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Non-modal analysis of coaxial jets

D. Montagnani, F. Auteri†

Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34,
20156 Milano, Italy

(Received xx; revised xx; accepted xx)

In this work, we investigate the subcritical behaviour of a coaxial jet subject to small-
amplitude perturbations at the inflow. We use the results of optimal harmonic analysis
and dynamic-mode decomposition (DMD) of the flow fields at a Reynolds number,
based on the diameter and maximum velocity of the inner inlet pipe, Re = 200, to
show that, for a sufficiently low value of the Reynolds number, the coherent structures
appearing in the perturbed dynamics of the nonlinear system can be effectively described
in terms of the harmonic response of the flow. We also show that, for larger subcritical
values of the Reynolds number, Re = 400, a huge amplification of disturbances quickly
makes nonlinear effects relevant. Large-scale, near-field coherent dynamics can be still
interpreted as an evidence of the preferred response of the system, using DMD of the
flow to describe the noise-driven transition to turbulence downstream. The influence of
the axial velocity ratio and the rotational motion of the outer stream is assessed as
well. Harmonic analysis successfully predicts the prevalence of rotating helical structures
observed in the columnar flow for moderate swirl of the outer jet. Finally, we compare the
receptivity of the nonlinear system to the optimal linear perturbations with its response
to stochastic forcing. Optimal forcing is still more effective than white noise in driving
the system to a turbulent state, where nonlinear dynamics prevail. We still conclude
that linear optimal forcing may be relevant in investigating the transition to turbulence
in coaxial jets, even if more about the transition process could be learnt from a more
expensive nonlinear analysis.

Key words:

1. Introduction

Coaxial jets are employed in several industrial applications, such as in noise control,
mixing processes and energy conversion by combustion. Atomizers, burners and mixers
exploit the interpenetration of the two streams as an effective mixing mechanism, since
the external jet can destabilise the internal jet and, as a consequence, increase mixing by
promoting transition to turbulence, see (Villermaux & Rehab 2000) and the references
therein. Several aeronautical applications use coaxial jets to reduce the noise produced
by the single jet layout (Williams et al. 1969). Swirling jets are often employed in
combustors to enhance the stability of flame anchoring thus improving the efficiency
of the combustion and reducing the NOx emissions (Lefebvre 1998).

Coaxial jets are also interesting to investigate the subcritical transition process in par-
allel or quasi-parallel flows. Indeed jets, and in particular coaxial jets, exhibit subcritical
transition such as the Couette and Poiseuille flows and boundary layers. With respect to

† Email address for correspondence: franco.auteri@polimi.it



2 D. Montagnani, F. Auteri

the abovementioned flows, this phenomenon is particularly notable in coaxial jets that
exhibit a very strong nonnormal behaviour (Canton et al. 2017). This property makes
them ideal for mixing (Schumaker & Driscoll 2012), especially for low Reynolds number
applications (Saiki et al. 2011).
The mixing and noise-generation properties of coaxial jets are strongly related to their

stability since the flow behaviour depends on the dynamics of large-scale coherent vortical
structures produced by the amplification of external perturbations. Jets, and coaxial
jets in particular, are known to be convectively unstable (Chomaz 2005), with large
amplification rates (Garnaud et al. 2013a,b; Canton et al. 2017). The instability modes
are usually referred to as varicose, when the unstable perturbation is axisymmetric,
sinuous, when the perturbation appears as a sinusoidal transverse wave propagating
along the jet axis and they have azimuthal wavenumber |m| = 1, helical, when the
perturbation resembles a helix with wavenumber |m| > 1. When swirl is present in the
jet, helical modes are usually characterised by a spiral motion. This motion is termed co-
winding, if the helix winds in the same direction of the rotation of the jet, otherwise they
are termed counter-winding or retrograde. Several studies in the past have investigated
the linear stability of jets in the incompressible and compressible regimes. The inviscid
stability of parallel jets was investigated by Batchelor & Gill (1962). They found a sinuous
unstable perturbation with m = 1 for a top-hat velocity profile, for which the velocity is
constant in the central region and then goes rapidly to zero, but noticed a high impact
of the velocity profile on the stability properties of the flow. Crighton & Gaster (1976)
emphasized the importance of nonparallel effects and of the nozzle region. These effects
were fully taken into account by Garnaud et al. (2013a) and Garnaud et al. (2013b) who
showed the inadequacy of a modal stability analysis to understand the stability of the
flow, while pointing out the importance of convective instability.

