
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

Received 15 January 2019; revised 25 March 2019; accepted 8 April 2019. Date of publication 17 April 2019; date of current version 31 May
2019.

Digital Object Identifier 10.1109/JXCDC.2019.2911135

Unsupervised Learning to Overcome
Catastrophic Forgetting in

Neural Networks
IRENE MUÑOZ-MARTÍN 1 (Student Member, IEEE),

STEFANO BIANCHI 1 (Student Member, IEEE),
GIACOMO PEDRETTI 1 (Student Member, IEEE),

OCTAVIAN MELNIC1, STEFANO AMBROGIO2 (Member, IEEE),
AND DANIELE IELMINI 1 (Fellow, IEEE)

1Dipartimento di Elettronica, Informazione e Bioingegneria and Italian Universities Nanoelectronics Team, Politecnico di Milano,
20133 Milan, Italy

2IBM Research-Almaden, San Jose, CA 95120 USA

CORRESPONDING AUTHOR: D. IELMINI (daniele.ielmini@polimi.it)

This work was supported in part by the European Research Council (ERC) through the European Union’s Horizon 2020 Research and
Innovation Program under Grant 648635 and in part by the Italian Minister for University and Research under Grant Agreement

R164TYLBZP. Irene Muñoz-Martín and Stefano Bianchi contributed equally to this work.

This paper has supplementary downloadable material available at http://ieeexplore.ieee.org, provided by the authors.

ABSTRACT Continual learning is the ability to acquire a new task or knowledge without losing any
previously collected information. Achieving continual learning in artificial intelligence (AI) is currently
prevented by catastrophic forgetting, where training of a new task deletes all previously learned tasks. Here,
we present a new concept of a neural network capable of combining supervised convolutional learning
with bio-inspired unsupervised learning. Brain-inspired concepts such as spike-timing-dependent plastic-
ity (STDP) and neural redundancy are shown to enable continual learning and prevent catastrophic forgetting
without compromising standard accuracy achievable with state-of-the-art neural networks. Unsupervised
learning by STDP is demonstrated by hardware experiments with a one-layer perceptron adopting phase-
change memory (PCM) synapses. Finally, we demonstrate full testing classification of Modified National
Institute of Standards and Technology (MNIST) database with an accuracy of 98% and continual learning of
up to 30% non-trained classes with 83% average accuracy.

INDEX TERMS Catastrophic forgetting, continual learning, convolutional neural network (CNN), neuro-
morphic engineering, phase-change memory (PCM), spike-timing-dependent plasticity (STDP), supervised
learning, unsupervised learning.

I. INTRODUCTION
Neural computation currently enables an increasing num-
ber of artificial intelligence (AI) tasks such as image
recognition [1], face recognition [2], speech recognition,
and natural language processing [3]. Artificial neural net-
works (ANNs) have recently led to significant breakthroughs
in object recognition tasks, demonstrating high accuracy in
classification with large data sets [4]. This is mostly with
regard to the success of supervised training via the back-
propagation technique [1], where the synaptic weights are
iteratively adjusted in response to the presentation of labeled
information. A key limitation of ANNs, however, is the

catastrophic forgetting, where training a network on a new
task causes the catastrophic loss of the ability of any previ-
ously learned task [5]. This issue prevents continual learning,
where new features are continuously learned during thewhole
lifetime of a system [6]. Continual learning is instead possible
in the human brain, thanks to the higher flexibility of the
biological neuronal network as opposed to the rigid structure
of an ANN. Learning in the human brain relies on synap-
tic plasticity, where synapses are potentiated and depressed
according to the mutual spike timing between firing neurons.
There are pieces of evidence that spike-timing-dependent
plasticity (STDP) [7], [8] is one of the most recurrent learning
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rules occurring in the brain. As a result, STDP is widely
adopted to support unsupervised training in neuromorphic
systems [8]–[13]. STDP can also be easily implemented with
emerging memory devices, where the change of conductance
can be controlled by the timing of the spikes at either the
pre-synaptic or postsynaptic ends of the synapse [14], [15].
Although capable of unsupervised learning, STDP cannot
generally match the same recognition accuracy and stability
of ANNs trained by the backpropagation method [16]. Unsu-
pervised neuromorphic systems and high-accuracy ANNs,
thus. feature complementary strengths that fit the so-called
‘‘stability/plasticity dilemma’’ [17], [18].

