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modes, which can lead to degradation of performance or even
instability [2]. To reduce spillover, a family of control logics,
known as ‘resonant control’, has been developed. The char-
acteristic of these strategies is the evaluation of the control
action through a dynamic system (usually a first or second
order compensator) so that the force applied to the system is
opposite in phase to the modal velocity corresponding to the
controlled mode resonance frequency. One of the first reso-
nant controls was positive position feedback (PPF), devel-
oped by Goh and Caughey [3]. To avoid high frequency
spillover, the generalized displacement is fed back through a
second order low-pass filter so that in the neighbourhood of
the cut-off frequency the control force has a damping effect.
However, at low frequencies this control strategy causes a
reduction of stiffness affecting quasi-static performances.
Later the strain-rate feedback (SRF) control logic was pre-
sented by Agrawal et al [4]. In this case, the control action is
obtained by filtering the generalized velocity with a second
order low-pass filter the generalized velocity. This way, a
damping effect is obtained before the cut-off frequency, while
above this frequency the control force results in a negative
damping. More recently, a resonant control, called active
modal tuned mass damper (AMTMD) [5], was designed to
reproduce the behaviour of a passive mechanical tuned mass

1. Introduction

Vibration reduction in mechanical and civil structures has 
always represented an important target, since stresses intro-
duced by dynamic amplifications can induce failures and 
reduce performance. The need to design light structures with 
consequently low damping in many fields such as aerospace, 
transport and, in general, all those applications in which it is 
convenient to save materials or energy, has made the problem 
more acute. For these reasons, both passive and active solu-
tions have been proposed for reducing vibrations, particularly 
in the case of resonance forcing conditions. Among the pas-
sive solutions is the dynamic absorber, a one degree of 
freedom (d.o.f.) device consisting of a mass connected by 
elastic-viscous elements to the main system and tuned on a 
natural frequency, as well as its extension to multi-d.o.f. 
Recently, however, the increasing availability of sensors and 
actuators has given considerable impetus to active vibration 
control. Among the control logics developed for reducing 
dynamic amplifications in resonance conditions, independent 
modal space control (IMSC) [1] makes it possible, under 
certain assumptions, to act on different modes independently 
increasing damping. The most important limit of this strategy 
is the spillover effect, due to the presence of unmodelled
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damper. In this case, the transfer function between modal
velocity and control force is a high-pass filter reducing spil-
lover at low frequencies. Finally, a control strategy known as
negative derivative feedback (NDF) [6] proved more robust
against spillover since it acts as a band-pass filter. As men-
tioned above, all these control strategies make use of com-
pensators whose design involves the setting of a large number
of parameters, very often without a precise physical meaning.
Except in the case of AMTMD, where control design could
rely on the well-known theory of passive mechanical tuned
mass dampers [7], there are few guidelines for the definition
of these coefficients. For this reason, in this paper a design
strategy for a single and multi-d.o.f. NDF controller based on
an output feedback control formulation is proposed, by ana-
logy with what has been done for PPF by Inman and Friswell
[8]. In section 2, modal space theory and NDF control strat-
egy are described. In sections 3 and 4 the design methodology
is described for single and multi-d.o.f. systems. For both cases
a numerical test has been developed and is described in
section 5.

2. The NDF

Consider a generic mechanical system described by n second
order differential equations

Λ¨ + ˙ + = +M R Kx x x f f (1)T
c d

where

• x is the ×n 1 vector containing the physical coordinates
• M, R, K are respectively the mass, damping and stiffness

×n n matrices
• ΛT is the Jacobian matrix describing the relationship
between displacement of points where control forces are
applied and the vector x

• fc and fd are respectively the control and disturbance
forces

To obtain a simpler model with a reduced number of d.o.
f., the modal approach can be used, describing the system in
the range of frequencies of interest with a set of m principal
coordinates q. The modal variables are related to the physical
ones by

Φ=x q (2)

where Φ is the ×n m modal matrix containing the eigen-

vectors of −M K1 associated with the considered modes.
Normalizing the eigenvectors to have a unitary mass matrix, a
set of m decoupled equations, is obtained (under proper
assumptions about the damping matrix)

