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Key Points:  9 

 Fast channels in 3D pore-scale flow fields are identified as connected regions of the pore 10 
space where velocity outliers are found. 11 

 The topology of the network of pore bodies and throats forming the pore space drives 12 
spatial distributions of fast channels. 13 

 Fast channel size decreases as the Reynolds number increases and is related to the 14 
strength of preferential flow and anomalous transport. 15 

 16 
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Abstract  20 

We quantify flow channeling at the micro scale in three-dimensional porous media. The 21 
study is motivated by the recognition that heterogeneity and connectivity of porous media are key 22 
drivers of channeling. While efforts in the characterization of this phenomenon mostly address 23 
processes at the continuum scale, it is recognized that pore-scale preferential flow may affect the 24 
behavior at larger scales. We consider synthetically-generated pore structures and rely on 25 
geometrical/topological features of sub-regions of the pore space where clusters of velocity 26 
outliers are found. We relate quantitatively the size of such fast-channels, formed by pore bodies 27 
and pore throats, to key indicators of preferential flow and anomalous transport. Pore-space spatial 28 
correlation provides information beyond just pore size distribution and drives the occurrence of 29 
these velocity structures. The latter occupy a larger fraction of the pore-space volume in pore 30 
throats than in pore bodies and shrink with increasing flow Reynolds number. 31 

Plain Language Summary 32 

The movement of fluids and dissolved chemicals through porous media is massively 33 
affected by the heterogeneous nature of these systems. The presence of "fast channels", i.e., 34 
preferential flow paths characterized by large velocities persisting over long distances, gives rise 35 
to very short solute travel times, with key implications in, e.g., environmental risk assessment. 36 
While efforts in the characterization of this phenomenon mostly address processes at the 37 
continuum (laboratory or field) scale, it is recognized that pore-scale channeling of flow may affect 38 
the system behavior at larger scales. Here, we provide criteria for the identification of fast channels 39 
at the pore scale, addressing feedback between channeling and geometrical/topological features of 40 
the investigated porous structures. Our results clearly evidence the major role of well-defined 41 
regions in the pore space, termed pore throats, in driving flow channeling. We also find that the 42 
strength of channeling is controlled by the characteristic Reynolds number of the flow field. 43 

1. Introduction 44 

Predictions of flow and transport processes in porous media are critically affected by the 45 
heterogeneous nature of pore spaces, intrinsically characterized by irregular geometrical features 46 
and properties that can vary widely across multiple spatial scales (Neuman, 2008; Neuman & Di 47 
Federico, 2003; Zami-Pierre et al., 2016). Notably, flow and transport phenomena are affected not 48 
only by the degree of heterogeneity of the medium, but also by the spatial arrangement of its 49 
hydraulic properties, a prominent role being played by connectivity (Knudby & Carrera, 2005). 50 
While being seen as quite intuitive, the concept of connectivity is still lacking a formal and 51 
unambiguous definition. It can be regarded as a measure of the presence of preferential flow paths 52 
(or fast channels) across which flow tends to focus and be associated with high velocity values. 53 
Understanding the mechanisms driving flow to concentrate in high-velocity channels is key for 54 
proper prediction of first arrival times of dissolved chemicals at critical targets (Nissan & 55 
Berkowitz, 2018; Tartakovsky & Neuman, 2008; Zinn & Harvey, 2003) and the characterization 56 
of multiphase flow processes (Dai & Santamarina, 2013; Jiménez-Martínez et al., 2015), with 57 
direct implications in several settings, including, e.g., environmental risk assessment or enhanced 58 
oil recovery. Channeling may occur under diverse conditions and on a wide range of spatial scales, 59 
and is always characterized by two major features: (i) high velocity values persisting over long 60 
distances; and (ii) flow focused within a few regions (principal paths) of the pore space (Hyman 61 
et al., 2012; Le Goc et al., 2010). Metrics suggested to quantify connectivity (Renard & Allard, 62 
2013) are typically related to scenarios at the continuum (Darcy or field) scale and rely on the 63 



 

identification of connected paths of hydraulic properties (Dell’Arciprete et al., 2014; Le Goc et al., 64 
2010) or of high-velocity patterns along flow trajectories (Fiori & Jankovic, 2012). While some 65 
indication about the level of channeling at the Darcy scale can be gained by the correlation length 66 
of permeabilities, this is not the case at the pore scale. Characterization of channeling for two-67 
dimensional geometries is presented in Alim et al. (2017) relying on the pore network method, and 68 
in Nissan & Berkowitz (2018) solving Navier-Stokes equations for given pore geometries. Time 69 
evolution of the statistics of experimental observations of Lagrangian velocities in three-70 
dimensional porous samples are analyzed in Carrel et al. (2018) to evaluate the effect of 71 
progressive biofilm growth on flow channeling.  72 