To achieve high accuracy, high stability of learned tasks,
and high flexibility in ANNs, it is essential to combine
supervised and unsupervised approaches. Several architec-
tures have been proposed over the years especially from
a computer science standpoint aiming to get flexibility
in ANNs, including system-level consolidation [19] and
synaptic weight consolidation [20], where plasticity in
trained synapses are inhibited to prevent forgetting. However,
the demonstration of a truly flexible supervised neural net-
work capable of continual learning and verifiable in hardware
is not available yet, thus highlighting the necessity of a mixed
contribution from supervised and unsupervised approaches.

Here, we present a novel hybrid concept for a supervised-
unsupervised neural network able to overcome the ‘‘stability/
plasticity dilemma.’’ This architecture is capable of continual
learning [6], where the system is tested with new incoming
information without catastrophically forgetting previously
learned data. The network consists of two parts: the first
one is a supervised convolutional neural network (CNN),
whereas the second one is an unsupervised STDP classifier.
STDP enables fast learning of non-trained patterns by using
output neurons that were not already involved in the prelim-
inary training [21]. Our network displays a high accuracy
on trained classes, namely, 98% in MNIST data set, and it
is capable of accurately classifying up to 30% of untrained
classes. In our network, both convolutional filters and STDP
synapses are implemented with memory devices [22], such
as PCM devices [23] that can be operated in multiple-level
analog mode or in binary mode. In the first case, PCMs are
programmed in several different equally spaced conductance
levels, whereas in the latter one, they work in low or high
resistive states. An overall accuracy of 85% is demonstrated
after training over the 70% of the data set considering filter
discretization due to PCM implementation, thus supporting
the mixed supervised/unsupervised design of neuromorphic
systems for continual learning.

II. CATASTROPHIC FORGETTING
Fig. 1 illustrates the catastrophic forgetting problem in neural
networks: first, the network is trained by supervised training
with task A (a), e.g., a subset of a large data set such as the
MNIST data set, until task A can be profitably tested (b).
Afterward, supervised training of task B is executed on the
same network (c), until task B is successfully tested (d).

FIGURE 1. (a) Illustration of the catastrophic forgetting in
multilayer perceptron network. (b) After training a certain
pattern A, (b) A is recognized, while B is not. (c) If the same
network is then trained to learn pattern B, (d) A is forgotten
while B is recognized.

However, the second training causes the total loss of task A
due to catastrophic forgetting.

To quantitatively assess the impact of catastrophic forget-
ting, we trained the MLP shown in Fig. 2(a) with the subset A
of the seven MNIST classes 1, 2, . . ., 7. We used the sigmoid
as activation function, a learning rate η = 1/35, a Gaussian
weight initialization with µ = 0 and σ = 1/

√
784, and

the usual regularization algorithms to reduce overfitting. The
supervised training leads to a testing efficiency of 97.8% for
subset A and no recognition of subset B of the remaining
classes 8, 9, and 0, as shown by the confusion matrix of
Fig. 2(b). The same network was then trained with subset B,
resulting in a testing efficiency of 98.1% for B and no recog-
nition of subset A [Fig. 2(c)], thus evidencing catastrophic
forgetting of the previous learned task.

Catastrophic forgetting is a critical problem in machine
learning, deeply differentiating the ANNs from the biolog-
ical networks in the human brain. In biology, the theory of
complementary learning systems explains the mutual effort
of hippocampus and neocortex to both consolidate previous
information and accepting new incoming data [19], [24].
In particular, the hippocampal system accounts for rapid
adaptation to new incoming information whereas the neocor-
tex is specialized in consolidating previous knowledge. In the
following, the supervised part of our network stands for long-
term storage of pretrained information, whereas unsupervised
part accepts incoming data for both classifying objects of
previously learned classes and storing new data by the STDP
protocol.

