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PRECISE LINE-OF-SIGHT MODELLING FOR ANGLES-ONLY
RELATIVE NAVIGATION

G. Gaias∗, J.-S. Ardaens†, and C. Colombo‡

This work presents a precise analytical model to reconstruct the line-of-sight
vector to a target satellite over time, as required by angles-only relative navigation
systems for application to rendezvous missions. The model includes the effects of
the geopotential, featuring: the analytical propagation in the mean relative orbital
elements (up to second-order expansion), the analytical two-way osculating/mean
orbital elements conversion (second-order in J2 and up to a given degree and order
of the geopotential), and a second-order mapping from the perturbed osculating
elements’ set to the local orbital frame. Performances are assessed against the
line-of-sight reconstructed out of the precise GPS-based positioning products of
the PRISMA mission. The line-of-sight modelled over a far-range one day long
scenario can be fitted against the true one presenting residuals of the order of ten
arc-seconds, which is below the typical sensor noise.

INTRODUCTION

Angles-only navigation plays a relevant role to treat the problem of space debris in the Low Earth
Orbit (LEO) region. Regarding active debris removal, as recently shown by the AVANTI (Au-
tonomous Vision Approach Navigation and Target Identification) in-flight demonstration,1 an on-
board autonomous angles-only relative navigation system is a convenient solution to safely approach
a noncooperative flying object till the distance range where the full pose becomes strictly necessary.
As for space situational awareness, spaceborne relative orbit estimation based on angles-only ob-
servations can be exploited by space-based architectures, to complement the existing ground-based
services.2

The relative orbit estimation problem from bearing-only observations is weakly observable. At
practical level, during a rendezvous, few sporadic manoeuvres can be performed to disambiguate the
possible solutions in range. Several theoretical studies focus on the more convenient manoeuvring
strategies to improve angles-only observability.3–6 In-flight demonstrations of such approach are
provided by ARGON (Advanced Rendezvous Demonstration using Global Positioning System and
Optical Navigation)7 and AVANTI,1 where the manoeuvres executed to perform the rendezvous also
supported the convergence of the relative navigation solution. Despite the feasibility of this method,
the unknown manoeuvre execution errors worsen the achievable navigation accuracy. An alterna-
tive approach to improve the observability property of the problem, valid also for manoeuvre-free
arcs, is to consider the non-linearities introduced by perturbations (e.g., through mean to osculat-
ing elements’ transformations for the geopotential) and by the orbit curvature in the modelling of
∗Senior Research Fellow, DAER - Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy.
†Research Engineer, GSOC/Space Flight Technology, Münchener Str. 20, 82234 Wessling, Germany.
‡Associate Professor, DAER - Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy.

1



the measurements.8 For what concerns the ground-based relative orbit determination, to cope with
the limitations of the available dynamical, elements’ conversion, and measurement analytical mod-
els, systems exploiting numerical integration of the relative dynamics, either in Cartesian frame9 or
through the Gauss variational equations,2 have been proposed. Indeed, a fully analytical formula-
tion able to achieve accuracy performances comparable to numerical schemes, would be beneficial
to support onboard navigation systems (e.g., sequential filtering, computationally light batch filter-
ing) and initial relative orbit determination algorithms10.

The proposed analytical line-of-sight modelling is based on three functional components, namely:
the relative mean orbit propagation, the mean/osculating orbital elements’ conversion, and the map-
ping from osculating elements to the moving orbital frame. This methodology is valid also for large
relative orbits in the region where the main perturbation is the non-homogeneous distribution of the
Earth mass (i.e., the typical LEO environment where active debris removal is required in place of
the natural orbit decay). For this reason the proposed methodology could be conveniently used, at
conclusion of the coarse orbit phasing, for the far-range transfer till the final approach.

More in details, the relative motion is propagated analytically in the doubly-averaged Relative
Orbital Elements’ (ROEs) space, through closed-form first-order state transition matrix, including
the secular effects due to J2, J2

2 , J4, and J6,11 and through a second-order state transition tensor,
accounting for the J2 effects. The adopted formulation is valid for whatever eccentricity of the
reference orbit, and outperforms the available ROE-based first-order models.1, 12 At the same time
it improves the Gim-Alfriend13 and Yang et Al.14 relative motion models, either in order a/o in
considered perturbations, while preserving the compact formulation deriving from the parametri-
sation in ROEs. The two-way conversion between osculating and mean orbital elements is carried
out through an analytical and compact algorithm that combines a second-order Lie-based approach
to cancel the J2 effect, to the Kaula’s linear method for the remaining terms of the geopotential.15

Indeed, this improves the overall modelling accuracy by drastically reducing the artificial drift in-
troduced by the transformation errors, regardless the moment of the orbit when the conversion takes
place. Lastly, the non-linear line-of-sight is recovered through a second-order expansion from the
osculating ROE set to the rectilinear Cartesian local orbital frame. This mapping improves other
available algorithms,13, 14 either in order a/o in accuracy performance. Moreover, a compact formu-
lation is proposed exploiting the properties of three-dimensional rotations in the expansion of the
anomalies.

