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Abstract
The transition to electric vehicles is an important strategy for reducing greenhouse gas emissions from
passenger cars.Modelling future pathways helps identify critical drivers anduncertainties.Global
integrated assessmentmodels (IAMs)have beenused extensively to analyse climatemitigationpolicy.
IAMs emphasise technological change processes but are largely silent on important social andbehavioural
dimensions to future technological transitions.Here,we develop anovel conceptual framing and
empirical evidence base on social learningprocesses relevant for vehicle adoption.We then implement
this formulationof social learning in IMAGE, awidely-used global IAM.We apply this newmodelling
approach to analyse how technological learning and social learning interact to influence electric vehicle
transitiondynamics.Wefind that technological learning and social learningprocesses canbemutually
reinforcing. Increased electric vehiclemarket shares can induce technological learningwhich reduces
technology costswhile social learning stimulates diffusion fromearly adopters tomore risk-averse
adopter groups. In thisway, both types of learningprocess interact to stimulate eachother. In the absence
of social learning, however, the perceived risks of electric vehicle adoption among later-adopting groups
remains prohibitively high. In the absence of technological learning, electric vehicles remain relatively
expensive and therefore is only an attractive choice for early adopters. Thisfirst-of-its-kindmodel
formulationof both social and technological learning is a significant contribution to improving the
behavioural realismof global IAMs.Applying this newmodelling approach emphasises the importance of
market heterogeneity, real-world consumer decision-making, and social dynamics aswell as technology
parameters, to understand climatemitigationpotentials.

The transport sector represents one of the fastest
growing sourcesof greenhouse emissions (IPCC2014).
Integrated assessment models (IAMs) have been used
extensively to identify global mitigation strategies to
meet stringent climate targets (Kriegler et al 2014).
IAMs show that transitioning to advanced propulsion
technologies in the transport sector, and in particular
passenger cars, can significantly contribute to reducing
sectoral emissions. Relevant technologies include fuel

cell vehicles, electric vehicles, or biofuels (depending
on feedstocks and conversion processes) (IPCC 2014,
Edelenbosch et al 2016). Improved technology perfor-
mance and reduced production costs are essential to
make new technologies competitive as alternatives to
the internal combustion engine (ICE). In energy
system models and IAMs this required progress in
‘technological learning’ is incorporated through learn-
ing rates describing percentage cost reductions per
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doubling of cumulative production or through exo-
genous technology improvement assumptions.

Empirical studies show that in addition to costs
many other behavioural factors strongly affect vehicle
choice. These factors include aesthetics, performance,
attitude, lifestyle and social norms, which are not well
captured in IAMs (Mundaca et al 2010, Tran et al 2012,
Stephens 2013, McCollum et al 2017). Modelling
behavioural influences on consumer choice is com-
plex. There are a large number of factors that could be
represented and they are not easy to quantify (Stern
et al (2016)). Behavioural factors also tend to be highly
heterogeneous across different consumer groups
(Laitner et al (2000)). The IAMs used for analysing
long-term global response strategies to climate change
have relatively aggregated descriptions of subsystems
like transport to ensure key relationships are transpar-
ent and analytically tractable. Including more detail
such as diverse behavioural features across multiple
consumer groups increases the number of uncertain
assumptions that have to be made. Particularly for
long-term projections, detailed representations of sec-
tors could become less meaningful as uncertainties
increase (Krey 2014).

The lack of formal treatment in IAMs of the beha-
vioural aspects of consumer decision-making has been
criticized (Rosen 2015, Mercure et al (2016)). Faced
with the same set of observable conditions, clearly not
all consumersmake the same decision. In a technology
transition, this is especially important because market
heterogeneity can affect consumer adoption propen-
sities for new vehicle types. Some recent modelling
efforts have explored whether the behavioural realism
of IAMs can be improved, focusing on consumer choi-
ces for light duty vehicles (LDVs). LDVs are of part-
icular interest as they account for approximately half
of current energy consumption in the transport sector
(IPCC 2014). McCollum et al (2018) performed a
multi-IAM study which included heterogeneous con-
sumer preferences for certain non-financial attributes
of vehicles as exogenous scenario assumptions in one
global IAM. They found that sectoral policies explicitly
targeting consumer preferences are required to enable
widespread adoption of alternative fuel vehicles, parti-
cularly among later-adopting consumer groups.