III. MIXED SUPERVISED-UNSUPERVISED NETWORK
Fig. 3 illustrates the structure of the proposed network,
including: 1) a supervised convolutional network; 2) an equal-
ization block to convert the feature maps into normalized
patterns with 4 active neurons out of 16; and 3) an unsu-
pervised STDP network as final classifier stage. Each block
is described in the following, referring to the learning of
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FIGURE 2. (a) Illustration of the multilayer perceptron (MLP) network scheme including three hidden layers, i.e., H1 (600 neurons),
H2 (300 neurons), and H3 (150 neurons). We implemented a sigmoidal activation function, a learning rate η = 1/35, a Gaussian weight
initialization with µ = 0 and σ = 1/

√
784, and regularization algorithms to control overfitting. (b) Confusion matrix for the testing

results after supervised training of the network with the data set A of the Modified National Institute of Standards and
Technology (MNIST) classes 1, 2, . . ., and 7. (c) Confusion matrix for the testing results after training the same network first with A,
then with B of the MNIST classes 8, 9, and 0. Data set A is forgotten and confused with other classes after training the network with
data set B. All the accuracy values shown in the confusion matrix are rounded to zero decimal places.

FIGURE 3. General scheme of the network. The input layer includes the input neurons. Block 1 contains the convolutional filters
obtained by means of the backpropagation algorithm. The response of the convolutional filters is mapped into the ‘‘feature map,’’
resulting in a 4×4 matrix. The feature map is then equalized by Block 2, consisting of a combinational logic to transform the 4×4
feature map in a 4×4 pattern with constant P = 25%. Finally, Block 3 consists of an unsupervised perceptron for the learning of the
equalized patterns.

28 × 28 input patterns from the MNIST data set. In the
supplementary material, we extend the study to another data
set, the ‘‘Fashion-MNIST,’’ that groups images of clothes.

A. CONVOLUTIONAL NETWORK
CNNs commonly use filters trained by backpropagation to
extract features from input patterns [25]. The responses of
the filters are collected into feature maps after convolution of
the filters with the input image or with other maps generated
by previous convolutional layers.

Zeiler and Fergus [25] showed that, in a CNN, the feature
maps usually present original patterns in which some intrinsic
features of the original image are highlighted by convolu-
tion of the filters. In our network, the input pattern is an
MNIST image with dimension 28 × 28, while the filters of
the first layer have a dimension of 20 × 20. We chose high
filter dimensionality for mainly two reasons: 1) to reduce the
number of convolutional steps, thus minimizing the power
consumption and 2) to have a binary response from the filters
during convolution, i.e., ‘‘feature found’’ and ‘‘feature not
found.’’ In fact, larger filters than usual gave us the possibility
to ‘‘memorize’’ inside a trained filter a simple feature, like
a curved line or an angle between two lines, just assuring
a fixed bias (or threshold) for each filter. With respect to

previousworks in [4] and [25], the features are directly visible
looking at the filter rather than on the consequent activation
maps, i.e., the results coming from convolution. We decided
to implement a CNN from scratch with the aforementioned
constraints respect to usual programming. It would be pos-
sible to use different kinds of training procedures to extract
the filters, but we essentially used two approaches within the
same CNN, as described in Fig. 4 for the full data set.

In the first approach [Fig. 4(a)], the CNN is trained
to directly recognize a specific class of patterns, e.g., the
class ‘‘1’’ in the MNIST data set. Convolution of the filter
with the input pattern yields a 9 × 9 output pattern, which
is reduced to a 1 × 1 pattern by a max-pool operation.
A total of NT class filters are used, aiming at recognizing
the first NT classes of the MNIST data set, thus resulting
in an output layer of dimension NT × 1 × 1 (it is possible
to choose the number of class filters to train). The filters
are trained by backpropagation so that each of the output
layer neurons responds to one and only one class of the input
pattern, e.g., the first output neuron should respond only to
the presentation of a ‘‘1,’’ and so on.

In the second approach [Fig. 4(b)], nine filters are used
to extract a 9 × 9 × 9 pattern, which is then passed to
another convolutional layer with a total of NF filters, each
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FIGURE 4. Schematic of the (a) CNN for the supervised training of class filters and (b) supervised training of feature filters. (c) Output
feature map, summarizing all the responses of the class filters (CF1, . . . ,CF7) and feature filters (FF1, . . . ,FF9). During testing,
the class/feature filters provide a combination of binary responses (‘‘feature found’’ or ‘‘feature not found’’), resulting in the 16 output
signals in the figure. (d) Feature maps collecting the output of the CNN in terms of the probability of finding a certain feature in
response to the presentation of patterns from each MNIST class, from 0 to 9.

with dimension 9× 9× 9, thus resulting in an output layer of
dimension NF × 1 × 1. The filters are trained by backprop-
agation as in the first approach for NF trained classes. Note
that the NF trained classes are not necessarily the same NT
trained classes.