Accuracy results are provided by comparing the modelled line-of-sight against the one recon-
structed out of the GPS-based relative positioning products of the PRISMA mission,16 which took
place in an orbit environment highly representative for future active debris removal missions. Few
data sets have been selected to represent critical conditions for the relative navigation system at
far-range. Such data sets have been used to assess the overall modelling accuracy as well as to
compare the proposed model against available methods from the literature. Results show that the
proposed fully analytical modelling of the line-of-sight presents residuals of few arc-seconds when
fitted against true data sets over an entire day.

After this introduction, a first section presents the modelling framework, with special focus on the
development of the mapping from osculating ROEs into the relative position in the orbital frame.
The following section collects the results of the performed analysis.
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LINE-OF-SIGHT MODELLING

Following the notation of Gaias et Al.,17 the angles-only observations at each instant of time
consist of two angle measurements, i.e. azimuth η and elevation ψ, which subtend the Line-Of-Sight
(LOS) unit-vector to the target satellite expressed in the sensor frame us (as depicted in Figure 1 of
Reference 17):

z(t) =

(
η
ψ

)
=

(
arctan(us

x/u
s
z)

arcsin(us
y)

)
(1)

Neglecting the camera offset, the LOS unit-vector is related to the relative position x between
target and chief satellites in the rectilinear co-moving orbital radial-tangential-normal (RTN) frame
(centred on the chief) by:

us = Rs
RTN

(
xRTN

‖x‖

)
(2)

where Rs
RTN denotes the rotation from RTN to the sensor frame, in this work assumed as:

Rs
RTN =

 0 0 −1
−1 0 0
0 1 0

 (3)

In the following, α = (a, u, ex, ey, i,Ω)T is the set of osculating Keplerian non-singular ele-
ments, with a the semi-major axis, u = ω + M the mean argument of latitude, ω the argument of
the perigee, M the mean anomaly, ex = e cosω and ey = e sinω the x and y components of the
eccentricity vector, and i the inclination. The dimensionless relative state in ROEs δα is defined as:

δα = (δa, δλ, δex, δey, δix, δiy)
T

= (∆a/ac,∆u+ ∆Ω cos ic,∆ex,∆ey,∆i,∆Ω sin ic)
T (4)

where ∆· denotes the difference between quantities of the target and chief c satellites, δλ is called
the relative mean argument of longitude, and the vectors (δex, δey)

T and (δix, δiy)
T are respectively

known as the relative eccentricity and inclination vectors.

The analytical modelling of the angles-only observations z̃ is obtained executing the chain of
actions depicted in Figure 1. This algorithm encompasses three functional components, namely: the
propagation of the relative orbit in the mean space (core part within vertical lines), the conversion
between mean/osculating orbital elements (T2 and T−12 ), and the mapping from osculating ROEs at
time to the relative position x in the RTN frame (T4◦T3).

δᾱ0

↓ Φ, Ψ

z(t) δᾱ(t)

+→ ᾱd(t)
T2−−→ αd(t)

yEME
c (t)

T1◦R−−−→ αc(t)
T−1
2−−→ ᾱc(t) − → δα(t)

T3−−→ ∆œ(t)
T4−−→ xRTN(t) 99K z̃(t)

αc(t)

a) Navigation set-up

b) Guidance set-up

1

Figure 1. Functional view of the LOS modelling algorithm.
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The absolute orbit of the chief satellite is known in the Earth Mean Equator and Equinox of J2000
(EME) reference system. Thus, to obtain the osculating orbital elements (OEs) αc, first the rotation
R from EME to the true of date reference system is performed. Secondly, the Cartesian absolute
state is transformed into the corresponding set of osculating elements through the transformation
T1.

The OEs transformations, T2 for the direct conversion from mean to osculating elements, and T−12

for the inverse one, are performed analytically thought the KA-l×m algorithm of Reference 15. It
combines a Hamiltonian approach applied to the J2 problem to the second-order with Kaula’s linear
perturbation method for the remaining terms of the geopotential, being l and m respectively order
and degree of the geopotential terms accounted in the corrections.