The swirling jet has been investigated theoretically and numerically exploiting different
baseflows: the Batchelor vortex (Leibovich & Stewartson 1983; Khorrami 1991; Delbende
& Rossi 2005), a standard or screened Rankine vortex (Loiseleux et al. 1998; Gallaire &
Chomaz 2003a) or other flows (Martin & Meiburg 1994, 1996; Loiseleux et al. 2000;
Gallaire & Chomaz 2003b). The reported results show that instabilities are mainly
convective, related to the Kelvin–Helmholtz and centrifugal mechanisms. A stability
criterion for the centrifugal instability has been formulated for vortices by Leibovich
& Stewartson (1983), then extended by Billant & Gallaire (2013) to swirling-jet flows.

Most of the experimental activity on swirling round jets has been carried out for
moderate to high Reynolds numbers, see (Örlü & Alfredsson 2008) and the references
therein. More relevant to the present work are experiments in the low Reynolds number
range. Loiseleux & Chomaz (2003) considered two different Reynolds numbers, 740 and
1490. For low swirl, the flow behaviour is similar to that observed for a non-swirling jet,
namely it is dominated by axisymmetric perturbations whose nonlinear evolution first
leads to vortex roll up and then to vortex pairing. A successive instability of the braid
connecting to successive vortices, similar to that observed for an axisymmetric jet but
featuring corotating vortices, rapidly leads to turbulence. For higher swirl numbers in
the range (0.6, 1), the flow is dominated by the wavenumber m = +2. For 1 6 SLC 6 1.3,
strong interaction between the axisymmetric mode and the m = +2 mode is observed,
leading to the emergence of the m = +1 mode. Vortex breakdown is observed for SLC >

1.3. Experiments carried out by Liang & Maxworthy (2005) for a Reynolds number
Re = 1000 showed two different regimes before vortex breakdown. Results similar to
those by Loiseleux & Chomaz (2003) are reported in the low swirl regime. In contrast,
for intermediate swirl SLM & 0.6, the initial part of the flow is dominated by helical modes
with wavenumbersm = +2 andm = +3. For swirl numbers higher than 0.83÷0.86 vortex
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breakdown was observed. We note in passing that the definition of swirl number SLC and
SLM in the two works is different and different from the definition adopted here, so that
the thresholds are not directly comparable.
The theoretical investigation of the stability properties of coaxial jets is more recent.

With respect to the round jet, coaxial jets are characterised by several independent
parameters, the outer-to-inner ratio RD, the non-dimensional thickness s of the wall
separating the two incoming flows, the Reynolds number Re, the ratio between the
maximum axial component of the velocity of the outer and inner jets ru, the swirl numbers
of the inner and outer jet. Michalke (1999) first analysed the inviscid spatio-temporal
stability of a parallel annular jet, with possible backflow in the jet core. He found that
an absolute instability can arise only for the perturbation with azimuthal wavenumber
m = +1. If a backflow is present, the absolute instability occurs with or without swirl,
while a swirl is necessary if there is no backflow. Talamelli & Gavarini (2006) considered
the inviscid linear stability analysis of incompressible coaxial jets mimicking the presence
of a blunt wall separating the two jets by a low speed wake in the velocity profile. They
found an absolute instability limited to negative or small positive values of the minimum
velocity imposed in the wake. They also found that the amplification factor grows as the
shear layers thin out. Their findings were substantially confirmed by a global stability
analysis by Canton et al. (2017) showing that the flow is absolutely unstable for Reynolds
numbers above 1356 when a blunt separating wall is present. Canton et al. (2017) also
showed that the subcritical base flow is convectively unstable with huge amplification of
the initial perturbations. Weller-Calvo et al. (2015) extended the analysis carried out by
Talamelli & Gavarini (2006) to account for a swirl motion.
An extensive experimental activity has investigated coaxial jets. Several works inves-

