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1. Introduction

Vibration control and fatigue damage problems have usually been considered separately during structure design. The
former is usually managed as a dynamics problem, and aims to minimise vibrations in terms of displacement or noise, while
the fatigue phenomenon is typically taken as a structural problem. Moreover, in vibration control applications, it is generally
held that vibration reduction would intrinsically reduce fatigue damage in structures. Although this may be generally true,
there are some examples in which this assumption is no longer valid. This is the case, for example, with high performance
control logics that apply high control forces to reduce significantly structure vibrations, with consequent local damage
effects. Other examples could be found in conditions where low displacement vibrations hide high structure stresses, or in
applications showing significant spillover problems. Moreover, even if on a particular application a vibration control would
improve structure life, this does not mean that it is the best solution from a fatigue point of view and probably the control
logic could be further improved to minimise fatigue damage.

For these issues, the scientific literature provides few applications. A contribution from Ray et al. [1] pointed out that a
significant improvement in service life could be achieved by a small reduction in the system's dynamic performance, taking
the material model into account the control design. In any case, the research field did not offer relevant developments. On
the other hand, control logics aiming to extend structure life have some applications on large mechanical structures where
their results could be highly cost-effective. This is the case with steel jacket platforms, where control mechanisms designed
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to increase fatigue life are preferable to simple deck displacement control [2]. Recently, with the increased use of wind
energy, wind turbine fatigue has been investigated in depth. The wind industry seeks to design wind turbines maximizing
energy production and increasing fatigue life. To achieve this, the research community is asked to design wind turbines that
can extract maximum energy while reducing component and system loads. As turbines become larger and more flexible, it
is increasingly important not only to consider the effect of the controller on component loads, but also to design the
controller with load reduction as a part of the primary objective [3–5]. A last example about fatigue control has been
presented by Chomette et al. in 2010 [6]. They proposed an active logic for the damage reduction of printed circuit boards by
means of piezoelectric actuators and sensors.

However, the design of control architectures that take fatigue into account is limited to these very particular applications,
and the control logics developed lack of general application. Hence, the aim of this paper is to investigate the fatigue and
vibration problem as an integrated one and develop a control logic that takes into account fatigue damage on the structure.
The problem has been theoretically analysed, and a solution proposed that could be widely applied in vibration control
applications. The study starts by considering a model of fatigue damage in the frequency domain for control formulation
(Section 2). Then an adaptive control algorithm for fatigue minimization is introduced. This logic, based on the optimal
control theory, is designed to take into account structural damage directly in the cost function (Section 3). Finally the control
solution proposed is validated both numerically and experimentally (Section 4).

2. Frequency domain formulation of fatigue damage

Consider the state-space model of a generic linear system

_x ¼ ½A�xþ½B�ucþwd (1a)

y¼ ½C�xþ½D�ucþwn (1b)

where x is the n�1 state variable vector, y is the ns � 1 measured output vector and uc is the na � 1 control action vector.
Moreover, ½A� is the n�n state matrix, ½B� is the n� na control input matrix, ½C� is the ns � n observation matrix, while wd

and wn are respectively the input and measurement noise vectors.
In many practical applications both wd and wn are unknown and they are not considered either for optimal actuator and

sensor positioning or in control law synthesis. Indeed, considering the system as strictly proper (½D� ¼ ½0�) Eq. (1) can be
written as

_x ¼ ½A�xþ½B�uc (2a)

y¼ ½C�x (2b)

When the system is a controlled continuous structure, state variable cardinality tends to be infinite. For this reason, for
our purposes and without sacrificing generality, the structure is modelled applying a modal coordinates truncation [7],
which is considered to be consistent with the frequency range investigated. According to this assumption and considering
only m modes, the state-space vector in (2) becomes
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where qi is the i-th modal coordinate, describing the structure's dynamics.
In order to compute the fatigue damage, the displacement should be written in physical coordinates. Let ξ be the physical

coordinate of a generic point along the structure and zðξ; tÞ its physical displacement. According to the definition of modal
transformation

zðξ; tÞCΦT
r ðξÞqrðtÞ (4)

where ΦrðξÞ is the eigenvector matrix of the truncated model evaluated at ξ. For this analysis it is important to point out
that, according to the modal approach, the structure vibration is written as a product of a first part Φr , which is a function
only of the position, and a second part qr , which is a function only of time. Consequently, noting the assumption of structure
linearity, the stress tensor is written as

½r�ðξ; tÞ ¼ ∑
m

i ¼ 1
½ ~r i�ðξÞqiðtÞ (5)

where ½r� is the 3�3 stress tensor in ξ and at time t and ½ ~ri� is the stress tensor in ξ due to a unitary displacement of the i-th
modal coordinate. Again, ½ ~ri� depends only on the modal analysis and therefore can be identified in advance.