Once in the mean space, the only orbital elements that present a secular variation are are Ω, ω,
and M due to spherical Earth (M ) and to even zonal harmonics only (all). Therefore, the analytical
model of the mean relative motion in ROEs is obtained by performing a Taylor expansion of the
mean chief orbit. By retaining only the first-order term, the state-transition matrix Φ is derived,
including the secular effects due to J2, J2

2 , J4, and J6. By performing the expansion to the second
order, the state-transition tensor Ψ is derived. In this work it accounts for the unperturbed and J2
(to the first-order) terms.

Mapping the ROEs into the RTN frame

The mapping from the osculating ROEs at time to the relative position in the local rectilinear RTN
frame is performed into the following steps. First, the transformation T3 is required to pass from
δα to the set of elements ∆œ = (∆a,∆θ,∆i,∆ex,∆ey,∆Ω)T, where θ is the true argument of
latitude. This is needed since the ROEs are defined using the relative mean argument of longitude
(i.e., a function of M ), whereas the observations are taken on the true osculating orbit. To the
first-order, the transformation T3 is given by:

∆œ =



a 0 0 0 0 0

0
1

λθ
−λex
λθ

−λey
λθ

0 − cos i

sin iλθ
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 0
1

sin i


δα (5)

with:

λθ =
nR

Vt

λex = +
ey

η(1 + η)
+
exVr
ηVt

− η R
p2

(a+R)(ey + sin θ)

λey = − ex
η(1 + η)

+
eyVr
ηVt

+ η
R

p2
(a+R)(ex + cos θ)

(6)

where η =
√

1− e2x − e2y, R is the distance between chief and Earth, p is the semi-latus rectum, n
is the mean motion, and Vr and Vt are respectively the radial and transverse components of the chief
orbital velocity. For small values of the orbit eccentricity, which is the case of active debris removal
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applications a/o of several formation-flying activities in LEO, the true argument of latitude θ can be
computed from M using series expansions in the eccentricity:18

θ = ω +M + 2e sin(M) +
5

4
e2 sin(2M) (7)

In this work only the terms up to e2 are kept.

The transformation T4 first maps the relative state ∆œ at time into the local curvilinear orbital
frame. Afterwards, such quantity is expressed it into the local rectilinear RTN frame. Accordingly,
the first phase of T4 corresponds to the geometric transformation Σ(t) of Gim and Alfriend,13 when
the expansions are carried out to the first-order. Its extension to the second-order, instead, is given
by Yang at Al.14 A compact version of the second-order mapping, moreover generalized to include
the effects of zonal terms higher than J2, is derived here as follows. Note that for the approach
of Figure 1, only the relative position is required, whereas here the complete transformation is
discussed.

The mapping from ∆œ to the relative state (position and velocity) in the local curvilinear orbital
frame is obtained by equating the osculating inertial position and velocity of the deputy satellite
written in the chief-local frame to the expressions derived from a geometric transformation obtained
by expanding the chief inertial position and its direction cosine matrix.13, 14 This latter quantity
defines the orientation of the local orbital frame of the chief C with respect to the inertial one I, and
it is given by the Euler 3-1-3 rotation function of θ, i, and Ω. By defining Λ = RIC , (i.e., the rotation
from C to I), Λ(θ, i,Ω) is a 3-directional rotation ∈ SO3 and from the orthogonality property it
derives that:

ΛT δΛ(1) = [g̃×] =
(
g1 g2 g3

)
(8)

where the notation δ•(1) is used for the first-order expansion in θ, i, and Ω, which is the virtual
variation of Λ. The vector g̃ associated to the skew symmetric matrix [g̃×] (with gi as i-th column),
is given by:

g̃ =

 c̃

b̃
ã

 ã = ∆θ + cos i∆Ω

b̃ = − sin θ∆i+ sin i cos θ∆Ω
c̃ = + cos θ∆i+ sin i sin θ∆Ω

(9)

The second-order expansion of Λ produces the matrix F:

ΛT δΛ(2) = F =
(
f1 f2 f3

)
(10)

Thus, the second-order mapping,14 to deliver the curvilinear relative state (x̆, ˙̆x)T, can be compactly
written as:

x̆ =

 δR(1) + δR(2)

0
0

+
(
R+ δR(1)

)
g1 +R f1

˙̆x =

 δV (1)
r + δV (2)

r

δV
(1)
t + δV

(2)
t

0

+
(
Vr + δV (1)

r

)
g1 +

(
Vt + δV

(1)
t

)
g2 + Vr f1 + Vt f2 + x̆×$

(11)
Here, the terms deriving from the expansion of quantities in the orbital plane are given by:

δ•(1) = ∇ • ·∆œ̃ δ•(2) =
1

2
∆œ̃T · H• ·∆œ̃ (12)
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with ∆œ̃ = (∆a,∆θ,∆ex,∆ey)
T, ∇• the gradient, and H• the Hessian. Whereas, the columns of

