orthotropic piezoceramic material is used for the piezoelectric patches. Table 1
reports the piezoelectric material properties computed in a local coordinate
system, with the polarization applied in the direction of the local z axis. The
stiffness matrix computed with the proposed method is compared with results
obtained using the software Abaqus and, when available, with literature results
obtained with the software ANBA (Ghiringhelli et al., 1997) and VABS (Roy
et al., 2007).

5.1. Example 1 : Beam with two piezoelectric patches
In this example a rectangular beam section with two piezoelectric actuators

is considered. Two piezoelectric patches are attached on the upper and lower
faces of the beam, as shown in Fig. 2. The beam core is 0.1x0.05 m and the
piezoelectric patches are 0.002 m thick. The beam section is discretized with
a 6x6 mesh, the piezoelectric patches with one element through the thickness.
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Figure 2: Rectangular section.

Kψψ KψV KV V

EA, N 4.1107E+07 TzV 1, C/m 1.627 Cii, F/m 1.2688E-6
(GA)x, N 1.3074E+07 TzV 2, C/m 1.627 Cij , F/m -2.1555E-8
(GA)y, N 6.8735E+06 MxV 1, C -4.254E-2
GJ , Nm2 1.2050E+4 MxV 2, C 4.254E-2
(EJ)x, Nm2 1.9673E+4
(EJ)y, Nm2 3.4482E+4

Table 2: Rectangular section beam properties.

The electrodes are represented by the nodes on the sides above and below the
piezoelectric patches; the potentials on the electrodes in contact with the core
of the section are fixed to zero, so that the electric fields have the same direction
of the material polarization (direction 3 of Tab. 1).

The computed stiffness matrix is reported in Tab. 2. A three dimensional
beam of length 2 m has been analyzed with Abaqus, with isostatic constraints
applied on one of the sections. Two load conditions are considered. In the
first one an electric potential of 1000 V is applied on both electrodes. In the
second one the same electric potential is applied on the lower electrode only. In
order to compare the deformations obtained with the present method and the

Step: Step−2
Increment      1: Step Time =    1.000

ODB: Trave2piezofitlung.odb    Abaqus/Standard 6.11−1    Wed Jun 05 15:37:41 ora legale Europa occidentale 2013

X

Y

Z

Figure 3: Rectangular section beam Abaqus model.
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both electrodes lower electrode
Present Abaqus Present Abaqus

Axial deformation ψz -7.9159E-5 -7.8498E-5 -3.958E-5 -3.8671E-5
Curvature γx 0.0 0.0 2.1623E-3 2.1072E-3

Table 3: Rectangular section beam: deformation obtained by applying a 1000 V potential to
both (left) and one (right) electrodes.

 CSYS−1Z X
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Figure 4: Triangular section beam with 100 V applied on the lower electrode: ε11. Abaqus
3D model (left) and present beam section model (right).

ones obtained with the three dimensional model, the results of the latter needs
to be post-processed. The axial beam deformation is estimated as the mean
value, computed over the section, of the three dimensional axial deformation.
The curvature around the y axis is estimated as the derivative of the section
rotation, and is computed by dividing the rotation of the end section by the
total beam length. Table 3 compares the computed deformations.

Figures 4 and 5 compare the deformation field ε11and ε12 predicted, when an
electric potential of 1000 V is applied on both electrodes. They are based on the
Abaqus model and the proposed section characterization procedure. It should
be remarked that the contouring algorithms used by Abaqus and by the present
beam section code are different. Abaqus plots the contour after computing, for
each material domain, the nodal average of a deformation. The beam section
code, instead, post-processes a deformation by projecting it onto the same finite
element space used to approximate its parent displacement.
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Figure 5: Triangular section beam with 100 V applied on the lower electrode: ε12. Abaqus
3D model (left) and present beam section model (right).
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Figure 6: Triangular section.