tigated the fully turbulent coaxial jets both without (Champagne & Wygnanski 1971;
Buresti et al. 1994; Sadr & Klewicki 2003) and with swirl (Ribeiro & Whitelaw 1980;
Champagne & Kromat 2000), reporting mainly the mean flow properties and turbulence
statistics. More germane to the present investigation are experiments carried out for low
and moderate Reynolds number, where details of the instability and transition process
are available. In their experiments, Dahm et al. (1992) investigated non-swirling jets for
three moderate Reynolds numbers (1333, 5867, 10668). For small velocity ratios they
observed a sinuous instability with wavenumber m = ±1 while for ru > 0.71 they
observed the development of an axisymmetric instability. For the higher velocity ratio
tested, ru = 1.14, they observed lock in of the perturbations in the outer and inner shear
layers. This phenomenon was observed also by Tang & Ko (1994) for Re = 1700 and
ru = 3.33. The results presented by Wicker & Eaton (1994) show a different behaviour.
For low velocity ratios, ru 6 0.71, they observed the development of axisymmetric
structures, before further instabilities break the symmetry, while for ru = 1.23 and
1.45 they observed a helical instability developing in the central jet. When forcing is
applied, only axisymmetric vortex rings are produced, with a peak in the response for a
Strouhal number St = 0.5. Rehab et al. (1997) observed that a recirculation region forms
for velocity ratios higher that approximately 8. For lower velocity ratios, but still quite
high with respect to those investigated here, they found the outer shear layer dominating
the instability process. An important appreciation of the role of the velocity ratio was
provided by Segalini & Talamelli (2011), who found three different behaviours: for low
velocity ratio, the frequency of the instability depends on the velocity of the internal jet,
for high velocity ratios it depends on the velocity of the external jet, while for intermediate
velocity ratios it depends on both.
The transition process in incompressible coaxial jets without swirl has been investi-

gated also numerically by da Silva et al. (2003); Balarac & Métais (2005); Balarac et al.
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(2007) without and with external forcing. In particular, they found that the thickness of
the boundary layer at the nozzle exit has a strong influence on the instability process.
As one may expect, the thinner the boundary layer the stronger the instability. For low
velocity ratios they found the initial instability dominated by a sinuous perturbation with
wavenumber 1. A secondary instability is found where longitudinal vortices are formed
in the braid between successive primary vortices that rapidly leads to transition. A linear
spreading of the jet is observed after transition. When axisymmetric forcing is applied,
strong axisymmetric vortices are formed. Azimuthal excitation leads to the appearance
of relatively short wavelengths undulations in the main vortices whose wavenumber is
selected by forcing (Balarac et al. 2007).
To clarify the instability mechanisms that eventually lead to transition in coaxial jets,

even without an absolute instability, and in particular to assess the role that inflow
perturbations play in this process, in this work, we investigate the harmonic response of
non-swirling coaxial jets in a region of the space of parameters Re−ru where the system
is globally stable. Then the influence of the swirl parameter S of the outer stream is
assessed on the columnar state of coaxial jets with unitary velocity ratio. The base flow
is assumed axisymmetric and the homogeneity of the azimuthal coordinate θ allows us to
exploit the Fourier decomposition of the perturbation fields to obtain the linear dynamics
of the system as a combination of the independent evolution of the modes associated with
different azimuthal wave numbers, without resorting to time-stepping techniques. With
respect to Canton et al. (2017), we adopt a different perspective. Firstly, we analyse
the response of the system to inflow disturbances, since this is probably one of the
most likely ways disturbances enter the flow field. Moreover, as shown by Garnaud et al.