In this Letter we propose a procedure to characterize quantitatively channeling phenomena 73 
at the pore level for three-dimensional voxelized geometries. This is achieved by (i) mapping the 74 
(continuous) velocity field into a categorical variable and (ii) studying geometrical and topological 75 
properties of the sub-regions of pore space associated with a given velocity class. The effectiveness 76 
of the approach proposed here is supported by the observation that our criteria lead to the 77 
quantification of a degree of channeling that is consistent with the magnitude of effects that 78 
channeling can have on flow and transport patterns documented at the continuum scale, resulting 79 
in preferential flow and anomalous transport (Bijeljic et al., 2011; De Anna et al., 2013; Kang et 80 
al., 2014 and reference therein). 81 

2. Materials and Methods 82 

2.1 Synthetic pore structure generation 83 

Let   [-] be a (dimensionless) measure of channeling. The latter can be related to main 84 

governing quantities through the following functional form 85 

 , , , , , pdf Rf V L     (1) 86 

where   [M L-3] and   [M L-1 T-1] are fluid density and viscosity, respectively, V [L T-1] is a 87 

characteristic velocity, L  [L] represents the length size of (porous) domain,   [-] is the sample 88 

porosity, and pdfR  is the probability density function of the pore size, R [L]. We study   on 89 

synthetically-generated, isotropic three-dimensional pore structures obtained on regular cubic 90 
grids from the convolution of a uniform distribution on [0,1] with a symmetric Gaussian kernel of 91 

width   (Hyman & Winter, 2014). A binary image is obtained by allocating each cell of the grid 92 

either to the pore space or to the solid matrix, according to a level threshold  0,1   applied to 93 

the generated random field. Let pore  be the subset of grid cells that are associated with the pore 94 

space. Two cells in pore , identified by the coordinates of their centers (
Ax  and 

Bx ), are said to 95 

be connected if there exists a sequence of neighboring cells (i.e., of cells sharing a face) completely 96 

included in pore  and linking 
Ax  to 

Bx . A group of connected cells is termed a cluster. For all 97 

blocks considered, the generation algorithm renders pore spaces exhibiting one dominant cluster. 98 

The final pore structures are obtained by removing all cells in pore  that are not connected to the 99 

main cluster. It can be shown (Siena et al., 2014) that the two generation parameters,   and  , 100 

control porosity,  , and mean pore size, R , of the sample, respectively. The spatial correlation 101 

of the void space depends on both   and  . A key feature of the selected generator is that it allows 102 



 

reproducing sample pdfR  displaying exponential positive tails, the latter being consistently 103 

observed in samples of real porous systems (Holzner et al., 2015; Lindquist et al., 2000). Assuming 104 

that pdfR  can be approximated by an exponential distribution, equation (1) can be written in 105 

dimensionless form as 106 

Re, ,
R

f
L

 
 

  
 

 (2) 107 

Re V R   being the flow Reynolds number. In this Letter, we aim at assessing the impact of 108 

Re and R L, on the channeling metric  . 109 

We generate three sets of cubic blocks, hereafter termed as set 1, 2, and 3, each comprising 110 
a collection of 10 realizations. We set L = 1.28 cm, a voxel number N = 1283 (i.e., voxel size 111 

100 mdl   ), 0.45   (which provided const = 0.4  ) and we vary   as 0.01, 0.03 or 0.05, 112 

for set 1, 2, and 3, respectively. Figures 1a-1c depict cross-sectional contours of the inner structure 113 
of a representative block, termed as B1, B2 and B3, from each of these sets. 114 

2.2 Synthetic pore structure topology 115 

Geometrical and topological properties of the synthetic pore structures are inferred through 116 
a maximal ball (MB) algorithm. Amongst all spheres that are subsets of the pore space volume, 117 
MBs are those that are not fully contained in any other sphere. The pore-space skeleton can hence 118 
be identified as the set of points in the pore space that are centers of a MB (Silin & Patzek, 2006). 119 
The size R of a pore is then evaluated at each point of the pore-space skeleton as the radius of the 120 
largest sphere inscribed in the void space, measured by means of an inflating-deflating algorithm 121 