Kψψ KψV

Present ANBA Present ANBA
EA, N 1.4915E+6 1.4915E+6 TzV 1, C/m 0.32549 0.3255
(GA)x, N 3.7123E+5 3.70485E+5 TzV 2, C/m 0.32549 0.3255
(GA)y, N 3.7122E+5 3.70485E+5 TzV 3, C/m 0.32549 0.3255
GJ , Nm2 1.8189E+1 1.8156E+1 MxV 1, C -1.9486E-3 -1.929E-3
(EJ)x, Nm2 4.0748E+1 4.0749E+1 MxV 2, C 9.741E-4 9.77E-4
(EJ)y, Nm2 4.0747E+1 4.0749E+1 MxV 3, C 9.741E-4 9.77E-4

MyV 1, C 2.3E-8 2.8E-10
KV V MyV 2, C 1.685E-3 1.6927E-3
Present ANBA MyV 3, C -1.685E-3 -1.6927E-3

CV iV i, F/m 1.9269E-6 1.9303E-6
CV iV j, i6=j , F/m -1.7807E-8 -2.075E-8

Table 4: Triangular section beam properties.

5.2. Example 2 : Triangular section
The triangular section of Fig. 6 was first considered in Ghiringhelli et al.

(1997). The section core is made of epoxy resin, with three piezoelectric patches
attached to each side of the beam. The polarization direction of the piezoelectric
materials is normal to the sides of the section and points to the host structure
center. The three inner electrodes are unloaded, with the electric potential
applied to the outer ones. The electrodes are numbered as in Fig. 6. The
beam core sides are 0.02 m wide; the piezoelectric patches are .25 mm thick.
The beam section has 4 elements on each side, with one element through the
thickness for the piezoelectric patches. The center of the triangular section is
located in the origin of the reference system. The results, shown in Table 4,
are almost indistinguishable from those reported in Ghiringhelli et al. (1997),
obtained with the ANBA code. As for the previous example, the behavior of a
three dimensional beam of length 0.5 m has been analyzed with Abaqus. Two
load conditions are considered. In the first one an electric potential of 100 V is

14
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ODB: Tria.odb    Abaqus/Standard 6.11−1    Mon Jun 10 14:43:27 ora legale Europa occidentale 2013
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Figure 7: Triangular section beam Abaqus model.

all electrodes lower electrode
Present Abaqus Present Abaqus

Axial deformation ψz -6.547E-5 -6.4235E-5 -2.1823E-5 -2.1409E-5
Curvature γx 0.0 0.0 0.478E-2 0.466E-2

Table 5: Deformation due to a 100 V applied to all electrodes (left) and to the lower electrode
(right).

applied on each electrode; only the lower electrode is loaded in the second load
condition. The deformations of the three dimensional model are post-processed
as in the previous example. As can be seen form Tab. 5 the results obtained with
the three dimensional model and the proposed method show a good agreement.
Figures 8 and 9 compare the deformation fields ε11and ε12, as predicted, for
this case, by the three dimensional Abaqus model and the proposed section
characterization procedure.

This test case is used as a mean to verify the effectiveness of modeling this
kind of structures as beams characterized by the computed stiffness matrix. To
do so, the axis displacement due to 100 V on the left electrode is computed
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Figure 8: Triangular section beam with 100 V applied on the lower electrode: ε11. Abaqus
3D model (left) and present beam section model (right).
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Figure 9: Triangular section beam with 100 V applied on the lower electrode: ε12. Abaqus
3D model (left) and present beam section model (right).

Present Abaqus
sx, m -4.954E-4 -4.986E-4
sy, m 2.860E-4 2.879E-4
sz, m -1.091E-5 -1.063E-5

Table 6: Displacements of the end section.

by means of a beam model and compared with that of the three dimensional
FEM analysis. The beam model uses the stiffness matrix of Tab. 4 and has
the same discretization along the beam axis of the three dimensional model.
Table 6 compares the beam end section displacements with the average end
section displacements of the 3D FEM model.

5.3. Example 3 : Two layered beam
The case study analyzed by Roy et al. (2007) is considered. The rectangular

cross section is composed of an aluminum layer bounded to a thick piezoelectric
layer. A voltage of 10 kV is applied on the surface of the piezoelectric material,
with the interface between the piezoelectric and the aluminum layers grounded.
The piezoelectric material is polarized along the global y axis, that corresponds
to the piezolectric local z axis. Both layers are 5 mm thick and the section is
20 mm wide. The mesh, shown in Fig. 10, has 40x8 elements. The aluminum
elastic modulus is equal to E = 68.9 GPa, its Poissson coefficient to ν = 0.25.
The properties of the piezoelectric material are reported in Tab. 7.