However, this novel approach to modelling con-
sumer heterogeneity in global IAMs omits the dynamic
nature of social learning processes. We use ‘social learn-
ing’ in this context to indicate the change in individuals’
understanding and preferences towards new technolo-
gies as a result of interactions within social networks
(Rogers 2003, Young 2009, Reed et al (2010)). As an
example, early adoptersmoving to a new technology can
impact others’ preferences and decision-making pro-
cesses by changing their perspectives on the status, relia-
bility and safety of a newvehicle (Axsen andKurani 2012,
McShane et al (2012)). Adopters’ preferences are there-
fore dynamic and respond reflexively to changes in the
adoption environment. Pettifor et al (2017) recently

developed a modelling approach for including social
learning effects. They compiled and synthesized empiri-
cal data on risk aversion to new vehicle technologies
among different consumer groups. Following diffusion
of innovations theory (Rogers 2003), they then translated
differing adoption propensities in to a single aggregated
‘risk premium’ which declined as a result of social influ-
ence effects between the heterogeneous adopter groups.
By including these effects in two global IAMs, they could
identify the potential accelerating effect of social influ-
ence on low-carbonvehicle transitions.

In this study we advance on the work of Pettifor
et al (2017) to explore how a dynamic representation
of both social learning and technological learning
influences the long-term transition to battery electric
vehicles (BEVs). We use the term ‘social learning’ to
emphasize the analogy with technological learning as a
process by which costs or barriers are reduced. Both
types of learning effects impact how technologies dif-
fuse, and both are processes that unfold over time.
However, for technological learning as well as for
social learning it is not time per se that decreases per-
ceived risks or costs but rather the experience of others
(social learning) and the experience of manufacturing
and using technologies (technological learning).

Although technological learning is a well-known
process represented inmany global IAMs, social learn-
ing is not. This study is the first attempt to represent
the dynamics of social and technological change in a
single IAM, and to systematically analyse the interac-
tion effects between the two interdependent processes.
Our main contributions are threefold. First, we
demonstrate how heterogeneous consumer pre-
ferences and social learning can be represented in a
realistic yet tractable model formulation that fits the
scope of a global IAM. Second, we shed new light on
how social learning processes compare and interact
with technological learning to affect long-term trans-
ition dynamics and path dependency in the transport
sector. Third, we evaluate whether the combined effect
of these two dynamics lead to new and specific policy
insights for climate changemitigation.

Methods

Consumer heterogeneity, technological learning, social
learning, and policy measures, can all influence vehicle
choice. Figure 1 demonstrates schematically how these
processes are related in the model setup. Increased
market share affects social learning and technological
learning for different adopter groups: Early Adopter
(EA), Early Majority (EM), Late Majority (LM) and
Laggards (LG). In this section, we first introduce the
IMAGE modelling framework before providing further
detail on how social learning, technological learning, and
adopter types are accounted for in the newmodel setup.
We then explain the different scenarios used to compare
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how these various influences affect vehicle transition
dynamics both in isolation and in combination.

IMAGEvehicle choicemodel
The IMAGEmodelling framework represents interac-
tions between natural and human systems in order to
assess global environmental issues related to emis-
sions, energy-use, land-use, climate feedbacks and
policy responses. IMAGE is a simulation model with a
global scope represented by 26 regions and a time
horizon running from 1970 to 2100. Compared to
other IAMs it has a rather detailed representation of
end-use sectors, including transport, and also of the
land-use system (Stehfest et al (2014)).

In the original transport module of IMAGE, vehi-
cle choice is made on the basis of travel cost through a
multinomial logit (MNL) equation (Girod et al
(2012)). The MNL distributes market shares among
different vehicle types in year by year time steps (t)
such that the cheapest vehicle obtains the largest share.
Travel costs across vehicles are compared in $/passen-
ger-km and depend on discounted regional energy
costs, technology investment costs, regional load fac-
tors, and energy efficiency.

In the new model formulation, developed for this
paper, the perceived risk premium for each adopter
group is added to the cost equation and market shares
are calculated for each adopter group. More detailed
descriptions of the IMAGE framework, the transport
module, and the general cost calculation, are provided
in supplementary materials A available online at
stacks.iop.org/ERL/13/124004/mmedia.

The lambda l( ) in the MNL equation determines
how sensitive the model is to cost differences between
different vehicle types (i). A lower lambda leads to less
price sensitivity, which results in a more heterogeneous

vehiclefleet.
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In this study, since market heterogeneity is repre-
sented by the different consumer groups, identified by
Pettifor et al (2017), the lambda is not used to repre-
sentmarket heterogeneity. Instead, the lambda is set to
a high value so that each consumer group selects the
vehicle with the lowest perceived cost.