F required in Eq. (11) are here explicitly written for components:

f1,1 =
(
+3 + cos(2θ) + 2 cos(2i) sin2 θ

) ∆Ω2

4
+ (−2 cos i∆θ + sin(2θ) sin i∆i)∆Ω

−∆θ2 − sin2 θ∆i2

f1,2 =
1

2
(sin(2θ) sin2 i∆Ω2 − 4 sin2 θ sin i∆Ω∆i− sin(2θ)∆i2)

f1,3 = sin θ sin i(cos i∆Ω + 2∆θ)∆Ω + 2 cos θ∆θ∆i

f2,1 =
1

2
(sin(2θ) sin2 i∆Ω2 + 4 cos2 θ sin i∆Ω∆i− sin(2θ)∆i2)

f2,2 =
(
−3 + cos(2θ)− 2 cos(2i) cos2 θ

) ∆Ω2

4
− (+2 cos i∆θ + sin(2θ) sin i∆i)∆Ω

−∆θ2 − cos2 θ∆i2

f2,3 = cos θ sin i(cos i∆Ω + 2∆θ)∆Ω− 2 sin θ∆θ∆i

(13)

The remaining term $ is the perturbed angular rate of C written in the local frame. Accordingly,
it would be function of Ω̇, θ̇, and i̇, computable from the Lagrange planetary equations subject to
a given disturbing function. Nevertheless, taking into account the osculating orbit constraint (i.e.,
$t = 0), for a conservative system, it simplifies to:

$ =

(
Ω̇ sin i

sin θ
0

√
µ⊕p

R2

)T

(14)

where µ⊕ is the Earth’s gravitational parameter. The expression of Ω̇J2 is provided in Eq. (14) of
Reference 13. The contributions to the radial component of the angular rate due to J3 and J4 are
given by:

$r,J3 = −3J3R
3
⊕n

2a3η9
(1 + ex cos θ + ey sin θ)4(15 cos i sin2 i sin2 θ − 3 cos i)

$r,J4 = −5J4R
4
⊕n

2a4η11
(1 + ex cos θ + ey sin θ)5 cos i sin2 θ(7 sin2 i sin2 θ − 3)

(15)

where R⊕ is the mean Earth’s radius.

The use of a curvilinear local frame allows obtaining a precise result in the along-track direc-
tion,10 and thus it is fairly accurate for large bounded relative orbits.13 Nevertheless, for large
along-track separations, the following correction of the radial components becomes necessary to
account for the curvature of the orbital path:

x = +R− cosϑ(R− ρ)

ẋ = ρ̇ cosϑ+ ϑ̇(R− ρ) sinϑ
(16)

where ρ = x̆, ρ̇ = ˙̆x, ϑ = y̆/R, and ϑ̇ = ˙̆y/R. Equation (16) transforms the curvilinear radial
component into a rectilinear frame. The so obtained relative position x = (x, y̆, z̆)T in RTN is used
in Equations (2) and (1), to produce the modelled observations z̃.
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Note that, in order to overcome the limitation in accuracy of so far available LOS modelling
based on the mapping of an OE-based relative state, the LOS unit-vector was usually computed by
retrieving the absolute state of the target satellite (i.e., applying a T−11 to the osculating αd), by
subtracting to it the absolute state of the chief, and then by rotating the obtained relative state in
the chief-centred RTN frame. This non-linear transformation produces the exact relative state and
therefore will be used to compute the true LOS out of the true states of the satellites. The step T−11

requires the numerical solution of the Kepler’s equation; whereas the RTN frame centred on the
chief is given by Eq. (2) of Reference 9. Examples of exploitation of this non-linear transformation
are provided by the onboard navigation system of the AVANTI experiment19 or by the Algorithm 1
of Reference 2.

For the specific application under study, (i.e., LOS modelling for near-circular relative motion), a
simplified non-linear transformation to deliver only the relative position in the RTN frame is given
by:

x = ΛT
cΛd

 Rd
0
0

−
 Rc

0
0


R =

a(1− e2x − e2y)
1 + ex cos θ + ey sin θ

(17)

where Λ• is the Euler 3-1-3 rotation introduced before, R• is the satellite-Earth distance, and θ
is computed through Eq. (7). This simplified non-linear transformation exploits the fact that the
absolute osculating elementsαc andαd are available in the analytical framework of Figure 1 before
computing δα. In the near-circular far-range cases discussed in the next section, Eq. (17) introduces
an error with respect to the exact non-linear relative state at sub-millimetre level in normal and radial
directions and sub-decimetre level in along-track direction. Accordingly, this output can be regarded
as accurate as the true LOS, and thus, Eq. (17) represents an alternative to the mapping of the ROEs
into x through T4◦T3, when the latter is not accurate enough.