(2013b), the responses of the flow to optimal inlet forcing and optimal volume forcing are
qualitatively very similar at the same frequency. Secondly, we restrict our analysis to lower
subcritical Reynolds numbers, to avoid the huge amplifications observed for Reynolds
numbers as low as 1000. Thirdly, we analyse the response of the base flow to both
axisymmetric and nonsymmetric forcing. Fourth, the effect of swirl is here considered for
the first time. Three-dimensional nonlinear simulations with perturbed inflow conditions
are also performed in order to verify the validity of the assumptions made, to verify the
results obtained and the predominance of the preferred response. Both Dynamic Mode
Decomposition and Fourier decomposition of time snapshots are used to describe the
global dynamics of the system and to compare the structures emerging in the nonlinear
system with the prediction of the linear non-modal analysis.
The paper is organised as follows. The flow configuration is presented in §2. The non-

modal harmonic response is recalled, and the numerical approach is described in §3. The
influence of the velocity ratio ru and the swirl parameter S on the base flow and on the
harmonic response of axisymmetric base flow is presented in §4 and §5, respectively. The
results of fully three-dimensional perturbed direct numerical simulations are presented
in §6. Conclusions are drawn in §7.

2. Flow configuration

The incompressible flow produced by two cylindrical coaxial jets is considered here.
The reference length is chosen as the diameter D̃i of the inner pipe and the reference
velocity as the maximum of the inner axial velocity profile, Ũa. A slice of the numerical
domain is depicted in figure 1. The outer-to-inner ratio of the pipe diameters is RD = 2.0,
the non-dimensional thickness of the septum is s = 0.1. The length of the inlet pipes is
set to ℓin = 2.5. The length and the radius of the numerical domain are set to Lc = 60.0
and Rc = 8.0 (Canton et al. 2017). The Reynolds number is defined as Re = ŨaD̃i/ν̃,
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Figure 1: Azimuthal slice of the three-dimensional axisymmetric domain, coinciding with
the numerical domain used for the response analysis of the axisymmetric base flow. Figure
not drawn to scale.

where ν̃ is the constant kinematic viscosity of the fluid. The dynamics of the flow is
governed by the non-dimensional incompressible Navier-Stokes equations





∂U

∂t
+ (U ·∇)U − Re−1∆U +∇P = 0,

∇ ·U = 0,

(2.1)

where U = U(r, t) denotes the nondimensional velocity field, and P = P (r, t) the nondi-
mensional reduced pressure field. A no-slip condition is imposed on the wall boundary
Γw, while a homogeneous Neumann condition is assumed on Γo, Re

−1n̂ ·∇U −P n̂ = 0.
Axisymmetry conditions, Ur = 0, Uθ = 0, ∂Ur/∂z = 0, hold on the axis. On the inner
and outer inlet boundaries, Γin,i and Γin,o respectively, the axial velocity component
is set according to the expressions Uz,i(r) and Uz,o(r) used by Canton et al. (2017) to
reproduce the mean axial velocity profiles measured by Segalini & Talamelli (2011). The
azimuthal velocity profile Uθ,o(r) = S Uz,o(r) at the inflow boundary of the outer jet
Γin,o is chosen proportional to the axial profile Uz,o to have a swirl number S, defined
as the ratio of these two velocity components, independent of the radius. This definition
differs from that mainly used in the literature for the single jet, see for instance (Liang
& Maxworthy 2005), and also from that adopted by Gallaire & Chomaz (2003b), owing
to the difference in the flows.

U
∣∣
Γin,i

= Uz,i(r)ẑ, (2.2)

U
∣∣
Γin,o

= ruUz,o(r)ẑ + ruUθ,o(r)θ̂, (2.3)

with

Uz,i(r) = tanh [bi (1− 2r)] , (2.4a)

Uz,o(r) = tanh

[
bo

(
1−

∣∣∣∣
2r − (Ro,1 +Ro,2)

Ro,1 −Ro,2

∣∣∣∣
)]

, (2.4b)

where Ro,1 and Ro,2 are the internal and external radii of the annular duct and the two
parameters bi and bo control the thickness of the boundary layers: both values are set to
5.0 as previously done by Canton et al. (2017).
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3. Mathematical formulation

