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FAST ANGLES-ONLY INITIAL RELATIVE ORBIT DETERMINATION
FOR ONBOARD APPLICATION

Jean-Sébastien Ardaens∗ and Gabriella Gaias†

This paper presents three computationally-light algorithms to solve the initial rela-
tive orbit determination problem using line-of-sight measurements. A comparative
assessment of their performance and robustness is made, based on real flight data
from two different in-orbit experiments. The proposed algorithms are optimized
for the challenging scenario of far-range noncooperative rendezvous in low Earth
orbits.

INTRODUCTION

Angles-only relative navigation has been deeply investigated over the past years at the German
Space Operations Center (DLR/GSOC), resulting in the realization of two in-orbit demonstrations.
The ARGON (Advanced Rendezvous demonstration using GPS and Optical Navigation) experi-
ment1 was conducted in 2012 using the PRISMA formation-flying testbed2 and demonstrated far-
to mid-range ground-in-the-loop approach to a noncooperative target using optical methods. Based
on the resulting experience, a more challenging experiment called AVANTI3 (Autonomous Vi-
sion Approach Navigation and Target Identification) was successfully executed in autumn 2016
to demonstrate the ability to autonomously rendezvous with a noncooperative target using solely
optical measurements. AVANTI was implemented on the German BIROS satellite4 and used a pi-
cosatellite5 (which had been previously released in orbit by BIROS) as noncooperative target for
the sake of the experiment.

Both in-orbit demonstrations greatly differed in terms of complexity, implementation and op-
erational conditions but also in terms of constraints posed to the relative navigation. Contrary to
ARGON which, thanks to the dawn-dusk orbit of PRISMA, benefited from optimal illumination
conditions, AVANTI was dealing with target objects flying on any kind of low Earth orbit. This
had dramatic impacts in terms of visibility because the picosatellite was only visible at one single
location of the orbit, for a very short time (10 minutes) so that only a tiny part of the relative motion
could be observed. Furthermore, BIROS was orbiting at a lower altitude (500 km against 750 km
for PRISMA) inducing a strong unknown differential drag which had to be estimated as part of the
navigation process.

During AVANTI and ARGON, the relative navigation task was performed by the means of non-
linear estimation techniques (nonlinear least-squares on ground6 and extended Kalman filter on
board7). Both methods require the use of a coarse guessed solution around which the quantities are
linearized. Dealing with a known target, this a priori information was provided at that time by the
means of Two-Lines Elements (TLE).
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In order to simplify the interfaces and operations, it might be, however, desirable to replace the use
of TLEs by an angles-only Initial Relative Orbit Determination (IROD) algorithm able to compute
this coarse solution using only bearing observations. This is not a trivial task because the problem
is weakly observable. Numerous research activities have already been conducted to improve the
observability, for example by the means of maneuvers, using a camera offset or by improving the
measurement equations and/or relative dynamics.8–14 Several authors have also specifically tackled
the problem of IROD using dedicated algorithms.15–17

Recently, an alternative method has been developed by the authors to solve the angles-only IROD
problem based on a simple but effective numerical approach. This method, intended for far-range
rendezvous on near-circular low Earth orbits, is shown to be very robust, thus particularly suited for
sparse and noisy measurements, and could be successfully validated on real data sets coming from
the ARGON and AVANTI experiments.18 However, the underlying algorithm is computationally
expensive and not well adapted for an onboard implementation. The paper intends to investigate
if some optimization can be done to accelerate the delivery of results. After recalling in the first
Section the core principles of the method described in Reference 18, the paper presents in the
second Section three alternative algorithms to reduce the computational time. Finally, the algorithm
performance is assessed using real and simulated data.

NUMERICAL SOLUTION TO THE IROD PROBLEM

As already addressed in the literature, the angles-only relative navigation problem is not observ-
able using a linear framework.8 Thus there exists an infinity of solutions matching a given set of
angles-only observations. If x(t0) denotes a relative state vector at time t0 leading to a given mea-
surement profile, the scaled state vector µx(t0) is also a solution. In reality, the problem is not
linear. Consequently, small discrepancies will appear when trying to fit an arbitrary scaled solution
µx(t0) with a given set of measurements using nonlinear relative motion and measurement models,
and these errors will grow as the scale factor µ moves away from the real scaling factor µ̂. The
algorithm described in Reference 18 performs a series of orbit determinations at different scaling
factors µ within a given interval. As depicted in Figure 1, if σ denotes the standard deviation of
the fitting residuals, a residual function is obtained which reaches its minimum for the true scaling
factor µ̂, allowing solving for the range ambiguity.
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Figure 1. Fitting residuals corresponding to a series of least-squares adjustments in
the vicinity of the linear solutions µx̂0, which are schematically represented by ellipses
on top of the graph.