Once the stress tensor is known, fatigue damage can be computed through an appropriate equivalent stress seq [8,9], the
S–N curves [10] and Miner's rule [11,12].

Among all the various equivalent stress formulations present in the scientific literature, consider for example, without
sacrificing generality, the Sines method [13]. This is based on the maximum deviatory deformation energy and it is written
as a nonlinear function of ½s� as
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where the footer a refers to the harmonic part of the tensor and m to the average one.
In order to go deeper into the analysis, the stress tensor in the frequency domain needs to be evaluated. Therefore,

applying the Fourier transformation, Eq. (5) becomes

½Σ�ðξ; jωÞ ¼ ∑
m

i ¼ 1
½ ~r i�ðξÞQiðjωÞ (8)

where ½Σ� and QiAC are the frequency domain transforms of ½r� and qi. With regard to Eq. (8) it can be pointed out that
�
 the expression is completely general and the only assumption is the linearity of the structure;

�
 since ½ ~ri� does not depend on time t, it is considered as a constant in the Fourier integral.
Hence, according to Eq. (6)

jΣeqðξ;ωÞj ¼ f eqðj½Σ�ðξ;ωÞjÞ ¼ f eq ∑
m

i ¼ 1
½ ~r i�ðξÞQiðjωÞ

����
����
!

(9)

where j � j denotes the amplitude operator of a given complex value.
Once jΣeqðξ;ωÞj is computed, the S–N curve can be introduced and the structure life in terms of the number of cycles can

be found. This curve expresses the relationship between the limit number of cycles before failure and the cyclic stress
amplitude. According to [10], the equation of the S–N curve (Fig. 1) is generically written as

log10ðNÞ ¼ log10ða1Þ�b1 log10ðΣeqÞ for ΣeqZΣlim (10a)

log10ðNÞ ¼ log10ða2Þ�b2 log10ðΣeqÞ for ΣeqoΣlim (10b)

where (10a) refers to the solid line in Fig. 1 and (10b) refers to the dashed one, while a1, a2, b1 and b2 are constant scalars
depending on the material and, finally, Σlim is the fatigue limit.
Fig. 1. Example of a S–N curve; Σ is the stress and N is the number of cycles at failure.



With simple calculations, the number of cycles before failure can be written as

N ξ;ωð Þ ¼ aj
jΣeqðξ;ωÞjbj

¼ aj
½f eqðj∑m

i ¼ 1½ ~r i�ðξÞQiðjωÞjÞ�bj
(11)

with j being equal to 1 or 2 whether the material is loaded with a stress higher or lower than the fatigue limit. Eq. (11) shows
well the nonlinear behaviour of the fatigue damage:
�
 the equivalent stress is a nonlinear function of the stress tensor;

�
 the relationship between N and Σ is nonlinear;

�
 the S–N curve is discontinuous.
The fatigue damage due to a certain frequency ω can now be discussed. It is not directly affected by the frequency itself,
but, given a fixed period of time ΔT , the number of load cycles is directly proportional to it

n ωð Þ ¼ ω

2π
ΔT # cyclesð Þ� �

(12)

Therefore, the damage can be easily computed using Miner's formula (based on the Palmgren-Miner linear damage
hypothesis [11,12]) as

D ξ;ωð Þ ¼ nðωÞ
Nðξ;ωÞ ¼

ωΔT
2πNðξ;ωÞ (13)

where Dðξ;ωÞ is the damage accumulated during the ΔT period in the position ξ of the structure because of the vibration
component at the frequency ω.