ξ ω ω¨ + ˙ + = +q q q u u2 (3)
i i i i i i c d

2

i i

where i is the modal index while uci
and udi

are respectively

the control and disturbance force components acting on the ith
mode. The relationship between the modal u( )c and physical

f( )c control forces is expressed as

Φ Λ=
−( )f u (4)T T

c

1

c

Now it is possible to consider the NDF control logic where
the modal force is set equal to the first derivative of an aux-
iliary variable η

i
multiplied by a negative gain

η= − ˙u g (5)c i ii

The dynamics of the auxiliary system are described by

η ξ ω η ω η η¨ + ˙ + = ˙ − ˙( )k q2 (6)
i f f i f i d i i

2

i i i i

From equations (5) and (6) the transfer function between the
modal force and the modal velocity can be derived

ξ ω ω˙
= −

+ + +( )
u s

q s

k g s

s k s

( )

( ) 2
(7)

c

i

d i

f f d f
2 2

i i

i i i i

The expression is that of a band-pass filter. It is possible to
demonstrate that this result is responsible for the reduction of
spillover effects both at lower and higher frequencies [6].

3. NDF design methodology

Looking at (7), the NDF compensator design involves the
setting of the coefficients g

i
, kdi

, ξ fi
, ωi for each controlled

mode. Except for ω fi
, which can be tuned on the natural

frequency of the controlled mode, there are no developed
strategies for the choice of all the other parameters, which
also have a weak physical meaning. For this reason, the idea
is to formulate the problem as an output feedback control
problem [8] so that the control design can be done using an
optimal approach.

3.1. Single d.o.f. systems

Consider first the dynamics of a single d.o.f. linear system
(neglecting the external disturbance) and the corresponding
NDF compensator (whose parameters are identified by the
index f)

ξω ω η
η ξ ω η ω η η
¨ + ˙ + = = − ˙
¨ + ˙ + = ˙ − ˙

⎪

⎪

⎧
⎨
⎩ ( )

q q q u g

k q

2

2
(8)c

f f f d

2

2

and define a new set of variables

η
η

=
˙

˙

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪

q
q
g
g

z (9)



It is possible to express (8) in state space form

˙ = +
=

⎧⎨⎩
A B
C

z z v
y z

(10)

where
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2

and

ω ξ ω= = − − −⎡⎣ ⎤⎦G k g kv y y2 (12)d f f f d
2

In this way, all the unknown design parameters appear exclu-
sively in the G gain matrix. A similar procedure can be adopted
to calculate kd and g, fixing ωf equal to the controlled mode

natural frequency ω by modifying the state matrix and reducing
the number of gains. In particular, setting ω ω=f ensures

greater robustness against spillover when non-modelled modes
are present. Equations (11) and (12) become respectively

ω ξω

ω

= − − −

−

= =
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2

2

and

ξ ω= = − −⎡⎣ ⎤⎦G k g kv y y2 (14)d f d

To obtain a unique correspondence between the gains and
coefficients to be determined, ξf can be fixed arbitrarily and the

design procedure involves only kd and g.

3.2. Output feedback control optimal solution

The linear quadratic regulator (LQR) optimal approach applied
to output feedback control problem was discussed widely in
[9]. It can be applied to (10) finding the control force v mini-
mizing a quadratic cost

∫= +
∞

( )J Q R dtz z v v
1

2
(15)T T

0

whereQ and R are the weighting matrices that must be positive
semidefinite. Since the control action is not proportional to the
whole state vector z, in order to find the minimizing gain
matrix G it is necessary to solve three matrix equations instead
of a single Riccati equation. Moerder and Calise [10] proposed
an iterative algorithm which solves the equations starting from
an initial gain matrix G0. Since in order to have a convergent
algorithm the matrix G0 has to stabilize the closed loop state

space matrix

* = −A A BG C (16)0

it could be necessary to solve the static output feedback sta-
bilization problem using a method like the one suggested by
Moore et al [11] and based on the Schur matrix decomposition.

3.3. Multi-d.o.f. systems

The same approach discussed in the previous paragraph can
be generalized to multi-d.o.f. systems. If the number of modes

Figure 1. A single d.o.f. linear vibrating system with a disturbance
( )f

d
and an active control ( )f

c
force.

Figure 2. NDF control scheme applied to a single d.o.f. vibrating
system.