During testing, the overall response of Block 1 is obtained
combining the NT ‘‘class filters’’ shown in Fig. 4(a) with the
nine ‘‘feature filters’’ from the first convolutional layer shown
in Fig. 4(b). We used pooling operation to select an individual
response for each filter, class, and feature. We fixed NT = 7,
so a total of 16 output binary signals are used to recognize any
incoming pattern, as shown in Fig. 4(c). Note that, if the data
set has to be fully trained, the procedure shown in Fig. 4(b)
must account, at least, for all the classes of the data set not
included in the training shown in Fig. 4(a).

Fig. 4(d) shows the average resulting featuremaps, namely,
the probability of fire of each neuron collecting the signal
from one class/feature filter shown in Fig. 4(a) and (b). All
10 classes of MNIST patterns were used during the super-
vised training of 60 000 images. Note that the first seven
output neurons fire in response to the presentation of one
and only one class, e.g., neuron 1 fires in response to the
presentation of class ‘‘1’’ and so on. On the other hand,
the remaining nine output neurons show a unique combina-
tion of firing in response to each MNIST input class. The
generalized ‘‘feature’’ filters are key to enable the recognition
of non-trained classes by transfer learning [26], which do not
belong to the group of the trained classes and thus cannot
be directly recognized by a specialized class filter. In the
following, in fact, we will demonstrate continual learning of
up to 30% non-trained classes, and we will keep constant the
number of class filters at 7 and of feature filters at 9.

B. COMBINATIONAL LOGIC
Although the feature maps shown in Fig. 4(d) are unique
for each class of the data set, they cannot be directly fed
to the STDP network, as they have different pattern densi-
ties P, defined as the number of firing neurons divided by the

FIGURE 5. Combinational logic for pattern equalization to
generate 4× 4 patterns with uniform pattern density P = 25%.
Signals S0–S15 represent the output of Block 1, i.e., the feature
maps. These signals select the proper output bus from
T0 to T15, or from NT0 to NT511.

total number of neurons [16]. In the STDP network, in fact,
each postsynaptic neuron (POST) compares the incoming
current from the pre-synaptic neurons (PREs) with an internal
threshold [27]. A different P for each class would cause unfair
competition between various patterns in the winner-take-
all (WTA) network [28]. To prevent instabilities in the STDP
network, a normalization block was thus added to equalize P
among the various feature maps shown in Fig. 4(d).

Fig. 5 shows a combinational logic which can be used for
equalization. There is no need for training the combinational
logic, which can be extended to any data set with the same
number of classes as theMNIST. As for the supervised part of
the network, note that equalization can be achieved by various
design implementations, of which Fig. 5 is just one possible
solution. Our combinational logic transfers each of the feature
maps shown in Fig. 4(d) to a unique equalized pattern of
dimension 4 × 4, shown in Fig. 6(a). In the combinational
logic, there are two main blocks which process the input
to yield a specific equalized pattern, contained in a 16-bit
serial stream. The first block is aimed at transferring the first
seven signals, which are specialized on a specific trained
class (from S0 to S6), to seven equalized output patterns
(from T0 to T6). For instance, if a pattern of the first class
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is presented, signal S0 is high, which activates the transfer of
the externally fed equalized pattern T0 to the output of the
combinational logic. The second block, instead, deals with
the case when an input class is not trained to respond to a
class filter. In this case, the multiplexer assigns a specific
non-trained equalized pattern (NT0, NT1, etc.) to each com-
bination of feature signals (from S7 to S15). Note that the
system is capable of assigning more equalized patterns than
the number of input classes, which is just 10 for the MNIST
data set. This is crucial to implement neuron redundancy
in the STDP network, which enables efficient unsupervised
learning of patterns for non-trained classes.

FIGURE 6. (a) Examples of ten equalized patterns with P = 25%
from the output of the combinational logic. (b) Schematic of the
inhibitory and excitatory synapses in STDP network. (c)
Excitatory synapses have 1T1R structure with PCM elements to
store the synaptic weight. Excitatory synapses connect the
PREs to the POST, while inhibitory synapses are responsible for
the competition between POSTs for the WTA behavior of the
network.