The computed stiffness matrix is shown in Tab. 8. The results are compared
with those reported by Roy et al. (2007); however, no comparison is possible for
the shear stiffness since that work is based on the variational asymptotic method.
The only significant difference in Tab. 8 is that for the torsional stiffness GJ ,
122.18 Nm2 vs. 130.04 Nm2. At a first glance, this could be imputed to the fact
that VABS results are computed using 80 8-noded parabolic elements, while the
present results are computed by using 320 4-noded bilinear elements. However,
increasing the number of elements from 320 to 5120 brings the torsional stiffness
from 122.18 Nm2 down to 121.78 Nm2.
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Figure 10: Two layered section.

PZT4
E11 = E22, GPa 8.13E+1
E33, GPa 6.45E+1
ν12 0.329
ν13 = ν23 0.432
G12, GPa 3.06E+1
G13 = G23, GPa 2.56E+1
E311 = E322, C/m2 -5.2
E333, C/m2 1.508E+1
E212 = E123, C/m2 1.27E+1
ε11 = ε22, F/m 6.761E-9
ε33, F/m 5.874E-9

Table 7: Material properties.

Kψψ KψV

Present VABS Present VABS
EA, N 1.5026E+7 1.5026E+7 TzV , C/m -0.20263 -0.20245
KMxsz , Nm 3.0589E+3 3.0622E+3 MxV , C -4.832E-4 -4.8434E-4
KTxsy , Nm 1.7179E+5 —
KMzsx , Nm 1.1645E+3 —
(GA)x, N 4.4191E+6 —
(GA)y, N 4.2307E+6 — KV V

GJ , Nm2 1.2218E+2 1.3004E+2 Present VABS
(EJ)x, Nm2 1.2796E+2 1.2777E+2 C, F/m 4.0073E-8 —
(EJ)y, Nm2 5.0096E+2 5.0081E+2

Table 8: Comparison with the VABS method.
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6. Conclusions

An improved general method for modeling anisotropic, straight and linear
beam sections with embedded piezoelectric devices is presented. The stiffness
matrix per unit length of the beam is correctly evaluated by accounting for a
completely coupled three-dimensional piezoelectric constitutive law. To do so,
the homogeneous solutions, i.e. the the so-called de Saint-Venant’s solutions,
are considered along with a set of particular solutions obtained by indepen-
dently loading the beam piezoelectric patches with an electric potential. The
new formulation does not requires any redundant assumption, thus allowing to
straightforwardly develop the related model and compute the generalized con-
stitutive law of a beam section. No asymptotic expansion is required, so that
the obtained results keep valid independently from the beam slenderness. The
proposed approach is validated through three-dimensional finite element models
and similar semi-analytical methods.

The method could be easily extended to more general applications.

Appendix

This Appendix reports the expressions required to assemble the matrices of
Eq. 11. They are obtained taking into account the symmetries of the elastic
tensor E, the symmetry of the third order tensor E = ET132 and the symmetry
of the second order tensor ε = εT . The domain of integration E is the area
of a single finite element. All the sub-matrices have to be assembled, as it is
customary to do.

Muu(i, j) =

ˆ
E

NiNjn · E · ndA (37)

MuV (i, j) =

ˆ
E

NiNpjn · ET231 · ndA (38)

MV V (i, j) =

ˆ
E

Npin · ε · nNpjdA (39)

Cuu(i, j) =

ˆ
E

Ni/⊗S · E · nNjdA (40)

CuV (i, j) =

ˆ
E

Nin · ET231 ·Npj/⊗SdA (41)

CV u(i, j) =

ˆ
E

Npi/⊗S · E · nNjdA (42)

CV V (i, j) =

ˆ
E

Npi/⊗S · ε · nNpjdA (43)

Euu(i, j) =

ˆ
E

Ni/⊗S · E ·Nj/⊗SdA (44)
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EuV (i, j) =

ˆ
E

Ni/⊗S · ET231 ·Npj/⊗SdA (45)

EV V (i, j) =

ˆ
E

Npi/⊗S · ε ·Npj/⊗SdA (46)
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