Technological learning
Technology costs are often found to decrease with
increasing experience of production anduse, a phenom-
enon referred to as learning-by-doing and represented
by a learning or progress curve (McDonald and
Schrattenholzer 2001). Technological learning is com-
monly formulated as a learning rate (LR) which is the
percentage reduction in unit cost for each doubling of
experience represented by cumulative installed capacity
or production. IAMs tend to include technological
learning either by prescribing exogenous assumptions
on cost declines as a function of time (representing a
number of processes that lead to cost reduction) or by
including learning curves directly in the model. There
are different views on the best representation. Endogen-
ous learning curves canbetter emphasize the importance
of experience, but exogenous assumptions can also
represent the role of other factors driving cost reductions
(McDonald and Schrattenholzer 2001, Anandarajah
andMcDowall 2015). The two representations also lead
to different model outcomes as they could lead to a
preference bias either towards delaying action or
towards promoting early learning to reduce future costs
(VanVuuren et al (2004)).

Figure 1. Schematic overview of the dynamic relationship between technological learning, social learning andmarket deployment of
new technologies. Four adopter groups are distinguished: early adopters (EA), earlymajority (EM), latemajority (LM) and laggards
(LG). At a given time point, all four groups face the same technology cost but differentmonetized risk premiums.Net perceived costs
therefore differ per group, with the lowest perceived cost vehicle selected by the cost-minimizing decision algorithm, resulting in
changes tomarket share which in turn stimulates further technological and social learning.
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Vehicle cost assumptions in IMAGE
Base LDV costs and efficiencies in IMAGE are based
on the detailed study by the Argonne National
Laboratory (Plotkin and Singh 2009). This bottom-up
analysis distinguishes between different components
of the vehicle that contribute to total cost, such as the
engine, battery, motor and controllers, and make
projections of cost developments over the coming
decades.

Battery costs are by far the most important differ-
ence between the cost of BEVs and conventional ICEs.
Electrification of the transport sector is strongly
affected by the future development of battery costs
(Edelenbosch et al (2018)). As a result, we focus on
technological learning of battery costs, and distinguish
between exogenous and endogenous learning scenar-
ios. As battery costs in EVs have declined rapidly over
recent years (Nykvist and Nilsson 2015), we have
updated battery costs in IMAGE to reflect recent
developments, starting from a cost estimate of 300
US$ kWh–1 in 2014 in line with the sector’s market
leader (Nykvist and Nilsson 2015). In the exogenous
cost scenario we assume that battery costs could reach
125 $ kWh–1 by 2025 (Faguy 2015), and decline fur-
ther to 100 US$ kWh–1 over the course of the century.
In the endogenous cost scenario we use a learning
rate of 7.5%8 (uncertainty range from 6% to 9%) in
line with estimates from the literature (Nykvist
and Nilsson 2015). We also assume a floor price of
50 $ kWh–1, affecting the purchase cost of plug-in
electric vehicles (PHEVs), BEVs and fuel cell vehicles
(FCVs). As technological learning occurs as a function
of cumulative battery production, deploying BEVs has
a larger learning effect then PHEVs. This effect aside,
there are no further technology cost interactions
between vehicles. More widely-used components of
cars such as the car frame or engine are not assumed to
be influenced by learning after many years of experi-
ence and so follow the same path as in the exogenous
scenario. More detailed descriptions of the LDV costs
and battery cost assumptions are provided in supple-
mentarymaterials B.

Social learning
Social learning about the benefits and risks of new
technologies is central to technology diffusion. In his
seminal work on ‘diffusion of innovations’, Everett
Rogers defines diffusion as the process by which an
innovation is communicated over time among the
members of a social system (Rogers 2003). These
members are heterogeneous in their preferences,
particularly towards risk and uncertainty. Earlier
adopters are risk-tolerant or risk-seeking, preferring
new and relatively untested technologies which offer
novel attributes. Later adopters are risk-averse, prefer-
ring to wait until perceived technology risks are

lowered by observing the experiences of early adop-
ters. Heterogeneous adopters are therefore interde-
pendent, connected through social communication
processes. Although the specific mechanisms of social
learning are diverse—ranging from word of mouth to
visible ‘neighbourhood effects’ and compliance with
social norms—the basic insight that heterogeneous
consumers exchange information through social net-
works (Rogers 2003) has been repeatedly confirmed
both in general terms (e.g. (Peres et al 2010, McShane
et al 2012)) and in studies specific to vehicle choice
(e.g. Grinblatt et al (2008), Axsen andKurani (2012)).