Introducing Eq. (11) into (13), the damage function becomes
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Finally, the total damage can be computed integrating Eq. (14) as follows:

DðξÞ ¼
Z þ1

0
Dðξ;ωÞ dω (15)

where DðξÞ is the total damage cumulated in the time period ΔT in the position ξ of the structure.
Because of its complexity, Eq. (15), which takes into account the whole fatigue problem, cannot be directly used for

control law synthesis. Nevertheless it represents an important milestone from which the following considerations can be
drawn:
1.
 The damage Dðξ;ωÞ is directly proportional to the frequency ω. This means that, keeping constant all the other quantities
(mode shapes, stress amplitude, etc.), the higher the structure load frequency, the higher the structure damage.
2.
 As shown in Fig. 1, the S–N curve slope above the fatigue limit is higher than below, i.e. b1ob2. Indeed, the damage
induced by a load ΣeqZΣlim is significantly more important. For these reasons, a control law that aims to reduce fatigue
damage should focus mainly on the oscillations with amplitude greater than the fatigue limit.
3.
 Whether modal displacements are normalized to the maximum modal shape physical displacement, the stress ½ ~ri�
proves monotone with the mode eigenfrequency. This is because higher frequency modes are characterized by higher
modal shape complexity and consequently by more dangerous strains and stresses on the structure.
4.
 Although discussion has been generic, a hypothesis is needed for Eq. (15): each harmonic component of ½Σ� contributes
separately to the overall damage induced onto the structure. This means that each harmonic oscillation of the equivalent
stress could be separately counted in Miner's method. In fact, to compute the number of fatigue cycles affecting the
structure, counting methods such as the Rainflow are commonly used. However, Eq. (15) highlights the main parameters
affecting the fatigue damage.

These considerations permit, as shown in the section below, synthesis of a suitable control logic for fatigue damage
reduction.

3. The control algorithm

The aim of the control synthesis is to implement an optimal control problem [14,15] that reduces structure vibrations
taking into account the fatigue issues introduced above. In fact, control design consists in the definition of the two matrices



½Q � and ½R� of the generic quadratic functional

Jr ¼
Z 1

0
½xT ½Q �xþuT

c ½R�uc� dt (16)

which can be solved with the well-known Continuous Algebraic Riccati Equation (CARE).
Below, the Fatigue Linear Quadratic Regulator (FLQR) is presented, initially as an optimal feedback control and then in its

adaptive version, which extends its applicability to a wider number of cases.
3.1. Fatigue control logic

Starting from the considerations drawn in Section 2, since the control logic should not ignore the vibration control
problem, the ½Q � matrix has been designed as a sum of vibration ½Q v� and fatigue ½Q f � weighting matrices, i.e.

½Q � ¼ ½Q v�þ½Q f � (17)

Secondly, the ½R� matrix should ensure a consistent “minimum fuel” component in order to avoid high control forces and
consequent local damage effects. Hence, from the ½Rv� matrix (considering only the vibration problem), the ½R� has been
designed as

½R� ¼ ρf ½Rv� (18)

where ρf is a coefficient ensuring that for any ½Q f �
Jdiagð½Q v�þ½Q f �ÞJ2

Jdiagð½R�ÞJ2
¼ const (19)

where J � J2 operator represents the norm 2 of a vector.
Eq. (19) assumes a fundamental role in ensuring the “minimum fuel” component; whatever ½Q v� and ½Q f � are considered,

the control force amplitude is limited.
Particular attention has to be paid on the matrix ½Q f �. Assume that we know the Root Mean Square (rms) value of the

generic i-th modal component

qi ¼ rms qi
� �¼ 1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ T

0
q2i ðtÞ dt

s
(20)

The proposed matrix in state-space form is

Q f ¼
Q fr O
O Q fr

" #
(21)

where it is supposed to weight both modal velocity and displacement. The weighting matrix ½Q fr� is computed as

Q fr ¼ ½ω0;1a1;…;ω0;rar �T ½ω0;1a1;…;ω0;rar� (22)

where

ai ¼ α ~smax
eq;i

qi

∑r
j ¼ 1qj

(23)

In Eq. (23):
�
 The constant α regulates the relative component of ½Q f � and ½Q v� on overall control, i.e. its value imposes if the control
mainly acts as a vibration controller or for fatigue damage reduction.
�
 ~smax
eq;i is the maximum equivalent stress for the i-th modal shape. It takes into account that higher order modes

correspond to higher stresses.