RESULTS

To assess the accuracy of the proposed analytical modelling of the LOS, in this section a compar-
ison is performed against the line-of-sight reconstructed out of the GPS-based relative positioning
products of the PRISMA mission. These products are accurate to the sub-centimetre level,16 and
thus represent the true orbit of the satellites of the PRISMA formation. In addition, given its or-
bital scenario, PRISMA is extremely representative for future missions exploiting LOS navigation
in LEO (e.g., active debris removal missions), considering the weak effect of the differential aero-
dynamic drag.20

Among the available products, these two data sets have been selected:

• 5-Mar-2011, see Figure 2, with 5 hours of drift with large relative semi-major axis (i.e.,
aδa > 500 m);

• 17-Feb-2011, see Figure 3, with 5 hours of bounded relative motion at large relative mean
longitude (i.e., aδλ > 30 km).

In the aforementioned plots the ROEs computed from the precise orbit determination (POD) prod-
ucts are plotted over time. The occurrence of manoeuvres is marked through vertical dashed lines.

7



00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
200

400

600

800

Time
aδ

a 
[m

]

05/03/2011
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

10000

20000

30000

Time

aδ
λ 

[m
]

05/03/2011

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
−400

−200

   0

Time

aδ
e x [

m
]

05/03/2011
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
  0

200

400

600

Time

aδ
e y [

m
]

05/03/2011

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
−20

−10

  0

Time

aδ
i x [

m
]

05/03/2011
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
20

30

40

50

Time

aδ
i y [

m
]

05/03/2011

Figure 2. ROEs (osculating and mean) computed from the PRISMA POD products.
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Figure 3. ROEs (osculating and mean) computed from the PRISMA POD products.

The first analysis regards the accuracy of the proposed mapping T4◦T3, obtained through Equa-
tions (5)-(7) and (11)-(13) and (16). Accordingly the true osculating ROEs are taken as input and

8



the results are assessed in the forms of errors w.r.t. the true LOS. In order to show the improvements
of the proposed method, the following available algorithms are employed for comparison:

• GSOC: the mapping developed at the German Space Operations Center21 and used in the
first prototype of ROE-based angles-only relative navigation filter17 employed in the ARGON
experiment;7

• GA-curv: the first-order Σ transformation of Gim and Alfriend,13 to deliver a relative state
in the curvilinear orbital frame;

• GA-rect: the GA-curv corrected by Eq. (16);

• YLZ: the second-order mapping of Yang et Al.,14 to deliver a relative state in the curvilinear
orbital frame.
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Figure 4. Mapping accuracy comparison in terms of azimuth and elevation errors.

Figure 4 presents the mapping errors in observations: z̃ − z in arc-seconds; whereas Figure 5
presents the mapping errors as difference of the relative position in RTN measured in metres. The
output of the transformation of Eq. (17) is not plotted, since it is basically coincident with the exact
solution, thus it would provide a constant zero error in both figures. Note that, given the sensor
orientation of Eq. (3), the y-axis of the sensor frame is directed as -R, whereas the x-axis to the
-N. By referring to Figures 4 and 5, the accuracy in the normal direction is comparable among the
methods, as shown by eAz and eN. In the along-track T direction, the GSOC mapping achieves a
poor result since it works with the mean orbit (using the osculating mean argument of latitude u);
whereas the remaining methods are all very accurate, thanks to the use of y̆. In the radial direction
the proposed method is much more accurate, thanks to the correction of the orbital curvature. Note
that, for its derivation, the YLZ and T4 are the same in this application (i.e., the relative velocity is
here not used) to the net of Eq. (16). This explains the difference only in radial direction, decreasing
over time for the data set of March 2011 (i.e., large δa case). The GA mappings, instead, suffer
from the lack of the second-order correction (in both data sets aδλ is greater than 10 km) and, for
the curv case, from the lack of the correction of Eq. (16). As a whole, the proposed mapping (in
black in the plots) remarkably outperforms the others relative OE-based mappings, when dealing
with large relative orbits.
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Figure 5. Mapping accuracy comparison in terms of RTN relative position errors.

At the same time all these algorithms that map the ∆œ state into the relative position x introduce
an oscillating error in the normal direction proportional to the size of the maximum displacement.
This can be noted by relating the results of eAz and eN in Figures 4 and 5 to the magnitude of
the relative inclination vector, whose components are shown in Figures 2 and 3. This is due to
how the z̆ is computed, which realizes an approximation of the rectilinear true z. In far-range
rendezvous scenarios, usually the out-of-plane size of the relative orbit is already reduced to≈1 km
(at conclusion of the orbit phasing transfer). In these cases, the maximum azimuth error is less than
the typical noise of available sensors. For example, the camera employed for ARGON and AVANTI
exhibits a line-of-sight noise of about 40 arc-seconds at far-range (corresponding to less than half-a-
pixel).10, 22 On the other hand, in case of very large out-of-plane motions, the analytical non-linear
simplified transformation of Eq. (17) can be used instead of the mapping. This allows basically
removing the error source related to the modelling of the measurements, at the cost of working with
absolute OEs instead of with ROEs, which reduces the geometrical insight in the relative problem.