The amplification of a small-amplitude stochastic forcing f , whose evolution is gov-
erned by the linearised system u = Rf , can be obtained as a function of the harmonic
response of the system, over the whole spectrum of frequencies (Farrell & Ioannou 1996).
Boujo & Gallaire (2015) expressed the ensemble variance

E =
1

2π

+∞∫

−∞

∑

k

G2
k(ω)dω =

1

π

+∞∫

0

∑

k

G2
k(ω)dω (3.1)

as a function of the optimal and suboptimal harmonic gains Gk, defined either as the
singular values of the linearised Navier–Stokes operator R or the square root of the
eigenvalues of the Hermitian operator R†R.

The harmonic response of the flow to velocity perturbations at the inflow is investigated
by a non-modal analysis of the linearised flow around the steady axisymmetric solution
of the Navier–Stokes equations (2.1). Both axisymmetric and non-axisymmetric pertur-
bations are investigated. The continuity of the fields implies that perturbations must be
2π-periodic in θ and therefore they can be effectively represented by their Fourier series

(u, p)(r, θ, z, t) = q(r, θ, z, t) =

∞∑

m=−∞

qm(r, z, t)eimθ. (3.2)

Since the perturbation q(r, t) is real, the complex-conjugate symmetry q−m = q∗
m holds

for the series coefficients. The harmonic response of the system to small-amplitude
perturbations is described in the frequency domain by the Fourier transform of the
linearised Navier–Stokes equations

{
iωû+ (U ·∇) û+ (û ·∇)U − Re−1∆û+∇p̂ = 0,

∇ · û = 0,
(3.3)

supplied with homogeneous Dirichlet and Neumann boundary conditions on Γw and Γo,
respectively, and wavenumber-dependent symmetry conditions on the axis. The harmonic
forcing at the inflow is introduced as the essential boundary condition û = f̂ on Γi. By
the linearity of this model, with reference to the series (3.2), the dynamics of the system
is obtained as a combination of the independent evolution of the modes with different
wave numbers, governed by the complex equations

{
iωûm+(U ·∇m) ûm+(ûm ·∇0)U−Re−1∆mûm +∇mp̂m = 0,

∇m ·ûm = 0,
(3.4)

where (ûm, p̂m)(r, ω) indicates the contribution of the m-th wavenumber (um, pm)(r, t)
to the perturbation field and the complex operators ∇m, ∆m for axisymmetric fields are
obtained by formally replacing the partial derivative ∂/∂θ in the original equations with
the factor im in the transformed equations. The phase velocity of a perturbation with
wavenumber m and frequency ω is obtained as Ωm = −ω/m by explicitly writing the
inverse Fourier transform

q(r, t) =
1

2π

∫ ∞

−∞

q̂m(r, z, ω)ei(mθ+ωt). (3.5)

The harmonic response of the axisymmetric base flow is computed with a finite element
solver of the Navier–Stokes equations in cylindrical coordinates, developed starting from
the well-validated baseline code resulting from a collaboration between Politecnico di
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Figure 2: Velocity profile in the inlet pipes. (a) Axial velocity for Re = 200, S = 0:
ru = 1.0 (solid line), ru = 2.0 (dashed line). In the outer pipe, the velocity is normalised
with the maximum value of the axial velocity at the inflow. Axial (b) and azimuthal (c)
velocity in the outer pipe for Re = 200, ru = 1.0: S = 0.5 (dotted line), S = 1.0 (dashed
line).