This behavior can be intuitively well understood but is in fact not obvious. Thus, a mathematical
demonstration is provided in Reference 18 to demonstrate that the equivalent functionm(µ) = nσ2µ,
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n being the number of measurements, is convex for the problem under consideration (i.e., far-range
rendezvous in low Earth near-circular orbit). This is done by deriving an approximate value for
m(µ):

m(µ) = bT1Mb1 + µ2bT2Mb2 + 2µbT1Mb2, (1)

where b1, b2, and M are quantities that depend on the measurements and relative dynamics (see
Reference 18 for more details). The convexity of the function m(µ) is verified using the second or-
der derivative, which is positive becauseM is semi-definite positive, yielding d2m(µ)

dµ2
= bT2Mb2 ≥

0. Consequently, the minimum function is convex and reaches its minimum for

µ̂ = −b
T
1Mb2

bT2Mb2
. (2)

FAST ALTERNATIVE IROD ALGORITHMS

Binary Search

The convexity of the residual function makes it possible to replace the systematic search by a
faster algorithm, based on gradient descent or binary search. In view of the flatness of the curve,
it is considered more robust to use a binary search to find the minimum of the residual function.
The algorithm is very simple: starting from an interval I0 = [µA, µB], the derivative m′(µ) is
evaluated at the points µA and µk = 1

2(µA+µB). The computation ofm′(µ) is done numerically by
evaluating the minimum at µ and µ+ h with h� µ. The objective is to find an interval over which
the sign of the derivative changes. Thus, if m′(µA)m

′(µk) < 0, the interval will be restricted in
the next iteration to Ik = [µA, µk] otherwise to Ik = [µk, µB]. The iteration stops if the size of the
interval becomes smaller than a user-defined threshold. Consequently, four evaluations of m(µ) are
required at each step but, because a solution is expected to be found within a few steps, a substantial
reduction of the number of relative orbit determinations is still achieved compared to the systematic
search. Obviously, a nonlinear least-squares estimation based on an analytical model of the relative
motion is mandatory when evaluating m(µ) to reduce the computational efforts. In order to further
optimize the computational load, the approximate solution for m(µ) provided by Eq. 1 can be used
instead of the nonlinear least-squares estimate. The computational complexity of both methods is
similar to retrieve the least-squares solution. However the nonlinear approach will typically require
several iterations to achieve the convergence while the solution given by Eq. 1 will be faster.

Exploiting the Model of the Residual Curve

The mathematical framework developed Reference 18 may also be used to derive faster analytical
methods. The most obvious approach consists in using Eq. 2 in an iterative way. Starting from an
arbitrary µ1, a value for µ̂ is obtained. This value might not be accurate enough because of the
linearizations and approximations assumed when deriving Eq. 2. Thus, an updated value for the
global minimum can be obtained by starting with µ2 = µ̂. The iterative process stops when the
computed correction drops below a user-defined threshold.

Linear Matrix Method

The third and last approach is not based anymore on the model of the residual curve but takes
advantage from the fact that a quadratic relation had been derived for the measurement equation in
Reference 18. If {ui} corresponds to a given set of n line-of-sight measurements taken at times ti
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and r(ti) represents the relative position vector at the corresponding times, the general expression
for the measurement equation in the absence of measurement noise is:

ui × r(ti) = 0, i ∈ [1, n] . (3)

Following Reference 18, this expression can be approximated as a quadratic expression:

ui ×

Φ1-3,1-6x0 −
1

2R

 1
0
0

xT0 ΦT
2,1-6Φ2,1-6x0

 = 0, i ∈ [1, n] (4)

where x0 is the initial relative state vector at time t0 using a curvilinear Cartesian representation, Φ
is the state transition matrix using the Gim-Alfriend model,19 and R is the radius of the orbit.