Figure 3.NDF control applied to single d.o.f. system; influence ofQ2

on the FRF between the mass displacement x and the disturbance
force f

d
( = ( [ ] )Q diag Q0, , 0, 02 , = )R 1 .



to be controlled is greater than one, the synthesis can in fact
be made considering only the modes on which the control
forces will act to increase damping. The resulting state space
form is a decentralized control problem as

∑

η η

˙ = +

= ˙ ˙ =

⎧
⎨⎪

⎩⎪ ⎡⎣ ⎤⎦

A B

q g g C

z z v

y z

(17)

r

i i

i i i i i i i
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where r is the number of controlled modes and the state
vector is
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The state space matrix becomes
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m m

where Km and Rm are respectively the modal stiffness and

the modal damping matrices, while the input and

observation matrices are defined respectively as
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For each d.o.f. the control action is computed as

= Gv y (22)i i i

The algorithm can be modified in a way similar to that
shown in (13) and (14) for the single d.o.f. by setting the
compensator frequency equal to the controlled mode fre-
quency. However, optimal approaches to decentralized output
feedback control problems are more complicated than for
centralized systems. The method proposed in [12], based on a
gradient flow approach, has been tested but convergence time
is strongly dependent on the covariance matrix of initial state,
which must be given as input to the algorithm. Thus, it proves
to be more convenient to exploit modal decoupling by
applying the single d.o.f. design methodology to each con-
trolled mode independently.

Figure 4. NDF control applied to single d.o.f. system; influence of Q4 ( = =( [ ] )Q diag e Q R0, 1 3, 0, , 14 , on the left) and influence of R
= ( [ ] )Q diag e( 0, 1 3, 0, 0 , on the right) on the FRF between ẋ and the control force f

c
.



4. Control design guidelines

The algorithm proposed in section 3 has been applied to a
single d.o.f. system to show how the weighting matrices Q and
R influence control performance in terms of damping increase,
control effort and robustness against modelling errors. The
control scheme is shown in figure 2. For this application, R is a
positive scalar, while Q is set as a diagonal matrix

= ( )[ ]Q diag Q Q Q Q, , , (23)1 2 3 4

NDF has been applied to the single d.o.f. linear system
depicted in figure 1 and described by the equation of motion

¨ + ˙ + = +mx rx kx f f (24)
c d

where = −m e3.2 2 kg, = − −r e1.8 3 N s m 1,

= −k 29.8 N m 1. Thus, the natural frequency and the damping
ratio are respectively

ω = = −k

m
30.5 rad s (25)1

ξ
ω

= =r

m2
0.92% (26)

The analysis of weight influence on control performances
limited the control design to the definition of parameters Q2,
Q4 and R. Q2 is the weight corresponding to the modal
velocity which is the first variable fed back in the problem
reformulation (equation (14)). As could be expected from
optimal control theory, increasing the value of Q2 results in a
greater damping of the controlled system as is shown in
figure 3 where the frequency response function (FRF)

Figure 5. Output feedback control optimal solution for NDF parameters; quadratic cost J (on the left) and matrix G coefficients convergence
(on the right) versus the iteration number.

Figure 6. NDF control applied to single d.o.f. system; FRF between ẋ and f
c
(on the left) and between x and f

d
(on the right).



between the disturbance f
d

and mass displacement x is

represented for different values of Q2.
Parameter Q4 corresponds to the second variable fed

back, η̇g . Acting on Q ,4 it is possible to regulate in the phase

diagram the gradient of the transfer function ˙F X s( )c in cor-
respondence with the frequency ωf , as shown in figure 4(a).

This way, it is possible to extend the range of frequency in
which the control action introduces a damping effect,
increasing the robustness against natural frequency estimation
errors. Finally, weight R allows the control effort to be
balanced, as shown in figure 4(b).

5. Numerical results

5.1. Single d.o.f. system

In this section the algorithm proposed is applied first to the
single d.o.f. linear system described in section 4 and then to a
multi-d.o.f. system. For the second example, the methodology
has been tested on a cantilever beam finite element model
(FEM) in order to highlight the spillover effects and to prove
the validity of the design method.

Following the procedure described in section 3, and
imposing the weighting matrices = [ ]Q diag e e0, 1 3, 0, 1 1
and R = 1, and starting from the initial gain matrix

= −[ ]G 485.87, 40.00 ,0 the algorithm converges to the

solution = −[ ]G 27.16, 8.02 in 8 iterations. The quadratic
cost J decreases until variation drops below the 0.1 threshold,
as shown in figure 5(a), while the gains convergence is
represented in figure 5(b).