(Dong & Blunt, 2009). The (dimensionless) mean pore sizes, R L , of the three blocks depicted 122 

in Figures 1a-1c are 0.012, 0.036, and 0.050, respectively for B1, B2, and B3 (with averages of 123 
0.011, 0.032, and 0.047 across block sets 1, 2, and 3). The MB algorithm also allows classifying 124 
each sphere according to a given type of topological element, i.e., pore body (PB) or pore throat 125 
(PT) (Dong & Blunt, 2009). Following this approach, each voxel in the void space is associated 126 
with a given pore size, R, and with the corresponding topological class. 127 

2.3 Flow simulations 128 

We perform direct numerical simulations of steady-state, single-phase, fully-saturated flow 129 
throughout the pore space of the generated blocks. We rely on the widely tested software GeoDict 130 
(Math2Market GmbH) by setting (i) the mean velocity, V, at the inlet, z = 0, (ii) a constant pressure 131 
at the outlet, z = L, and (iii) impermeable lateral boundaries. GeoDict implements a finite volume 132 
scheme to solve the Navier-Stokes equations, combining a SIMPLE algorithm with a Fast Fourier 133 
Transform approach to speed up the solution of the Poisson equation for pressure. Values of V at 134 
the inlet are set to obtain two diverse values of the Reynolds number for each block, i.e., Re = 0.1, 135 
10. Within this range of Re, Nissan & Berkowitz (2018) documented a transition from linear 136 
(Darcy) flow to nonlinear behavior in two-dimensional porous media. 137 



 

3. Results and discussion 138 

3.1 Velocity clusters 139 

For ease of illustration, we focus here on results obtained in B1, B2 and B3. Outcomes of 140 
similar quality are obtained for all of the blocks generated. 141 

Histograms and box plots of (normalized) computed velocities, Nv V v , v  being the 142 

norm of the local velocity vector v, obtained in B1, B2 and B3 are depicted in Figures 1d, 1e and 1f, 143 
respectively, for Re = 0.1 and in Figures 1g, 1h and 1i for Re = 10. All plots are indicative of a 144 
common behavior of the computed velocity distributions, which are markedly right skewed, i.e., 145 
skewed toward large values, for Re = 0.1. An increase of Re causes the extent of the support of the 146 

sample pdf of Nv  to decrease, resulting in a more homogeneous flow field, a feature also observed 147 

by Nissan & Berkowitz (2018). These results are complemented by Figures S1 and S2 in the 148 

supporting information, depicting histograms of Nv  values sampled in PBs and PTs. 149 

We quantify channeling by introducing a categorical variable, i = 1,…, 5. The latter is 150 

assigned to each voxel of the pore-space volume, pore , according to: i = 1 if 10 Nv Q  ; i = 2 if 151 

1 2NQ v Q  ; i = 3 if 2 3NQ v Q  ; i = 4 if  3 3 1.5NQ v Q IQR   ; and i = 5 if 152 

 3 1.5Nv Q IQR  , where IQR = Q3 – Q1 is the interquartile range, 1Q , 2Q , and 3Q  respectively 153 

denoting the quartiles of the ranked set of Nv  values. Note that, according to Tukey (1977), all 154 

values of a distribution which are larger than Q3 + 1.5 IQR are regarded as mild outliers. The sub-155 

region of the pore space occupied by the categorical variable i is denoted as i . The study of 156 

clusters within i  is aimed at identifying objects displaying the main features of channeling (i.e., 157 

large velocities which persist over long distances and are concentrated along only a few pathways) 158 

that are then used for a quantitative evaluation of these phenomena. We note that i  becomes less 159 

fragmented (i.e., the total number of distinct clusters forming i  decreases) as i increases, for all 160 

media and for both values of Re considered (see Tables S1 and S2 in the supporting information). 161 
The mean cluster size shows a maximum for i = 4, a class which essentially contains one dominant 162 
cluster. 163 

The connectivity function,  j
i h , of category i = 1, …, 5, along direction j ={x, y, z}, 164 

represents the probability that two cells in the same category and separated by a given distance are 165 

connected. According to Renard & Allard (2013),  j
i h  can be computed as: 166 

   
 

, ,

, ,

A B A i B i A B jj
i

A i B i A B j

N h
h

N h


    