The second performed analysis concerns the overall accuracy obtainable through the analytical
modelling of the algorithm sketched in Figure 1. In this case, the accuracy results from the perfor-
mances of the OEs conversions (i.e., T2 and T−12 ), of the mean relative orbit propagation (i.e., Φ
and Ψ), and of the just evaluated mapping. In order to complement the overall error budget with
the single error contributions, several models are again considered. By referring to Table 1, M1
is the model adopted in ARGON, though here using a slightly improved first-order relative motion
model. M2 is the framework exploited by the authors to deal with angles-only initial relative orbit
determination in Reference 10, though here applying the correction of Eq. (16) to the GA mapping.
The next two cases are a realization of the current framework. In particular, M3 is the computation-
ally lightest version accounting for only J2; whereas M4 includes geopotential effects up to order-6
degree-6. Finally, M5 is a variation of M3, where the transformation of Eq. (17) is used instead of
the ROE-based mapping T4◦T3. This case has been introduced to isolate the error contribution due
to the analytical propagation from the error introduced by the mapping.
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Table 1. LOS models adopted in the comparative analysis.
Model OEs conversion Relative motion model Mapping Application

M1 J2 1st-order, analytical, [23] J2-only Φ of [1] GSOC [21] [24]
M2 J2 2nd-order, T−1

2 numerical, E-I of [15] J2-only Φ of [1] GA-rect [10]
M3 J2 2nd-order, analytical, KA-2×0 of [15] J2-only Φ and Ψ T4◦T3 this work
M4 J2 2nd-order, analytical, KA-6×6 of [15] J2-J6 Φ, J2-only Ψ T4◦T3 this work
M5 J2 2nd-order, analytical, KA-2×0 of [15] J2-only Φ and Ψ Eq. (17) this work
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Figure 6. LOS modelling comparison in terms of observation errors (left), RTN rela-
tive position errors (right).
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Figure 7. LOS modelling comparison in terms of errors in the osculating ROEs.

By considering the data set of March 2011 (i.e., large δa case), the overall accuracy measured in
errors in azimuth and elevation w.r.t. the true LOS is reported in Figure 6-left. The poor result of
M1 motivated the use for AVANTI of the non-linear LOS reconstruction for the on-board relative
navigation system,19 as well as of the numerical integration for the ground-based precise relative
orbit determination layer.9 The error in elevation for M2 is mainly due to the first-order only map-
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ping. This is more evident by looking at Figure 7, where the osculating ROEs are compared. Since
all models M2-M4 exploit OEs conversion algorithms second-order in J2 (M5 is not mentioned as
it is equivalent to M3 for the propagation), the accuracy at this point is almost the same (see Refer-
ence 15 for more details about the effects of the T2 algorithms). It should be emphasized, however,
that the method of M2 requires numerical iterations for the inverse transformation, whereas M3-M5
are fully analytical. At ROEs propagation level, the improvement brought by employing the KA-
6×6 algorithm instead of KA-2×0 is visible in the accuracy of the aδλ component: a more accurate
value of aδa at the initial time reduces the along-track error over time.15 This can also be noted in
Figure 6-right, sub-plot eT. However, since in KA-6×6 the Kaula-based corrections are performed
only on the semi-major axis component, some residuals oscillations appear in the error in radial
direction. As a matter of fact, the trade-off between M3 and M4 regards the achievable gain in
along-track precision against the increase of computations to carry out the periodic corrections (due
to geopotential terms higher than order-2 degree-0) in the Kaula phase. The results of M5 follow
the trend of the ones of M3, since they employ the same propagation model, with reduced amplitude
of the error oscillations due to the use of Eq. (17). This is more evident from Figure 8, where the
plots refer to the data set of February 2011, given the larger magnitude of the inclination vector
(models M1-M2 are not shown to focus on small error values). Note that being the relative motion
almost bounded, the accuracy gain in along-track using M4 becomes negligible. By referring to the
eR plots of Figures 6 and 8, one can appreciate the effectiveness of the correction of Eq. (16), since
M3 and M5 overlap.
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Figure 8. LOS modelling comparison in terms of observation errors (left), RTN rela-
tive position errors (right).