�
 The ratio qi=∑r

j ¼ 1qjA ½0;1� allows the control effort to be concentrated on the most stressed modes. In fact, it is equal to
zero if qi ¼ 0 and equal to one if qj ¼ 0 for any ja i and is an indicator of the disturbance frequency distribution along
the controlled frequency band. Therefore, if qi is greater than the other modal components the optimal control will focus
on that mode.

Then, to complete the definition of ½Q fr�, each coefficient ai is multiplied by ω0;i (the i-th system natural frequency). Indeed, if
for example the qi and ai of two modes were high compared to others, it would mean that the system is mainly excited by a
disturbance with an harmonic component at those modes' frequencies. However, for the fatigue damage problem, the
higher frequency mode will be more critical.



Fig. 2. The FLQR block diagram.
3.2. Adaptive fatigue control

The matrix ½Q f �, defined in the previous section, is constructed on the hypothesis that the modal components rms (qi) are
known at the control design stage and do not change during the structure's life. However, this is not generally true and
therefore an alternative solution is required. The proposed solution is an adaptive control logic [16]. In particular the
adaptive version of fatigue control, whose complete block diagram is shown in Fig. 2, will be referred to as Fatigue Linear
Quadratic Regulator (FLQR).

The modal state estimation of the system qi(t) is known as an output of the Kalman filter [17,18] and, therefore, it can be
used to update, at a fixed time interval Tupdate, the modal coordinate rms values (q̂ i ¼ rmsðq̂iÞ for any i¼ 1;…;m) and,
consequently, the ½Q f � matrix. Finally, the control gains are computed solving the CARE. The feasibility of such a solution lies
in an optimized algorithm that can solve the CARE in a relatively short computing time, if compared to the Tupdate,
considering the disturbance characteristics and the model order.

Summarizing, for each time interval Tupdate, the FLQR logic performs the following operations:
�
 the state estimator observes and records the state variables qi(t) and, at the end of the time interval, it computes the
modal components rms (qiÞ;
�
 the adaptive controller computes ½R� and ½Q �, according to Eqs. (17)–(23), and performs the CARE optimization returning
the new control gain matrix ½Gr�ðk � TupdateÞ;
�
 because of the discontinuity of the control forces at the updating switch, the control matrix is changed only if the
structure stress reaches a value higher than a limit threshold s0

ŝmax ¼ ∑
m

i ¼ 1
~smax
eq;i q̂ i4s0 (24)

where ŝmax is an indicator of the stress intensity. It does not represent the actual maximum equivalent stress on the
structure because firstly the maximum modal stresses for different modes are not in the same position on the structure
and secondly the modal displacements may not be in phase. In any case, it represents a conservative approximation of
the structure maximum stress.

An experimental validation of the control logic presented is reported in the following section.
4. Experimental validation

This section shows a brief description of the test rig and discusses the experimental validation and the performance of
the FLQR control logic.
4.1. The test bench

A general view of the test bench is given in Fig. 3. It represents the two sides of the smart structure (a carbon fibre epoxy
plate [19,20]) that was to be controlled with its actuators and sensor. The experiments involve a variety of devices and



Fig. 3. The experimental test rig: piezoelectric patches and accelerometers on side 1 (left) and strain gauges on side 2 (right).
a complete description of the test rig elements is
1.
 Carbon-fibre plate: a 1.1�0.95 m carbon fibre epoxy plate, 1.4 mm thick and made up of seven parallel 0–901 ply layers.

2.
 Frame: a rectangular steel frame used to clamp the plate. It consisted of three L beams at the plate's clamped sides and a

tubular beam in correspondence with the plate's free edge; a tensioning system was implemented on the tubular beam
in order to introduce pre-tensioning in the system.
3.
 Piezoelectric patches: four patches, of which patches I, II and III (Fig. 3 on the left) were used to actuate the control while
the fourth generated the disturbances.
4.
 Strain gauges: seven uniaxial strain gauges; strain gauges 1, 3, 4 and 5 (Fig. 3 on the right) were respectively co-located
with piezoelectric patches IV, I, II and III, and were used simply as direct measurements for modal identification; strain
gauges 2, 6 and 7 were used also for the control observer.
5.
 Accelerometers: three piezoelectric accelerometers used for the control logics observer and numbered as sensors 8, 9 and 10
(Fig. 3 on the left).
A detailed scheme of the whole experimental rig is shown in Fig. 4.
The control logics, developed on the experimental test bench, aimed to control the ½0;50� Hz frequency band,

corresponding to the first 9 modes, and to observe the first 15 modes.
System identification was effected by setting the Frequency Response Function (FRF) between the 4 inputs (piezoelectric

patches) and the 10 outputs (accelerometers and strain gauges). This numerical model was adopted both for numerical tests
and the implementation of the control logic.