C. UNSUPERVISED PERCEPTRON
The third block shown in Fig. 3 consists of a classification
layer which is trained by STDP andWTA processes. Fig. 6(b)
schematically shows an STDP network for the simplified case
of three output neurons. The submission of one of the equal-
ized patterns of Fig. 6(a) causes fire in one of the POSTs,
and thus the potentiation of the corresponding excitatory
synapses by STDP and zeroing of all other output neurons
via the inhibitory synapses [29]. STDP can be achieved by
the 1T1R synapse shown in Fig. 6(c), including a transistor
and a resistive memory, such as a PCM [29] or a resistive
switching memory (RRAM) device [30]. Noise patterns can
also be submitted randomly to induce depression of previous
information stored in the synapses, thus enabling the recon-
figuration of the network to a new data set [27]. Each of
the POST specializes in one of the equalized patterns, while
the WTA process prevents the specialization of more than
one POST to the same input pattern. The STDP and WTA
processes allow the unsupervised learning of all equalized
patterns, hence the recognition of the input data set. By the
fact the artificial pattern is trained, the STDP and WTA pro-
cesses are easier because we know from training procedure
the initial combination of synaptic weights.

To experimentally demonstrate the unsupervised network
shown in Fig. 6(b), we implemented a spiking neural net-
work (SNN) with 4 × 4 input channels fully connected

FIGURE 7. Experimental demonstration of unsupervised learning
with STDP of three equalized patterns, namely, the first,
the second, and the third column. (a) Synaptic weights at the
end of the unsupervised learning session. (b) Time evolution of
synaptic weights for both pattern and background synapses.
(c) POST spiking activity.

to 3 POSTs by 48 PCM synapses with 1T1R structure
[Fig. 6(c)]. After initializing all synapses in low or high
resistive states, we randomly submitted three equalized pat-
terns, corresponding to the first, the second, and the third
column, respectively. Fig. 7(a) shows the color map of the
final synaptic weights of synapses connected to the three
POSTs after the three patterns were submitted for 5 s with
a presentation time of 10 ms. Fig. 7(b) shows the synaptic
weights as a function of time, whereas Fig. 7(c) shows the
spiking activity of the POST. The average conductivity of
synapses within the pattern increases with time, while the
synaptic conductance in the background decreases due to the
uncorrelated noise causing depression. These results support
the unsupervised learning by STDP in the classification layer.

IV. CONTINUAL LEARNING
To test the ability of the system in continual learning,
we trained the network with a fraction of the MNIST data
set, namely, only seven classes out of ten, and subsequently
tested the recognition over the entire testing data set with ten
output neurons for classification via STDP. The network was
organized with seven class filters and nine feature filters as
discussed in Section III-A. Although class filters provide high
accuracy in detecting the trained classes, the feature filters
enable unsupervised learning of non-trained classes. Fig. 8
shows the output of the CNN (Block 1 shown in Fig. 3),
namely, the 4 × 4 feature maps for both trained classes
(1, 2, 3, 4, 5, 6, and 7) and the remaining non-trained classes
(0, 8, and 9). After the supervised training with seven classes,
the presentation of the three non-trained classes results in
consistent feature maps, which can then be used for the
following equalization and unsupervised learning. Note that
non-trained classes generally show a negligible response
to class filters, which have been specialized to the trained
classes. Instead, non-trained classes respond only to feature
filters, which are general enough to identify specific features
in any pattern. Each of the binary feature maps that can be
obtained can thus be equalized (Block 2 shown in Fig. 3) and
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FIGURE 8. Response to the feature maps for seven trained classes (from 1 to 7) and three non-trained classes (8, 9, and 0). Sixteen
convolutional filters are used, seven for recognizing a particular trained class and the others to extract particular features from the
trained classes. Feature filters differentiate the new incoming classes by an original combination of responses. With respect to
Fig. 4(d), there are three non-trained classes (8, 9, and 0) that are recognized for transfer learning.