   

x x x x x x e

x x x x e
 (3) 167 

where the denominator  , ,A i B i A B jN h   x x x x e  indicates the number of pairs of cells 168 

(identified by their centroids  ,A Bx x ) belonging to category i that are separated by a distance h 169 

along direction j (as represented by the unit vector je ). The numerator in equation (3) 170 

 , ,A B A i B i A B jN h    x x x x x x e  is the number of these pairs that also belong to the 171 



 

same cluster. Figure 2 collects graphical depictions of  j
i h  in blocks B1 (Figures 2a - 2c), B2 172 

(Figures 2d - 2f) and B3 (Figures 2g - 2i) for Re = 0.1. The largest separation distance h over which 173 
j

i > 0 provides a measure of the maximum extent of a single cluster of category i along direction 174 

j, ,i j
M . We note that ,i j

M  is roughly isotropic (i.e., it does not change with j) for classes i = 1, …, 4 175 

in all blocks considered. Class i = 4 in B1 and classes i = 2, 3, 4 in both B2 and B3 have clusters 176 

spanning almost the whole extent of the block  ,i j
M L . Close inspection of these classes reveals 177 

that these are essentially formed by a dominant cluster (with total size larger than 75% of the 178 

corresponding i ) percolating in all directions, both parallel and normal to the mean flow 179 

direction, z. Such clusters are spread over the whole domain and are not concentrated within a few 180 
areas. Hence, they cannot be regarded as representative to quantify channeling. Otherwise, class i 181 

= 5 of Nv  outliers exhibits a clear anisotropic behavior: the largest distance encompassed by a 182 

cluster in 5  along the mean flow direction, 5,z
M , is larger than its counterparts evaluated along 183 

the transverse directions x and y, 5,x
M  and 5, y

M  being less than 25% of the total block size. These 184 

features documented for 5
j  support the choice of clusters associated with Nv  outliers as a 185 

grounding element for the characterization of channeling. Comparing the results obtained for the 186 

three porous systems studied, it can be noted that 5
j  shows a near-stepwise behavior in B2 (Figures 187 

2d - 2f) and B3 (Figures 2g - 2i), sharply dropping to 0 from values 1 . Otherwise, values of 5
j  188 

in B1 decreases smoothly with h , assuming values in the whole range [0, 1]. These results are 189 

indicative of a more fragmented 5  domain in B1, with generally more limited maximum lengths, 190 

5, j
M , as compared to B2 and B3. The most relevant effect of increasing Re is to reduce 5, j

M  in all 191 

directions (see Figure S3 in the supporting information). 192 

3.2 Characterization of fast channels 193 

We expect the relevance of channeling effects to be enhanced when high-velocity clusters 194 
are associated with enhanced persistence (i.e., in term of their elongation in the mean flow 195 
direction). We evaluate the cumulative distribution (cdf) of the longitudinal extent of clusters of 196 

velocity outliers, 5,z , to identify the value of 5,z  that corresponds to the 95th percentile of such a 197 

distribution. We regard as fast channels all clusters in 5   having a longitudinal extent larger than 198 

this threshold, which corresponds to L/2 for B2 and B3 and to L/3 for B1. Figures 3a and 3c depict 199 
the spatial pattern of the only cluster that fulfills this condition within block B3, respectively for 200 
Re = 0.1 and Re = 10. Note that each cell of the cluster is colored according to the associated type 201 
of topological element. The cluster encompasses both PBs and PTs, the large majority of the cluster 202 
volume being associated with PTs (green cells). A qualitative comparison between Figures 3a and 203 
3c reveals that the cluster tends to shrink with increasing Re. This result is consistent with the 204 
findings of Nissan & Berkowitz (2018), where it is shown that an increase of Re is associated with 205 
an increased homogeneity of the flow field which, in turn, leads to a smaller amount of velocity 206 
outliers and, hence, a reduction of fast channel volume. An accurate characterization of the size of 207 

the above identified cluster in 5  can be obtained by application of the MB algorithm to its 208 

skeleton, to then evaluate the MB-based radius, R5, associated with each point in the cluster. To 209 



 

investigate the relationship between 5  clusters and the geometry/topology of the pore structures 210 

analyzed, we evaluate the ratio between 5R  and R within 5 . Since each cell is labeled according 211 

to the associated type of topological element, 5R R  can be computed separately for PB and PT. 212 