Imposing ξ = 0f and remembering ω ω=f , the other

compensator parameters can be obtained from the matrix G
through equation (14) (g = 3.39 and =k 8.02d ). In figure 6(a),
for the designed compensator, the FRF between the system
velocity ẋ and the control force f

c
is shown. It can be seen that

the band-pass filter is centred on the systemʼs natural fre-
quency, and the control force rolls off for lower and higher
frequencies.

In figure 6(b) the increase of damping for the controlled
system is shown through the FRF between the system state x
and a generic disturbance f

d
. In order to obtain higher damping,

it would be possible to act on the ratio between the values of
matrices Q and R at the expense of the control effort.

5.2. Multi d.o.f. system

A second test has been carried out on a multi-d.o.f. system. A
cantilever beam FEM has been created in order to test the

Table 1. The cantilever beam model: geometrical and structural
characteristics.

( )L m ( )J m4 ( )A m2 −( )E N m 2 ρ −( )kg m 3

1.0 · −7.2 10 10 · −2.4 10 4 ·7.5 1010 2780

Table 2. The cantilever beam model: actuators, and sensors, position
(distance from the clamp).

A1 A2 A3 S1 S2 S3

Distance ( )m 0.15 0.35 0.95 0.10 0.40 0.55

Figure 7. The cantilever beam model and the three actuators, three
sensors and a disturbance force applied.

Figure 8. The cantilever beam FRF between the tip vertical
displacement and the disturbance force f

d
.

fd
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S2
S3

Mechanical
     system

Modal
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uc
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VT -1( (

Figure 9. NDF control scheme applied to a multi-d.o.f. vibrating
system.



methodology in the presence of uncontrolled modes which
can suffer from observation and control spillover. The con-
tinuous structure has been discretized with 20 nodes, equally
distributed, each one with 3 d.o.f. (2 displacements and 1
rotation). The beam characteristics in terms of geometry and
material are summarized in table 1. In order to obtain fully
decoupled equations in modal coordinates, the damping
matrix has been defined according to the Rayleigh propor-
tional damping assumption

α β= +R M K (27)

with α = 1.3 and β = · −5 10 7. Three sensors and three
actuators are placed on the structure in a generic non-collo-
cated configuration (table 2). Both actuators (A) and sensors

(S) act on the rotational d.o.f. A disturbance force ( f
d
) acts on

the tip vertical displacement (figure 7). As an example, the
FRF between the tip vertical displacement and the disturbance
force acting on the same degree of freedom is shown in
figure 8.

The principal coordinates are reconstructed by inverting
the observation matrix describing the relationship between the
modal displacements and physical measures. This way,
effects related to observation spillover are taken well into
account. The control scheme is represented in figure 9.

Since in this case fine tuning of the compensators on the
controlled modes, natural frequencies could reduce spillover
effects, kdi

and g
i
are chosen independently of ω fi

(set equal to

the generic system natural frequency ωi). The design problem

is formulated as in (13), considering only the modes to be
controlled. In order to consider spillover at both high and low
frequencies, two cases have been examined:

• Case A: control acting on the first three modes (modes 1,
2 and 3)

• Case B: control acting on the second three modes (modes
4, 5 and 6)The results shown below refer to the choice of
weights summarized in table 3.

In figure 10(a) the transfer functions ω˙ ( )U Q jc ii
for the

three compensators tuned on the first three modes is repre-
sented (case A).

The control action results in increased damping of the
controlled modes (and a correspondent percentage peak
reduction of 65%, 75% and 71%) while the effects due to
spillover are negligible, thanks to the reduced contribution on
higher frequency modes. Only a relatively insignificant
reduction of the 5th mode damping ratio can be seen
(figure 10(b)).

Figure 10. The cantilever beam numerical simulation (case A): transfer functions ˙U Q s( )c ii
of the compensators tuned on the first three modes

(on the left) and poles, location for the non-controlled and controlled systems (on the right).

Figure 11. The cantilever beam numerical simulation (case A):
cumulative mean-square response between the tip vertical displace-
ment and the disturbance f

d
for the non-controlled and controlled

systems.