Modelling risk premiums and social influence
Rogers (2003) distinguishes consumer segments along
a normal distribution of adoption propensities. Early
adopters (EA) have high initial adoption propensities
and so high risk tolerance; early majority (EM), late
majority (LM) and laggards (LG) are increasingly risk
averse and have low initial adoption propensities.
Based on this conceptualisation, Pettifor et al (2017)
calculate initial risk premiums as a measure of adop-
tion propensity for each of the four different adopter
groups. Their risk premium estimates are based on
discrete choice experiments which provide willingness
to pay (WTP) estimates for new technologies, such as
BEVs, for which limited market data is available.
Pettifor et al (2017) use a normal distribution of WTP
point estimates from discrete choice studies to calcu-
late a mean risk premium x RP( ) with associated
standard deviation RPs( ) for different adopter
groups. Negative initial RPs indicate attraction to new
technologies (risk-seeking) and high positive initial
RPs indicate aversion to new technologies (risk-
aversion). FollowingRogers (2003), the early adopters9

occupy a 16%market share; the earlymajority and late
majority both account for 34% of the market; and the
laggards the final 16%.

Pettifor et al (2017) also use a meta-analysis of 21
empirical studies to measure the effect of social influ-
ence on vehicle purchase propensities. They find that
for every one standard deviation increase in market
share, risk premiums (RPs) decrease by 0.241 standard
deviations which increases vehicle adoption propen-
sities (95% CI [0. 157, 0. 322], Z=5. 505, |p|<0.
000). In other words RPs decline as market share
grows, using market share as a proxy for social influ-
ence. In the vehicle choice model of IMAGE the risk
premiums (in $/passenger-km) for each consumer
group have been added to the travel cost. More details
on the empirical analysis and the implementation in
IMAGE are provided in supplementary materials C, D
and E.

8
Learning rate equals the cost reduction for doubling in cumulative

production.

9
Our Early Adopter (EA) group contains the both the early adopters

and innovators described by Rogers (2003).
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Scenario framework
We use a set of 18 scenarios to explore the effects of
social and technological learning, and how they
dynamically interact (table 1). In the reference sce-
nario (labelled ‘Ref’), technology costs decline exogen-
ously over time and risk premiums are frozen for the
four adopter groups. In the technological learning
scenario (labelled ‘TL’), risk premiums are also frozen,
but technology cost reductions occur endogenously
based on a learning curve. In the reference+social
learning scenario (labelled ‘Ref+SL’), social learning
is included but with exogenous technology cost
assumptions. Finally, in the technological and social
learning scenario (labelled ‘TL+SL’), both technolo-
gical learning and social learning occur endogenously.

The three learning scenarios (in table 1, no. 2–4)
are tested with andwithout climate policy. The latter is
implemented in the form of an economy-wide carbon
price. This is a standard approach for representing cli-
mate policy in IAMs (and should be interpreted as a
generic placeholder for other forms of policy inducing
emission reductions). Three carbon tax scenarios are
compared: (1) a global carbon tax of 40 $/tCO2

10 in
2020, increasing gradually at 3% per year (labelled
‘Ctax exp’); (2) a constant global carbon tax of 130
$/tCO2, i.e. the value that tax path 1 reaches in 2060
(labelled ‘Ctax cons’); (3) a global carbon tax peak
from 2020 to 2040 of 273 $/tCO2 returning to a con-
stant of 72 $/tCO2 in 2040, the same value that tax
path 1 reaches in 2040 (labelled ‘Ctax peak’). These
carbon tax scenarios are selected to be comparable
with an important diagnostic study of how IAMs
behave in response to future carbon taxes of different
stringencies (Kriegler et al (2015)). A visualisation of

the carbon tax scenarios is provided in supplementary
materials F.