Figures 3b and 3d depict sample probability distribution functions (PDFs) of 5R R, respectively 213 

for Re = 0.1 and Re = 10. In both plots, one can clearly note that the support of the PDF in PTs 214 
(green bars) is wider and shifted toward larger values than the one of its PB counterparts (red bars). 215 
These findings suggest that the relative fraction of PT volume occupied by velocity outliers tends 216 
to be larger than its counterpart related to PBs. Similar results (see supporting information, Figures 217 
S4 and S5) have been obtained for block B2 and, to a limited extent, for block B1. 218 

3.3 Channeling effects on flow and transport 219 

To further support the ability of our criteria to identify channeling, we investigate links 220 
between the definition of fast channels introduced here and metrics typically employed to assess 221 
flow and transport features at the continuum scale. These include, e.g., (i) the degree of preferential 222 
flow, as quantified by the participation number (Andrade et al., 1999; Nissan & Berkowitz, 2018), 223 
and (ii) deviations from Fickian transport behavior. 224 

We follow Andrade et al. (1999) and Nissan & Berkowitz (2018) and consider the 225 

participation number as   1
2

1

n

ii
n q




   (n is the total number of cells discretizing the pore space; 226 

1

n

i i jj
q e e


  ; and 2 2 2

i i i ie u v w    is representative of the kinetic energy of a given cell; iu , iv , 227 

and iw  being the velocity components along x, y and z axis, respectively). The kinetic energy is 228 

constant in all cells (i.e.,    1) for a perfectly homogeneous flow. As preferential flow becomes 229 

more pronounced,   decreases. We evaluate this quantity in each flow field with Re = 0.1 and 230 

obtain  = 0.22, 0.16 and 0.15 for set 1, 2 and 3, respectively, the overbar representing the average 231 

over 10 realizations. These values indicate that set 2 and set 3 are characterized by a more 232 
pronounced preferential flow than set 1. 233 

We also simulate transport of a passive chemical through an advective particle tracking 234 
approach (Russian et al., 2016) following injection of NP = 104 particles uniformly distributed at 235 
the block inlet in each Eulerian steady-state flow field. We measure the average solute spreading 236 
in terms of centered mean squared displacement (MSD) along the main flow direction, 237 

 2
1

( ) ( ) ( )PN

z i z Pi
MSD t z t t N


  , where 

1
( ) ( )PN

z i Pi
t z t N


 , and distribution of first passage 238 

times (FPT =  ), i.e., the time required to a particle to reach the block outlet. Figure 4a depicts 239 

the temporal evolution of zMSD  obtained for Re = 0.1 by averaging over each set of 10 realizations 240 

(solid thick curves). All of these curves exhibit an asymptotic power-law scaling (with trend t241 

) that deviates from the Fickian trend ( t , dashed thick lines). Estimates of the scaling exponent 242 

are   = 1.39 1.49, and 1.80 for set 1, 2, and 3, respectively, indicating a more super-diffusive 243 

behavior in the latter. Figure 4b depicts the density distribution of first passage times, ( )f  , 244 

obtained by considering all of the particles for each set of 10 realizations. The right tail is 245 

characterized by a power-law decay (with slope 1t   ) for all distributions, with   = 1.98, 1.58 246 

and 1.10, for set 1, 2 and 3, respectively. Note that the distribution of particle arrival times tends 247 

to broaden with decreasing  . These results further support the observation of a higher degree of 248 



 

anomalous transport behavior for set 3. Figure 4 also shows that the scaling behavior exhibited by 249 

zMSD and ( )f   in each single realization (dotted thin curves) is very close to the one observed 250 

from the average over the whole set. 251 

A clear connection between our proposed definition of fast channels (i.e., clusters in 5  252 

associated with values of 
5,z  above the 95th percentile of the corresponding distribution) and the 253 

occurrence of anomalous transport is offered by Figure 4c. The latter depicts the fast channel 254 
identified in block B3 for Re = 0.1, together with the trajectories of all injected particles over a 255 

time range of 3 advt , where advt R V  . The lowest FPT evaluated for the system is equal to 2 advt  256 

(not shown). The fast channel depicted in Figure 4c and identified according to our criteria is the 257 

portion of the pore space where particles with FPTs  3 advt  tend to focus. As such, it is the main 258 

driver of the heterogeneous longitudinal spreading of solute particles that could be inferred from 259 

the MSDz and ( )f   curves.  260 

We quantify flow channeling by means of volumetric size ( 1 FCW  ) and longitudinal 261 

extent ( ,
2

FC z   ) of fast-channels, averaged over each set of 10 realizations. A quantitative 262 

relationship between the degree of preferential flow, anomalous transport and our definition of fast 263 

channels can be inferred by comparing the participation number,  , and the scaling exponents   264 

and   with FCW  and ,FC z . For Re = 0.1, we obtain FCW = 915, 10330 and 27122 voxels and 265 