The results are discussed in terms of both FRF and Rainflow counting methods [21–23].
4.2. FLQR results

As previously discussed, FLQR is an adaptive control logic that performs a control matrix update at fixed time intervals as
a function of the measured oscillation amplitude of the system state. At the first time interval (when the control is switched
on) the FLQR coincides with a classical Linear Quadratic Regulator (LQR) control logic, then it changes, setting up the
vibration state of the structure and the fatigue damage minimization objective. In this way, the adaptive FLQR control was
compared with LQR control.

During this experimental campaign the fatigue functional, defined in Section 3, requires knowledge of the maximum
modal stresses ( ~smax

eq;i ), i.e. the set of maximum stresses along the structure due to unitary displacement for each mode. Since
the model used for the control synthesis was built using MIMO identification, the modal stresses were known only in
correspondence with the strain gauge positions. Therefore, it was assumed that the maximum modal stress for each mode
was registered on strain gauge 7 (Fig. 3 on the right). This assumption was proved with a structure FEM model.

In the following, two main tests with two different disturbances are analysed in detail:
1.
 a random noise over the ½0;50� Hz frequency band (the overall range containing all the controlled modes);

2.
 a double harmonic disturbance at 10.5 and 48.1 Hz (corresponding to the 1st and 9th controlled modes).
These tests are presented in the sections below, and show how FLQR logic can reduce fatigue damage on the structure.
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Fig. 5. Numerical FRF between the disturbance piezoelectric patch IV and accelerometer 8 for the following configurations: NC, LQR and FLQR for a
Random Disturbance in the ½0;50� Hz frequency band (test 1).
4.3. Test 1: Random Disturbance

The first test performed during the experimental validation aimed to describe the system response to white noise
random excitation over the whole controlled frequency band, i.e. ½0;50� Hz. The numerical and experimental results in terms
of FRF between disturbance and accelerometer 8 are shown in Figs. 5 and 6 respectively.

To better explain the results, two main considerations, outlined in Section 3, should be recalled:
�
 higher order modes present higher modal stresses for equal maximum displacements;

�
 for equal stress oscillation amplitudes, the higher frequency ones are more dangerous in terms of structure fatigue life

owing to the higher number of accumulated cycles.
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Fig. 7. Experimental Rainflow histogram (i.e. each bar represents the number of cycles associated to a certain amplitude and a mean value) for a ½0;50� Hz
Random Disturbance (test 1) on NC (a), LQR (b) and FLQR (c) system.
From the figures it can be seen that FLQR relaxes control on the first modes and concentrates energy on the higher ones. This
result shows one of the most important achievements of the proposed logic. It is confirmed by the values of the weight
matrices Qv (LQR) and Q (FLQR)

diagðQvÞ ¼ ½0:4 0:4 0:4 0:4 0:4 0:4 0:4 0:4 0:4�



diagðQ Þ ¼ ½2:0e�4 4:0e�4 2:7e�3 1:5e�1 1:7e2 2:2e1 6:2e1 1:1e2 3:9e2� (25)

It is possible to notice that the most significant modes from the fatigue point of view are the 9th, the 8th and the 5th. The
damping increase provided by FLQR on these modes is particularly evident in the phase diagram in Figs. 5 and 6.

Fig. 7 shows the Rainflow histograms for Not Controlled (NC), LQR and FLQR controlled systems. Each bar represents the
number of cycles, in the whole time history, with given mean and amplitude stresses. The analysis highlights that LQR and
FLQR logics reduce the number of higher amplitude cycles, and the FLQR histogram is almost null over 1.5 MPa. Switching
from LQR to FLQR and applying almost the same control forces in terms of amplitude, the effect on structure fatigue life is
notably improved.