In addition to these economy-wide climate poli-
cies, we include an additional set of scenarios (labelled
‘Sub’) with a stylized representation of sectoral policy
in the form of purchase subsidies targeted at specific
consumer groups. Subsidies of 4000$ for EVs and
2000$ for PHEVs are available between 2020 and 2040.
By way of comparison, currently available purchase
rebates in Germany are worth approximately 4400$
for BEVs and 3300$ for PHEVs . Other countries such
as Japan, France, Norway and the United Kingdom
have higher BEV purchase subsidies. Although sub-
sidies may not persist over long timeframes, and tar-
geting subsidies at specific consumer groups may be
problematic, our subsidy scenarios are designed to
provide useful insights on the role of sectoral policies
in the projected vehicle transition dynamics.

Results

Technological learning scenarios
Figure 2 depicts market shares of the global vehicle
fleet under endogenous and exogenous technological
learning assumptions in the absence of social learning.
In the TL (technological learning) scenario, the early
adopter group shifts to PHEVs in the first half of the
century given their preference for new technologies
(represented by a negative risk premium which
remains constant as there is no social learning).
Although early adopters are also attracted to BEVs, this
new technology remains too expensive through the
first half of the century (figure 2 right panel). The
deployment of PHEVs leads to reduction of both
PHEV and BEV costs through technological learning
in battery costs (figure 2 left panel). In the Ref
(reference) scenario, BEV costs are projected to reduce

Table 1. Scenario frameworkwith varying assumptions of the fourmain elements affecting vehicle transitions.

NR Scenario Technological learning Social learning Heterogeneity Policy

1 Ref Exogenous RPs remain at 2010 level Explicit None

2 TL Endogenous RPs remain at 2010 level Explicit None

3 Ref+SL Exogenous Endogenous Explicit None

4 TL+SL Endogenous Endogenous Explicit None

5 TLCtax exp Endogenous RPs remain at 2010 level Explicit Tax 1

6 Ref+SLCtax exp Exogenous Endogenous Explicit Tax 1

7 TL+SLCtax exp Endogenous Endogenous Explicit Tax 1

8 TLCtax cons Endogenous RPs remain at 2010 level Explicit Tax 2

9 Ref+SLCtax cons Exogenous Endogenous Explicit Tax 2

10 TL+SLCtax cons Endogenous Endogenous Explicit Tax 2

11 TLCtax peak Endogenous RPs remain at 2010 level Explicit Tax 3

12 Ref+SLCtax peak Exogenous Endogenous Explicit Tax 3

13 TL+SLCtax peak Endogenous Endogenous Explicit Tax 3

14 Sub 1 Endogenous Endogenous Explicit Subsidy for EA

15 Sub 2 Endogenous Endogenous Explicit Subsidy for EM

16 Sub 3 Endogenous Endogenous Explicit Subsidy for LM

17 Sub 4 Endogenous Endogenous Explicit Subsidy for LG

18 SubAll Endogenous Endogenous Explicit Subsidy for all groups

10
40$/tCO2 is the value proposed recently by the Climate Leader-

ship Council. Baker et al (2017). The conservative case for carbon
dividends.Washington, Climate Leadership Council.
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rapidly in this period as well, based on exogenous
assumptions. Once a certain BEV cost threshold has
been passed, depending heavily on the learning rate
(indicated by the TL range), early adopters shift from
PHEVs to BEVs. This shift leads to faster BEV cost
reductions (figure 2 left panel). Under high learning
rate assumptions the early majority group also adopt
BEVs by the end of the century, by which point a small
group of early adopters move on to FCVs which have
becomemore cost competitive.

The early adopter group and technological learning
play an important role in this initial phase of a technol-
ogy transition. With slower learning rates, BEVs remain
relatively expensive and EV adoption might not take
place at all. Even though the technology is competitive in
terms of costs, if risk premiums remain at current levels
purchasing a BEV is not an attractive option for the early
majority, latemajority and laggards.

Social learning and technological learning scenarios
In the SL (social learning) scenarios, the market
deployment of BEVs drives down the risk premiums
of the early majority, late majority and laggards
whereas for early adopters the reduced novelty of BEVs
makes them less attractive as risk premiums become
less negative. Figure 3 shows how the BEV risk
premiums change over time for all four adopter
groups in theRef+SL andTL+SL scenarios.

The effect of social learning can be seen in the diffu-
sion of BEVs from early adopters to the early majority
(figure 3 top right panel, compared to the reference sce-
nario). The risk decline leads to higher BEV deployment
which again leads to more risk decline (social learning).
As BEVs become mainstream, early adopters become

more attracted to distinctive alternatives, such as FCVs
(seen previously in figure 2). Similarly, PHEVs become
less attractive to early adopters which leads to an increase
in the BEV share in thefirst half of the century compared
to those scenarios where social influence is not repre-
sented. The Ref+SL scenario range shows that social
influence effect size has little impact on the initial phase
of the transition, but does significantly affect the speed of
diffusion fromearly adopters toother groups.