FIGURE 9. Experimental demonstration of continual learning
with STDP, supporting the capability for learning sequential
patterns. In the first 500 ms, only two patterns (first and fourth
columns) are presented at the input. Then, the third pattern is
presented. The first two POSTs remain specialized in the
vertical patterns while the third one specializes in the third
presented pattern.

submitted to the STDP layer (Block 3 shown in Fig. 3) for
unsupervised learning. The STDP layer is, in fact, the key
block for the unsupervised learning of both trained and non-
trained patterns, thus enabling to overcome catastrophic for-
getting and to achieve continual learning.

To support continual learning by the STDP layer, Fig. 9
shows the experimental results for the same 3-POST percep-
tron shown in Fig. 6(b), where two patterns (first and fourth
column, representing trained patterns) are initially presented
for 500ms, followed by the presentation of a third non-trained
pattern for 500 ms, to mimic the sequential training shown
in Fig. 1. Fig. 9(a) shows the final conductance for synapses
connected to the first, the second, and the third POST, while
Fig. 9(b) shows the synaptic weights as a function of time,
and Fig. 9(c) shows the firing activity of the three POSTs.
The first two patterns are readily learned in the first phase,
thanks to the POST specialization in theWTA network, while
the later submission of the additional pattern leads to unsu-
pervised learning in the synapses of the third POST without
affecting the previously trained synapses. These results sup-
port the flexibility of the STDP network, which is capable of
overcoming catastrophic forgetting and achieving continual
learning.

A. NEURONAL REDUNDANCY
Although trained classes can be uniquely identified by their
response to class filters, non-trained classes show stochastic

variations in their response to feature maps, which cannot
be uniquely equalized by Block 2. This is because patterns
belonging to the same class do not show exactly the same fea-
tures in the same position, thus resulting in some variations in
the feature map response. This ambiguity can be overcome by
assigning an equalized pattern to each possible feature map
of the non-trained classes, which thus need more than just
one neuron in the STDP layer for correct learning. A similar
neuronal redundancy is indeed found in the motor cortex of
the human brain [31].

Fig. 10(a) shows the simulation results for the whole net-
work considering various cases of non-trained classes, report-
ing the average accuracy and their standard deviation 2σ , as a
function of the average number of output neurons for each
class. Simulations were carried out for an increasing num-
ber of non-trained classes, from zero to three. The adopted
procedure to train the neural network is the following: first,
we trained the convolutional filters according to the technique
discussed in Section III-A, with various numbers of trained
and non-trained classes of the MNIST data set. The number
of ‘‘class filters’’ and ‘‘feature filters’’ were kept constant,
i.e., 7 and 9, respectively. Then, we tested the accuracy of
the whole network in recognizing the trained and non-trained
classes assuming 1, 2, or 3 average output neurons per input
class. The simulation results in the figure indicate that the
recognition accuracy increases for an increasing number of
output neurons, reaching an accuracy of 83% for the correct
classification of three non-trained classes, i.e., 30% of the
patterns were not presented during the supervised training.

Fig. 10(b) shows the calculated accuracy for trained
classes, non-trained classes, and their average as a func-
tion of the number of non-trained classes. The results are
compared with an MLP network affected by catastrophic
forgetting. In the simulations, we assumed 3 output neu-
rons for each class. As the number of non-trained classes
increases, the recognition accuracy of the trained classes
slightly increases because the supervised training becomes
easier with less competition between trained classes. On the
other hand, the overall recognition accuracy decreases reach-
ing, on average, 93% considering three non-trained classes,
which is a dramatic improvement with respect to a standard
MLP or CNNnetwork shown in Fig. 2. In fact, it is impossible
to continually learn if only MLP or CNN are implemented,
as the addition of new patterns requires the training of the
overall network from scratch. Even a split–apply–combine
approach to mimic STDP by repeating the training several
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FIGURE 10. (a) Testing accuracy for 1, 2, or 3 non-trained classes as a function of the average number of output neuron per class.
(b) Testing accuracy of trained and non-trained classes for a neuronal redundancy of three output neurons per class in the STDP
layer, considering 1, 2, or 3 non-trained classes. The results are compared with the global MLP accuracy affected by the catastrophic
forgetting.

times on different subdatasets to eventually merge the results,
would imply new weights, a decrease of the global MLP
accuracy of trained classes, and additional power consump-
tion. On the other hand, the brain-inspired approach of unsu-
pervised learning allows reusing previous knowledge from
the supervised training to learn new patterns, where the new
knowledge affects only the second layer of the unsupervised
STDP network. Thus, the results of Fig. 10(a) and (b) support
brain-inspired techniques such as STDP and neuronal redun-
dancy as a very promisingmethod to overcome the limitations
of supervised networks, such as catastrophic forgetting, and
to achieve continual learning.