,FC z = 56, 91 and 100 dl , for set 1, 2, and 3, respectively. This result indicates that set 1, which 266 

is characterized by a more homogeneous flow pattern and by a less anomalous transport behavior, 267 
has a considerably smaller extent of fast channels with respect to sets 2 and 3. 268 

All of these findings indicate that our definition of fast channels is directly related to 269 
continuum-scale features of flow and transport processes. We find analogous results considering 270 
the three sets of porous blocks for Re = 10. Further to this, as observed in Section 3.2, fast channels 271 
tend to shrink along all directions as the flow Reynolds number increases in each set of pore 272 

structures (with FCW = 406, 6309, 15384 voxels and ,FC z = 42, 82, 83 dl ). This behavior is 273 

consistent with the occurrence of increasingly homogeneous flow fields (as indicated by  = 0.27, 274 

0.22, 0.19) and decreased anomalous transport behavior ( = 1.37, 1.40, 1.78;   = 2.8, 1.79, 275 

1.42), as compared against the scenarios for Re = 0.1. 276 

4. Conclusions 277 

In this Letter we propose formal criteria for the quantitative assessment of channeling 278 
phenomena at the pore level in three-dimensional voxelized synthetic pore structures. Key results 279 
of our study can be summarized as follows: (i) clusters of velocity outliers can be identified with 280 
fast channels, i.e., preferential pathways/channels of flow and this analogy enables us to delineate 281 
fast channels with a well-defined geometry; (ii) as the pore-space spatial correlation increases, the 282 
size of fast channels increases; (iii) fast channels tend to shrink along all directions as the flow 283 
Reynolds number increases; (iv) fast channels tend to occupy a larger fraction of the pore-space 284 
volume in PTs than they do in PBs; (v) fast channels size can be related quantitatively to the degree 285 
of preferential flow and anomalous transport associated with a continuum-scale depiction of the 286 
system. These findings will serve as the basis for further investigation on a wider spectrum of pore-287 



 

space models, aimed at identifying accurate statistically-based geometrical and/or topological 288 
signatures of channeling phenomena. 289 

 290 
Figure 1. Top: Cross-sectional contours of the pore space (grey areas) in B1 (a), B2 (b), and B3 (c). 291 

Bottom: Histograms of normalized velocity values, Nv , obtained in B1, B2 and B3 for Re = 0.1 (1d-292 

1f) and for Re = 10 (1g-1i). Box plots of Nv  are also depicted to represent the thresholds used to 293 

define velocity classes (dashed lines). 294 

  295 



 

 296 
Figure 2. Connectivity function j

i  obtained for each velocity class (i = 1, …, 5) along directions 297 

j = x, y, z, in B1 (a-c), B2 (d-f), and B3 (g-i) for Re = 0.1. 298 

 299 

  300 



 

 301 

Figure 3. Block B3: Left: representation of the 5  cluster having 5,z  above the 95th percentile for 302 

(a) Re = 0.1 and (c) Re = 10. Voxels belonging to PBs and PTs are respectively depicted in red 303 

and green. Right: PDF of 5R R  evaluated in the selected 5  cluster for PBs (red bars) and PTs 304 

(green bars) for (b) Re = 0.1 and (d) Re = 10. 305 

 306 



 

 307 
Figure 4. (a) Temporal evolution of the centered mean squared displacement along the z-axis 308 
(MSDz) averaged across the 10 realizations of set 1, 2 and 3. Dashed lines correspond to Fickian 309 

behavior ( t ). Results obtained for each pore-space realization are depicted (dotted curves). Time 310 

is rescaled by the advective travel time, advt . (b) First passage time distribution, ( )f  , obtained by 311 

considering all particles in the 10 realizations for each block set. Results corresponding to each 312 

single realization are depicted (dotted curves). FPTs are rescaled by peak , i.e., the FPT at which 313 

the distribution peak is attained. (c) Fast channel (black volume) in B3 for Re = 0.1 and associated 314 

particle trajectories (dotted curves) over a time range of 3 advt . Colors represent (normalized) times 315 

at which a given position is reached. 316 
 317 
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