Milano and KTH (Canton et al. 2017). The discrete form of the fields and the weak
formulation of the problem is built on the standard Taylor–Hood P2–P1 finite elements of
an unstructured triangulation (Dussin et al. 2009) of the numerical domain corresponding
to an azimuthal slice of the actual domain. The details of the grid are given in appendix
A. The axisymmetric flow is computed by Newton’s iteration, while the computation of
the harmonic response follows Garnaud et al. (2013b). The spectral element code Nek5000
is used for three-dimensional direct numerical simulations. This is a massively parallel,
open-source code based on a spatial discretisation by hexahedral spectral elements with
Lagrangian tensor-product bases built on Gauss–Legendre–Lobatto points. A second-
order fractional step method is used to advance the solution in time, with a BDF2
implicit treatment of the viscous term and a consistent explicit treatment of the nonlinear
term in the momentum equation (Fischer et al. 2008). The compatible formulation PN–
PN−2 is used for the velocity and pressure fields, with N = 7. The initial condition
coincides with the axisymmetric base flow used for the harmonic response. Dynamic mode
decomposition (Schmid 2010) is used to describe the global behaviour of the perturbed
systems by means of Koopman mode analysis.

4. Base flow

The base flow is briefly described as a function of the outer-to-inner axial velocity
ratio ru and of the swirl parameter S. As observed by Canton et al. (2017), the inlet
axial velocity profile, that mimics the mean velocity measured by Segalini & Talamelli
(2011) at higher Reynolds number, is gradually smeared along the inlet pipe, due to
the higher impact of viscous effects at this lower Reynolds number. The thickness of the
boundary layer grows along the pipe and the axial velocity profiles qualitatively approach
fully developed profiles with the maximum of the axial velocity profile that increases, as
shown in figure 2(a) and (b). The axial velocity profile, normalised with respect to the
velocity ratio ru, is almost independent of this parameter, as shown in figure 2(b) by
superimposing the normalised velocity profiles Uz/ru corresponding to different values
of ru. The shape of the azimuthal velocity profile changes along the outer pipe, while its
maximum value decreases, due to viscous dissipation, as shown in figure 2(c) for Re = 200
and ru = 1.0.
The velocity profiles of the non-swirling jets are depicted in figure 3 for several distances
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Figure 3: Influence of the velocity ratio ru on the (a) axial and (b) radial velocity fields
in the domain. Non-swirling jet for Re = 200, ru = 0.0 (dotted line), ru = 1.0 (solid line)
and ru = 2.0 (dashed line).

ru z = 10 z = 20 z = 30 z = 40 z = 50 z = 60

0.0 3.23 4.59 5.35 5.68 5.73 5.61
1.0 1.89 2.32 2.57 2.72 2.81 2.86
2.0 1.66 2.04 2.32 2.52 2.68 2.79

Table 1: Entrainment in stable non-swirling base flows. Ratio of the mass flow Q(z) =

2π
∫ R=3

r=0
Uz(r, z)rdr through circular surfaces orthogonal to the axis, and the mass flow

at the inflow, Qin =Qin,i + ruQin,o =0.593 + 1.732 ru. Re = 200.

from the orifice and for different values of the velocity ratio ru. In these non-swirling cases,
the azimuthal component of the velocity is zero for symmetry. No recirculation bubble has
been observed downstream of the septum separating the inlet ducts, for the values of the
parameters under investigation. For velocity ratios lower than ru = 1.0, the maximum
axial velocity is attained on the axis and no other local maxima associated with the
outer stream are observed for z > 10. In this case, a single shear layer characterises the
flow field in the region far from the nozzle, while three different shear layers are always
present near the nozzle owing to the presence of the blunt wall separating the inner and
outer jet. For ru = 2.0, a local maximum is attained in the domain for z > 10 and a
local minimum is observed on the axis for z 6 20. This behaviour of the axial velocity
for high velocity ratios is associated with a non-trivial radial velocity profile, as shown
in figure 3(b). For low velocity ratios, the positive values of Ur near the axis and the
negative values far from the axis are associated with the spreading of the jet core and
the entrainment process, respectively. For ru = 2.0, as the maximum of the axial velocity
moves from the outer stream towards the axis for z < 20, a negative radial velocity is
observed near the axis. Such a negative radial velocity is related, by incompressibility, to
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Figure 4: Influence of the swirl ratio S of the outer stream on the (a) axial, (b) radial
and (c) azimuthal velocity fields in the domain. Swirling jet for Re = 200 and ru = 1.0:
S = 0.0 (solid line), S = 0.5 (dotted line) and S = 1.0 (dashed line).