So far the comparative analysis has been performed taking a fixed initial state at a randomly
chosen initial time. Figure 9, instead, presents the observation residuals obtained when the LOS
modelled through M3 is fitted against the true values from the POD products. For both data sets,
the residuals amount to few arc-seconds over the 5 hours, when the computationally lightest model
is used. Moreover, the residuals in azimuth are almost of the same magnitude, despite the difference
in size of the relative inclination vector for the two data sets.

In relative orbit determination problems, an important aspect is represented by the choice of the
length of the data set to be processed. This is generally related to the trade-off between requirements
from the data editing and errors introduced by the propagation method. Accordingly, a last analysis
is here performed regarding the LOS modelling accuracy over extended manoeuvre-free arcs. To
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Figure 9. Residuals from LOS fitting through model M3.
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Figure 10. ROEs (osculating and mean) computed from the PRISMA POD products.

this end the additional data set depicted in Figure 10 is considered: on that day no manoeuvres were
performed and the orbit drifted to decrease of circa 10 km the along-track separation. By modelling
the LOS through M3-M5 over the whole day, the errors in relative position are given in Figure 11-
left. One can note that, M4 achieves a better result than M3. Though a certain along-track error is
accumulated due to the non-modelled effects acting on the relative dynamics. Despite this, the LOS
fitting based on the computationally lightest propagation option M3, achieves observation residuals
within±5 arc-seconds. This score has the same order of magnitude of the one achieved by M5, and
lies well within the 40 arc-seconds noise threshold of the camera sensor employed at far-range for
ARGON and AVANTI.10, 22
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Figure 11. LOS modelling (left) and LOS fitting (right) via M3 and M5 for the data set of Figure 10.

CONCLUSION

This work presented an analytical model of the line-of-sight between two neighbouring satellites
as required for angles-only relative navigation systems. The methodology is valid for large far-range
relative orbits in the low Earth orbit region. Achievable accuracy and light computational load make
the proposed methodology very convenient for future spaceborne applications.

To the overall error budget contribute: the error in the propagation of the relative motion and
the error in computing the relative state from the orbital elements’ based relative state. The first
contribution is minimized considering at least the J2 effect to the second-order when moving into
the doubly-averaged orbital elements’ space. Afterwards, the propagation of large relative orbits
remains accurate over long time, since the relative motion model includes the first-order state tran-
sition matrix and the second-order state transition tensor. At this stage the error amounts to about 5
arc-seconds in radial and normal direction. The error in along-track direction depends on the size
of the propagation horizon, due to the effects of the so far not modelled non-conservative pertur-
bations on the relative dynamics. The error introduced by the mapping of the osculating relative
orbital elements into the relative position expressed in the local orbital frame depends on the rel-
ative orbit geometry. In-plane components are modelled very precisely thanks to the the inclusion
of the second-order expansion in the orbital elements and to the modelling of the curvature of the
orbital path. The out-of-plane component is affected by an error function of the maximum size of
the normal displacement. For far-range scenarios with relative inclination vector up to 1 km, the
observation residuals, fitted with respect to the true line-of-sight reconstructed from flight data, lie
within a 10 arc-seconds threshold. This figure is way less than the typical noise of camera sensors
employed for relative navigation purposes.

ACKNOWLEDGMENT

The work performed at Politecnico di Milano has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 679086 - COMPASS).

14



REFERENCES
[1] G. Gaias and J.-S. Ardaens, “Flight Demonstration of Autonomous Noncooperative Rendezvous in

Low Earth Orbit,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 6, 2018, pp. 1137–1354.
https://doi.org/10.2514/1.G003239.

[2] J. Sullivan, T. A. Lovell, and S. D’Amico, “Angles-Only Navigation for Autonomous On-Orbit Space
Situational Awareness Applications,” No. 18-468, Snowbird, UT, AAS/AIAA Astrodynamics Specialist
Conference, 2018.

[3] D. C. Woffinden and D. K. Geller, “Observability Criteria for Angles-Only Navigation,” IEEE Transac-
tions on Aerospace and Electronic Systems, Vol. 45, No. 3, 2009, pp. 1194–1208.

[4] D. C. Woffinden and D. K. Geller, “Optimal Orbital Rendezvous Maneuvering for Angles-Only Navi-
gation,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 4, 2009, pp. 1382–1387.

[5] J. Grzymisch and W. Fichter, “Observability Criteria and Unobservable Maneuvers for In-Orbit
Bearings-Only Navigation,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 4, 2014,
pp. 1250–1259. doi: 10.2514/1.62476.

[6] J. Grzymisch and W. Fichter, “Analytic Optimal Observability Maneuvers for In-Orbit Bearings-Only
Rendezvous,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, 2014, pp. 1658–1664. doi:
10.2514/1.G000612.