This quadratic expression can be solved using the method provided in Reference 20, which con-
sists in creating a 27-dimensional vector χ comprising the state vector x augmented by all the
possible quadratic combinations of its components. If xi denotes the ith component of x, χ can be
written in the form of:

χ =
(
x1 ... x6 x1x1 x1x2 ... x6x6

)T
. (5)

Eq. 4 can be rewritten using this new variable:

a1x1 + ...+ a6x6 + a11x
2
1 + a12x1x2 + a66x

2
6 = 0, i ∈ [1, n] (6)

where ai is a 3-dimensional vector. By accumulating n measurements, a linear system is obtained:

Aχ = 0. (7)

Thus the solution of this linear problem belongs to the null space ofA. If χ̂ is a solution ofA, then
αχ̂ belongs as well to the null space. It is now possible to exploit the fact that the components of χ
are not independent to solve for the scaling factor α. In fact, the 7th component of χ has to be the
square of the 1st component, etc. Thus, a solution to the problem must have the form:

χ =
(
αχ̂1 ... αχ̂6 α2χ̂2

1 α2χ̂1χ̂2 ... α2χ̂6χ̂6

)T
. (8)

Using this formulation, Eq. 7 becomes

αA1−3n,1−6


χ̂1

χ̂1

...
χ̂6

+ α2A1−3n,7−27


χ̂1χ̂1

χ̂1χ̂2

...
χ̂6χ̂6

 = 0 (9)

which can be rewritten in the form:
αq + α2p = 0. (10)

Excluding the trivial solution, α can finally be solved in the least-squares sense with:

α = −p
Tq

pTp
. (11)

Ideally, the null space corresponds to an eigenvalue equal to zero. Reference 20 indicates that,
in the presence of sensor noise, values slightly different from zero might be obtained. Thus, Ref-
erence 20 advises to use a Singular Value Decomposition and to systematically compute 27 values
of α corresponding to the 27 eigenvectors, yielding 27 different solutions. The final solution is
obtained by computing the measurement residuals associated to each solution and retaining the
solution yielding the smallest residuals.
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PERFORMANCE ASSESSEMENT

The flight data from the three scenarios already employed in Reference 18 are used for perfor-
mance assessment. Their main characteristics are quickly recalled here for completeness:

• ARGON 5h: Data set from the ARGON experiment. The Mango satellite (chaser) observes
the Tango spacecraft (target) during 5h (or 3 orbits) using a far-range camera. Both satel-
lites are flying on a Sun-synchronous dawn-dusk near-circular orbit at 750 km altitude. No
maneuver is executed during this time interval. The chaser and target are separated by 30 km.

• ARGON 14h: Same mission but the data set now spans 14 h (April 25th 2012, from 2:00 to
16:00 UTC) and is also free from maneuvers. At that time, the chaser and target are separated
by 23.5 km.

• AVANTI 18h: Data set from the AVANTI experiment. The collection of observations starts on
October 20th, 2016 22:00 UTC when the BIROS satellite (chaser) and BEESAT-4 (target) are
separated by 45 km. The intersatellite distance rapidly decreases during the time interval due
to the large initial relative semi-major axis (80 m). Because of the poor visibility conditions
encountered during AVANTI, 10 minutes of observations are available every orbits. The
formation undergoes in addition a much stronger differential drag due to the lower altitude
and the very different ballistic coefficients of the chaser and target.

The performance of the algorithms is summarized in Table 1. For each scenario, the reference
based on an external independent sensor as well as the solution found in Reference 18 using the time
consuming series of least-squares are recalled to ease the comparison. The binary search method
is performed using the nonlinear least-squares estimation of m(µ) and with the approximate value
of m(µ) obtained using the linear least-squares solution of Eq. 1. Finally, the methods based on
the quadratic modeling of the linear curve and based on the Linear Matrix Method (LMM) are
investigated.

The computational time required by each method is coarsely evaluated on a desktop equipped
with a Core i5 processor and is only intended to provide an order of magnitude. Depending on the
target computer, these values might be be much larger in case of spaceborne embedded application.

Some observations can already be drawn. All methods yield similar solutions for the ARGON
scenarios, except for the LMM which results in a degraded solution in the 5h-long case. The curve
modeling and LMM are two orders of magnitude faster than the series of least-squares, but failed
to find a solution in the AVANTI case. Being based on exactly the same model as the series of
least-squares approach, the nonlinear binary search yields almost identical results but is about one
order of magnitude faster. The linear binary search is even faster but provides a degraded solution
for the AVANTI case.