Control performance is evaluated comparing the cumu-
lative mean-square response calculated as

∫σ ω ω ω=
ω

∞

( )FRF d( ) ( ) (28)2 2

normalized with respect to the value σ ( )02 of the non-con-

trolled system. The results, considering the FRF between the
tip vertical displacement and the external disturbance for the
non-controlled and controlled systems, are shown in
figure 11.

Similar considerations can be drawn with regard to case
B in which the second three modes have been controlled
(figure 12(a)). Control action is concentrated coherently on
modes 4, 5 and 6 (percentage peak reduction of 58%, 57%
and 48%), and no damping reduction appears either at lower
or higher frequencies (figure 12(b)).

Also for this case, the cumulative mean-square response
has been computed and shown in figure 13 for both non-
controlled and controlled systems. The improvement on the
4th and 5th modes is significant compared with the effect on
the 6th, which is lower owing to its limited influence on the
whole FRF.

5.3. Robustness analysis

Dealing with the multi-d.o.f. simulation, and in particular case
A, a robustness analysis has also been performed to evaluate
the changes in performance obtained if damping ratios and
natural frequencies are not estimated accurately. Referring to
the beam FEM, the design of the experiment has been applied

Figure 12. The cantilever beam numerical simulation (case B): transfer functions ˙U Q s( )c ii
of the compensators tuned on the first three modes

(on the left) and poles, location for the non-controlled and controlled systems (on the right).

Figure 13. The cantilever beam numerical simulation (case B):
cumulative mean-square response between the tip vertical displace-
ment and the disturbance f

d
for the non-controlled and controlled

systems.

Figure 14. The cantilever beam numerical simulation (case A):
robustness analysis on the first three modes, final damping ratio
through an error on the natural frequencies, and damping ratios,
estimation.



introducing an error of ±5% in the structureʼs modal para-
meters. Four cases have been tested: overestimation and
underestimation of the first three natural frequencies, and
overestimation and underestimation of the corresponding
damping ratios. In figure 14 damping variations in the con-
trolled modes are shown. Values have been normalized by
computing the ratio between the effective (e) and the nominal
(n) damping ratio obtained with a correct estimation of ωi and
ξi. Damping ratios always remain positive (stability is pre-
served) and greater than the threshold represented by the ratio
between the structural damping and the nominal value
(dashed red line). Moreover, cumulative power spectral den-
sities (PSDs) of the FRF between each control force (j) and
the disturbance over the − Hz0 1000 frequency range have
been evaluated

∫=
⎛
⎝⎜

⎞
⎠⎟PSD

F

F
df (29)j

Hz c

d0

1000
2

j

and the variations in the control effort have been estimated as
the sum of each forceʼs contribution normalized with respect
to the nominal value

Δ =
∑

∑
=

=

F
PSD

PSD
(30)

j j e

j j n

1

3
,

1

3
,

All the results are summarized in table 4. As can be seen, an
increase in damping always results in increased control
action and vice-versa. However, variations are in the range
of ±8%.

6. Conclusion

In this work a design methodology for an NDF compen-
sator based on the output feedback control formulation is

proposed. Thanks to an optimal approach, the design pro-
blem lies in the choice of the weighting factors of the state
error and control effort matrices. The iterative algorithm,
starting from a stabilizing initial gain, allows the com-
pensator parameters to be defined. With small changes in
the problem formulation, it is possible to tune the fre-
quency of the compensator on the natural frequency of the
mode to be controlled independently of the choice of the
other coefficients. The method has been applied first to a
single d.o.f. system; then modal decomposition allows the
algorithm to be extended to a multi-d.o.f. system such as
the cantilever beam FEM. Finally, a robustness analysis has
been performed to show how performance changes in terms
of damping and control effort when modal parameters are
not correctly estimated.
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approach.

Case A Qi Ri Case B Qi Ri

Mode 1 [ ]diag e e0 7 1 0 5 3 1 Mode 4 [ ]diag e e0 5 1 0 5 4 1

Mode 2 [ ]diag e e0 4 1 0 1 4 1 Mode 5 [ ]diag e e0 1 2 0 1 5 1

Mode 3 [ ]diag e e0 2 2 0 5 4 1 Mode 6 [ ]diag e e0 2 2 0 1 5 1
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