[7] S. D’Amico, J.-S. Ardaens, G. Gaias, H. Benninghoff, B. Schlepp, and J. L. Jørgensen, “Noncooperative
Rendezvous Using Angles-Only Optical Navigation: System Design and Flight Results,” Journal of
Guidance, Control, and Dynamics, Vol. 36, No. 6, 2013, pp. 1576–1595. doi: 10.2514/1.59236.

[8] J. Sullivan, A. Koenig, and S. DAmico, “Improved Maneuver-Free Approach to Angles-Only Naviga-
tion for Space Rendezvous,” No. 16-530, Napa, California, 26th AAS/AIAA Space Flight Mechanics
Conference, 2016.

[9] J.-S. Ardaens and G. Gaias, “Angles-Only Relative Orbit Determination in Low Earth Orbit,” Advances
in Space Research, Vol. 31, No. 11, 2018, pp. 2740–2760. 10.1016/j.asr.2018.03.016.

[10] J.-S. Ardaens and G. Gaias, “A numerical approach to the problem of angles-only initial relative orbit
determination in low earth orbit,” Advances in Space Research, 2019. doi: 10.1016/j.asr.2019.03.001,
in press.

[11] G. Gaias and C. Colombo, “Semi-Analytical Framework for Precise Relative Motion in Low Earth
Orbits,” 7th International Conference on Astrodynamics Tools and Techniques (ICATT), ESTEC, No-
ordwijk, The Netherlands, European Space Agency, 2018.

[12] A. W. Koenig, T. Guffanti, and S. D’Amico, “New State Transition Matrices for Spacecraft Relative Mo-
tion in Perturbed Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 7, 2017, pp. 1749–
1768. doi: 10.2514/1.G002409.

[13] D.-W. Gim and K. T. Alfriend, “State Transition Matrix of Relative Motion for the Perturbed Noncircu-
lar Reference Orbit,” Journal of Guidance, Control and Dynamics, Vol. 26, No. 6, 2003, pp. 956–971.

[14] Z. Yang, Y.-Z. Luo, and J. Zhang, “Second-Order Analytical Solution of Relative Motion in J2-
Perturbed Elliptic Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 10, 2018,
pp. 2258–2270. doi: 10.2514/1.G003573.

[15] G. Gaias, M. Lara, and C. Colombo, “Accurate Osculating/Mean Orbital Elements Conversions for
Spaceborne Formation Flying,” 27th International Symposium on Space Flight Dynamics (ISSFD),
Melbourne, Australia, Engineers Australia, 2019.

[16] J.-S. Ardaens, S. D’Amico, and O. Montenbruck, “Final Commissioning of the PRISMA GPS Navi-
gation System,” São Jose dos Campos, Brazil, 22st International Symposium on Spaceflight Dynamics,
Brazilian Institute for Space Research, 2011.

[17] G. Gaias, S. D’Amico, and J.-S. Ardaens, “Angles-Only Navigation to a Noncooperative Satellite Using
Relative Orbital Elements,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 2, 2014, pp. 439–
451. doi: 10.2514/1.61494.

[18] R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics Revised Edition. AIAA
Education Series, 1999.

[19] J.-S. Ardaens and G. Gaias, “Flight Demonstration of Spaceborne Real-Time Angles-
Only Navigation to a Noncooperative Target in Low-Earth Orbit,” Acta Astronautica, 2018.
10.1016/j.actaastro.2018.01.044.

[20] G. Gaias, J.-S. Ardaens, and O. Montenbruck, “Model of J2 Perturbed Satellite Relative Motion with
Time-Varying Differential Drag,” Celestial Mechanics and Dynamical Astronomy, Vol. 123, No. 4,
2015, pp. 411–433. doi: 10.1007/s10569-015-9643-2.

[21] S. D’Amico, “Relative Orbital Elements as Integration Constants of Hill’s Equations,” DLR-GSOC TN
05-08, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany, Dec. 2005.

15



[22] J. Jrgensen, T. Denver, M. Betto, P. Jrgensen, H.-P. Rser, R. Sandau, and A. Valenzuela, “The Micro
ASC, a Miniature Star Tracker,” Small Satellites for Earth Observation, 4th International Symposium
of the International Academy of Astronautics, 2003, pp. 157–162.

[23] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems. Reston, Virginia (USA): AIAA
Education Series, 2014.

[24] G. Gaias and S. D’Amico, “Impulsive Maneuvers for Formation Reconfiguration using Relative Orbital
Elements,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, 2015, pp. 1036–1049. doi:
10.2514/1.G000191.

16


	Introduction
	Line-of-Sight Modelling
	Mapping the ROEs into the RTN frame

	Results
	Conclusion
	Acknowledgment