B. PERFORMANCE OF THE NETWORK
Fig. 11 shows the confusion matrices, namely, the proba-
bility of firing of the output neuron (predicted label) as a
function of the submitted class (true label). The figure con-
siders both the case of full training (a) and the case where
three classes, namely, 8, 9, and 0, were not presented dur-
ing the supervised training (b). A neuronal redundancy of
three neurons per class was assumed. Although the aver-
age accuracy drops from 98% for full training (a) to 93%
for continual learning (b), the network overcomes catas-
trophic forgetting, which cannot be avoided in a fully con-
nected network, as reported in Fig. 2. The results support
the mixed supervised-unsupervised approach to achieve
continual learning as in the human brain.

V. FULL IMPLEMENTATION WITH PCM DEVICES
Although PCM provides an ideal implementation of
plastic synapses for unsupervised learning via STDP
(Figs. 7 and 9) [29], neural networks with supervised training
also can take advantage of PCM, thanks to its excellent
scaling and multilevel state operation [32]–[34]. To demon-
strate PCM synapses in the CNN block shown in Fig. 3,
we programmed multilevel states in PCM devices, as shown

FIGURE 11. (a) Testing results for the case of full training,
namely, all ten classes of the MNIST data set were presented
during the supervised training. The average accuracy is 98%.
(b) Testing results considering seven trained classes (1, . . ., 7)
and three not trained classes, namely, 8, 9, and 0. The average
accuracy decreases to 93%, which is still much larger than the
extremely low accuracy of the fully connected network in Fig. 2.
The values in the confusion matrices are rounded.

FIGURE 12. (a) Distributions of measured conductance of PCM
devices used as analog synaptic elements in the convolutional
filters. (b) Confusion matrix for the testing accuracy in the
Monte Carlo simulations considering seven trained classes
(1, . . ., 7) and three non-trained classes (8, 9, and 0). The overall
accuracy is 85.2%. The values in the confusion matrix are
rounded.

in Fig. 12(a). The figure shows the conductance distri-
butions for ten levels, which were approximately equally
spaced between the fully crystalline (set) state and the fully
amorphized (reset) state. These levels were then assumed as
quantized states for the class and feature filters in Fig. 4.
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To represent both positive and negative filter values, we first
normalized them into 21 levels between the maximum neg-
ative to the maximum positive value. Each quantized filter
valueGsyn was then obtained from the ten PCM levels shown
in Fig. 12(a) the difference between two synaptic conduc-
tancesG+ andG−, according toGsyn = G+−G− [35]. Then,
we carried out Monte Carlo simulations, where we assumed
the average values and standard deviations of Gsyn according
to Fig. 12(a). Fig. 12(b) shows the confusion matrix of the
simulated accuracy assuming seven trained classes, namely,
1, 2, 3, 4, 5, 6, and 7, and three non-trained classes, namely,
8, 9, and 0. The average accuracy is around 85.2%, where the
8% decrease with respect to Fig. 11(b) can be attributed to
quantization and stochastic variation of the PCMconductance
in the filter. Overall, the results support the feasibility of
a supervised/unsupervised network combining scalability,
flexibility against catastrophic learning, thanks to STDP and
accuracy, and supervised training of CNN filters.

VI. CONCLUSION
We present a novel neural network, capable of overcom-
ing catastrophic forgetting by combining supervised and
unsupervised learning. The hybrid network can combine
supervised training and brain-inspired algorithms, such as
STDP and neuronal redundancy, to enable continual learn-
ing. Reconfigurable connection between the supervised and
unsupervised blocks is achieved thanks to an equalization
layer consisting of a logic network.We study the network per-
formance in terms of classification accuracy and robustness
against catastrophic forgetting. Results indicate, on average,
an accuracy of 93% during full testing with three non-trained
classes and seven trained classes. We demonstrate that this
network is compatible with a full implementation of PCM
synapses, in both the supervised CNN and the unsupervised
STDP. This work highlights the relevance of brain-inspired
techniques for enabling continual learning in AI systems by
a combination of supervised and unsupervised approaches.
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