The lower right panel of figure 3 shows how the
combined effect of technological and social learning
leads to a faster technology transition and higher market
penetration under assumptions of average learning rates
and social influence effects. There are different phases
during the technology transition in this scenario. First
PHEV use by early adopters leads to battery learning
reducing BEV costs. The early adopters then shift to
BEVs which results in increased technological learning
and risk decline for the other adopter groups. The early
majority starts to adopt BEVs enlarging both types of
learning effect. Technological learning has occurred fas-
ter in the beginning and now starts to level off. Risk pre-
miums continue to decrease for the late majority and
laggards. But additional policy is still needed to overcome
the risk premium barrier for these groups. Clearly, these
results are highly dependent on the social influence effect
size and the learning rate, indicated by the colored area.
Further details on market shares of the different vehicle
technologies for each adopter group in the scenarios
without policy assumptions are provided in supplemen-
tarymaterialsG.

The different carbon tax scenarios show that once
the transition is put in motion, climate policy and
learning processes reinforce the transition dynamic.
Notably, in the TL+SL scenario a carbon tax is more

Figure 2.Battery electric vehicle (BEV) cost over time in the Ref andTL scenarios (left panel), with resulting BEV, plug-in electric
vehicle (PHEV), fuel cell vehicle (FCV), and internal combustion engine (ICE)market shares of the global vehiclefleet (middle and
right panels). Shaded colors indicate the scenario range depending on assumed technological learning rates.
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effective (in terms ofmarket share increase) than in the
TL or Ref+SL scenario. In the TL+SL scenario,
market share jumps 30%–50% in a period of 10 years
in response to the peak carbon tax. The other two car-
bon tax scenarios, without both technological and
social learning, show a much more limited response.
However this result strongly depends on learning rates
and the social influence effect size, indicated by the
colored area.

Only under the stimulus of a very high carbon tax
(the exponentially-increasing ‘Ctax exp’ scenario)
does the late majority group also transition to BEVs
(see figure 4). In the scenarios, deployment among the
earlier adopter and early majority groups does not
trigger a full transition (see figure 3). Further details on
the adopter groups shares are provided in supplemen-
tarymaterials G.

This is also demonstrated by the sectoral policy
scenarios with targeted subsidies (figure 5) which
show that although there is some feedback between
early adopters and early majority groups, the risk pre-
miums of the late adopter groups are still prohibitively
high even if technology costs have become competi-
tive. There are various possible explanations for this.
First, other processes than social influence, like for
example improved electric vehicle charging infra-
structure, might help reduce risk premiums, therefore
our approach which only uses social influence to
reduce risk premiums is conservative. Second, reduc-
tion rates in initial risk premiums are the same across
adopter groups whereas the risk premium decline as a

result of increased market share could be larger in the
later adopter groups which perceive high risks. Third,
the social influence effect size is constant, but in reality
it may strengthen as social communication around a
new technology intensifies. All these explanations
could result in quicker transition dynamics, as well as
reaching a full transition, and bear further empirical
andmodelling analysis.

In general, the scenarios in which subsidies are tar-
geted at individual adopter groups lead to increased
market penetration of BEVs (figure 5 panel ‘Compar-
ison with no sub’), except the scenario where the lag-
gards are targeted, which are unresponsive (figure 5
panel Sub 4). The scenarios also show that targeting
specific adopter groups can affect the time profile of
adoption. Providing subsidies to the early majority
results in the quickest increase in market share in the
short term. Compared to the different carbon tax sce-
nario’s, providing subsidies to all adopter groups (the
Sub All scenario) leads to a faster increase in market
share. Although maintaining purchase subsidies
throughout the century is not a realistic policy option,
our analysis shows that equivalent support might be
needed in order to overcome transition barriers for
certain adopter groups.