These qualitative considerations are confirmed by the structure damage index computed using Miner's formula and the
corresponding percentage improvement computed from NC to LQR and from LQR to FLQR (Table 1). In the table the damage
analysis is reported for both the most critical point (strain gauge 7) and the average of all the strain gauges, and they are
respectively denoted Max Damage and Mean Damage.

4.4. Test 2: multi-harmonic disturbance

This second example aimed to supply further proof of the concept that optimal vibration control does not correspond to
optimal fatigue damage control. The test configuration is consistent with that presented in the previous sections,
considering the FRF and Rainflow tests for the NC, LQR and FLQR systems. In this case the disturbances are represented
by the sum of two harmonics having the same amplitude and different frequencies, f 1 ¼ 10:5 Hz and f 2 ¼ 48:1 Hz. Both of
them excite the system around a resonance, more precisely the 1st and the 9th resonances. For the reasons explained above,
the higher frequency disturbance induces greater fatigue damage on the structure. Therefore, the adaptive logic concen-
trates the greatest control effort on the ninth mode.
Table 1
Cumulative structure damage on a ΔT ¼ 300 s time history for the Not Controlled
(NC) System, and LQR and FLQR controlled system for a ½0;50� Hz Random
Disturbance (test 1).

NC LQR FLQR

Max damage (%) 9:40e�5 1:45e�6 5:56e�7
Mean damage (%) 3:21e�5 4:96e�7 2:23e�7

|{z} |{z}
Max damage reduction (%) 98.46 61.63
Mean damage reduction (%) 98.46 54.98
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Fig. 8. Numerical FRF between the disturbance piezoelectric patch IV and accelerometer 8 for the following configurations: NC, LQR and FLQR for 10.5 Hz
and 48.0 Hz harmonic disturbances (test 2).
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Fig. 9. Experimental FRF between the disturbance piezoelectric patch IV and accelerometer 8 for the following configurations: NC, LQR and FLQR for
10.5 Hz and 48.0 Hz harmonic disturbances (test 2).

Table 2
Cumulative structure damage on a ΔT ¼ 300 s time history for the Not Controlled
(NC) System, and LQR and FLQR controlled system for a ½0;50� Hz harmonic
disturbances (test 2).

NC LQR FLQR

Max damage (%) 1:16e�4 2:41e�6 4:59e�7
Mean damage (%) 4:76e�5 9:50e�7 2:14e�7

|{z} |{z}
Max damage reduction (%) 97.92 80.95
Mean damage reduction (%) 98.00 77.47
The numerical and experimental FRF (Figs. 8 and 9) show that FLQR control (adapted for this disturbance condition) is
stronger than LQR control on the ninth mode. A relaxation on the first mode is also present. This is because the control logic
perceives the ninth mode as the most dangerous for structure fatigue life (higher stress and higher frequency).

The benefits of this control logic are shown by the fatigue damage reduction for the FLQR logic that can be found in
Table 2 and Rainflow histograms in Fig. 10.

5. Conclusions

The main objective of this research was to define a control law for smart structures integrating fatigue damage and
vibration reduction. An in-depth analysis of the fatigue phenomenon in the frequency domain was presented, showing that
fatigue damage:
�
 grows linearly with the structure vibration frequency;

�
 is nonlinear with the oscillation amplitude owing to the S–N curve shape and the equivalent stress criterion.
For these reasons the proposed control logic, denominated FLQR (Fatigue Linear Quadratic Regulator), was designed as an
adaptive optimal control logic, which updates the control gains minimizing a quadratic formula that is a function of the
measured modal vibration amplitude.

This control logic was compared with LQR and tested both numerically and experimentally. In particular, the
experimentation was carried out on a thin carbon fibre epoxy plate, aiming to control the first 9 modes (½0;50� Hz) and
observing the first 15 ones (½0;90� Hz). The results showed an interesting improvement in terms of structure fatigue damage
both from the qualitative and quantitative points of view. Damage is reduced by one order of magnitude between the LQR
and the FLQR controlled systems, with a consequent increase of structure lifetime.
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Fig. 10. Experimental Rainflow histogram (i.e. each bar represents the number of cycles associated to a certain amplitude and a mean value) for 10.5 Hz
and 48.0 Hz harmonic disturbances (test 2) on NC (a), LQR (b) and FLQR (c) system.
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