Obviously, the AVANTI case is more challenging for the IROD methods. With respect to the
ARGON cases, two major differences are affecting this scenario: a large unknown differential drag
which is not taken into account by the models and very sparse measurements. In order to better
isolate the contribution of these effects, two additional scenarios are simulated in the sequel. The
first one consists of the 14h-ARGON case, for which only 10 minutes of measurements per orbit
have been retained to simulate poor visibility conditions. The second one consists of the AVANTI
scenario completed with additional simulated measurements, as if a dusk-dawn orbit was used.
Table 2 summarizes the IROD performance obtained using these simulated cases.

5



Table 1. Performance comparison of the different methods applied to real in-orbit scenarios

Method Solution [m] Time [s]

A
R

G
O

N
5h

Reference [ -21 -29568 -51 -395 -4 295] -
Series of least-squares [-20 -32000 -55 -429 -4 317] 51
Binary search (nonlinear) [ -20 -32100 -55 -429 -5 318] 8
Binary search (linear) [ -20 -32100 -53 -431 -6 325] 3
Curve modeling [-23 -30000 -50 -401 -5 302] 0.6
Linear matrix method [ -26 -24000 -80 -311 -5 240] 0.4

A
R

G
O

N
14

h
Reference [ -131 -23650 -20 -303 -4 247] -
Series of least-squares [ -139 -25000 -21 -315 -5 257] 70
Binary search (nonlinear) [ -139 -24800 -21 -316 -5 258] 10
Binary search (linear) [-138 -24800 -20 -318 -6 263] 7
Curve modeling [ -138 -24700 -20 -316 -6 261] 0.7
Linear matrix method [ -133 -24700 -20 -316 -6 261] 0.6

AV
A

N
T

I1
8h

Reference [ 84 44786 155 609 -8 714] -
Series of least-squares [ 68 39000 137 533 -10 625] 11
Binary search (nonlinear) [65 38000 132 522 -6 604] 2
Binary search (linear) [ 56 31888 113 419 -3 500] 0.3
Curve modeling failed -
Linear matrix method failed -

Table 2. Performance comparison of the different methods applied to simulated scenarios

Method Solution [m] Time [s]

A
R

G
O

N
po

or
vi

si
bi

lit
y Reference [ -131 -23650 -20 -303 -4 247] -

Series of least-squares [ -139 -25000 -19 -320 -5 257] 6.4
Binary search (nonlinear) [ -137 -24800 -19 -319 -5 256] 1.2
Binary search (linear) [-157 -27861 -21 -349 -6 290] 0.2
Curve modeling [ -143 -25617 -19 -326 -6 267] 0.04
Linear matrix failed -

AV
A

N
T

I
fu

ll
vi

si
bi

lit
y Reference [ 84 44786 155 609 -8 714] -

Series of least-squares [ 72 43000 149 589 -7 692] 276
Binary search (nonlinear) [72 42900 149 589 -7 692] 60
Binary search (linear) [77 44473 157 607 -3 704] 40
Curve modeling [77 44200 157 604 -3 701] 8
Linear matrix [86 46400 161 620 -4 730] 1.9

The simulated ARGON case with reduced visibility posed some difficulties to the LMM, and to
a lesser extent, to the linear binary search. Reciprocally, all methods are properly working for the
AVANTI case with full visibility, which tends to indicate that the limited visibility is the main reason
for the degraded performance and failure of some methods rather than the unmodeled differential
drag. There is no obvious explanation for the degraded behavior in case of poor visibility. One
hypothesis is that the linear mapping between mean and osculating elements within the underlying
Gim-Alfriend model introduces some errors, which compensate when observing the full relative
motion but introduce nonrecoverable systematic errors when observing only a small part of the
motion.
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CONCLUSION

Three alternative algorithms for Initial Relative Orbit Determination (Binary Search, Curve Mod-
eling, Linear Matrix) have been developed to reduce the computational load of the numerical method
based on a series of least-squares adjustments. The gain of speed greatly differs between the algo-
rithms. While the Binary Search uses the core principle of the original computationally-heavy
algorithm and thus shows a moderate time improvement (factor 5 to 10), the Curve Modeling and
Linear Matrix Method use directs methods that lead to a dramatic reduction of computational time
(by two orders of magnitude).

The success and performance of the alternative methods is, however, not always guaranteed.
Even if no formal demonstration could be derived at this stage, the probability of failure seems to
be correlated with the visibility of the relative motion and could be due to some deficiencies of the
relative motion and measurement models. Thus, some care has to be taken when utilizing these fast
methods. The binary search based on nonlinear least-squares estimation seems to be for the moment
the best compromise for onboard applications, combining good performance and robustness. Future
work will investigate if the fastest methods can be made more robust by improving the models.
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