The importance of social learning and technologi-
cal learning during the different phases of the technol-
ogy transition—with technological learning affecting
the initial phase, and social learning affecting further
diffusion—can be traced back to their equational
forms. The social influence effect equals the reduction

Figure 3.Risk premiums towards BEVs for the early adopter, earlymajority, latemajority and laggards in scenarios with social
learning (SL) including thosewith an exponential carbon tax (Ctax exp) (left andmiddle panels), and resultingmarket shares of the
global vehiclefleet for BEVs (right panel). Shaded colors indicate the scenario range depending on technology learning rates and social
influence effect size.
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Figure 4.Market shares of BEVs in the global vehiclefleet for the constant (top row), peak (middle row) and exponential carbon tax
(bottom row) scenarios. Shaded colors indicate the scenario range depending on technology learning rates and social influence
effect size.

Figure 5.Market shares of the global BEV vehiclefleet in the TL+SL scenariowithout any formof policy (top left panel) compared to
scenarios with subsidies for PHEVs and EVs targeted specifically at the early adopter (EA), earlymajority (EM), latemajority (LM) and
laggards (LG) adopter groups shown in panels Sub1, Sub2, Sub3 and Sub4, respectively. In the SubAll scenario (bottom right panel) all
adopter groups receive the subsidy.
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in risk premium after an increase in market share,
whereas the technological learning rate equals the cost
reduction per doubling of cumulative battery produc-
tion in EV application. Given the exponential form of
the learning rate equation with its floor price to limit
ever-falling costs, the fastest learning happens in the
initial deployment phase. In contrast, social influence
has a linear relationshipwith deployment11.

Conclusions and discussion

IAMs show that technology plays a crucial role in
reducing greenhouse gas emissions across regions and
sectors (Krey et al 2014, Kriegler et al 2014) and in
determining the cost and feasibility of meeting speci-
fied climate targets (Bosetti et al 2015). Important
aspects of technology transitions such as heterogeneity
in consumer preferences and social learning are often
omitted from IAM analysis. The aims of this paper
were to demonstrate how technological and social
learning can be explicitly represented in a global IAM,
and to understand how interactions between these two
processes influence the dynamics of a technology
transition, using LDVs as an example. This research
makes a first attempt is made to bridge social science
concepts to more technology oriented modelling of
technology transition. Similar approaches could be
used to model other technology transitions in which
heterogeneous preferences and social influence play
an important role. Although our paper focusses on
consumer heterogeneity there are other important
heterogeneous aspects of the vehicle market, such as
vehicle size, price and usage that are not explicitly
accounted for. Other contextual or cultural factors
affecting behaviour might also play important roles,
but these too lie beyond the scope of our study.
Keeping these limitations in mind, we come to the
following conclusions based on our analysis.

Technological learning and social learning can be
successfully represented in a LDV choicemodel
within an IAM framework
While both processes impact vehicle choice in
expected ways, their interaction is interesting and
revealing. Our new modelling approach demonstrates
the different phases of a technology transition and its
relevant dynamics. It shows howniche or early adopter
groups can drive technology innovation by stimulating
market demand. The adoption of alternative technol-
ogies that are still relatively expensive by these groups
plays an important role in further technology develop-
ment during the learning phase. Recent sales of luxury
BEVs that are in higher vehicle price ranges and
contemporaneous rapid reductions of battery costs is
an example of this dynamic (Nykvist andNilsson 2015,

EV-volumes 2018). Moreover, the deployment of
alternative technologies by early adopters could also
reduce behavioural barriers perceived by other con-
sumer groups.

BEVs can reach a largermarket share if
technological learning and social learning processes
work tomutually reinforce each other
Through social learning and technological learning
new technologies can become more attractive to
consumers. Generally speaking, technological learning
affects the timing of adoption by early adopters
whereas social learning affects diffusion to other
adopter groups. The two learning processes can
stimulate each other in a positive feedback loop. Policy
incentives stimulating EV deployment, such as a
carbon tax or dedicated transport sector policies, can
spark positive learning feedbacks. However, the size of
this effect depends strongly on the assumed technolo-
gical learning rate and social influence effect sizewhich
are key future uncertainties.

Risk premiums of later adopters remain a barrier to
a full transition
The targeted policy and carbon tax scenarios show that
although there is some feedback between early adop-
ters and earlymajority groups, the risk premiumof the
other adopter groups are too high to adopt even if
technology costs have become competitive. One key
question is whether these risk premiums will reduce
further over time either through strengthening social
influence effects or alternative policies that help reduce
this perceived barrier. Currently available empirical
data suggests that even if technology costs come down,
adoption barriers could be an important limitation in
implementing electric vehicles beyond the first two
adopter groups. This is an important area for further
research.
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