the transfer of momentum from the high-speed region of the jet to the near axis region,
and in fact is no longer observed when the maximum of the axial velocity eventually
reaches the axis.
The velocity field in the domain for jets with unitary velocity ratio and different values

of the swirl parameter is depicted in figure 4. As it is clear from the figure, the longitudinal
and radial velocity components of the base flow are quite insensitive to the swirl, for small
swirl ratios. Despite this fact, as it will be appreciated later on, this parameter can impact
the response of the flow to inflow perturbations quite dramatically.

5. Harmonic response

Despite this flow is absolutely stable, according to a global modal stability analysis
Canton et al. (2017), transition to turbulence in jets has been observed for Reynolds
numbers well below Re = 500 (Reynolds 1962). In fact, modal stability does not tell us
the whole story, since nonnormal systems, such as jets, may exhibit transient growth and
pseudo-resonance (Reddy & Henningson 1993; Schmid 2007), i.e. a large amplification
of initial perturbations and external forcing in a restricted range of frequencies due to
nonmodal growth mechanisms. Such an amplification of perturbations, that are always
present to a certain degree in an experiment, may lead to secondary instabilities and
eventually to turbulence (Blackburn et al. 2008a,b; Cantwell et al. 2010). The transient
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growth of axisymmetric perturbations has been already analysed by Canton et al. (2017),
that found huge amplification factors for a subcritical Reynolds number of 1000, while the
harmonic response has been investigated for the single jet by Garnaud et al. (2013b) for
the same Reynolds number. In this section, the harmonic response of the coaxial-jet flow
to small-amplitude inflow forcing is investigated to explain the preferred dynamics of the
system observed experimentally (Dahm et al. 1992) or by direct numerical simulations
with forcing applied at the inlet (Balarac et al. 2007). The nonlinear response of the flow
to inflow forcing is also investigated in §6 by direct numerical simulation to investigate
the relevance of the linear response when nonlinearities are present. A Reynolds number
lower than that employed in (Canton et al. 2017; Garnaud et al. 2013b) has been preferred
here to avoid the huge amplifications observed for Reynolds numbers of the order of 1000
and therefore to better appreciate the spatial evolution of perturbations.

5.1. Non-swirling jet

Firstly, the effect of the velocity ratio ru on the harmonic response of non-swirling jets
with Re = 200 is investigated. The relative contributions gk(ω) = Gk(ω)/maxi,ω{Gi(ω)}
of the optimal and suboptimal responses associated with different wavenumbers are
represented in figure 5(a-c) as functions of the frequency of the harmonic perturbations,
for different values of the velocity ratio ru. The shape of the optimal responses is
depicted in figure 5(d-f). The optimal sinuous and varicose responses, with azimuthal
wavenumbers m = +1 and m = 0, respectively, prevail over the response to forcing
with larger wavenumbers, so that results only for these two wavenumbers are reported
in figure 7. For instance, the harmonic gain of the optimal sinuous response of the single
jet is approximately three times larger than the optimal axisymmetric gain. Dominant
perturbations with m = 0 and m = +1 were found also by Mattingly & Chang (1974),
by an inviscid local linear stability analysis of the round jet, but in that case the m = 0
perturbation was found to be more amplified. This result is similar to what has been
found for the single jet by Morris (1976), see also (Danaila et al. 1997). The varicose and
sinuous modes emerge as dominant for different velocity ratios also in coaxial jets. It is
interesting to note that Wicker & Eaton (1994) found that varicose and sinuous large-
scale coherent structures are still dominating the flow behaviour at Reynolds numbers
orders of magnitude higher. For low values of the velocity ratio, a local maximum appears
on the axisymmetric optimal response, while both the frequency and the shape of the
preferred axisymmetric response undergo substantial changes in the range of velocity
ratio ru ∈ (0.5, 1.0), as shown in figure 5(b-c,e-f). A second local maximum appears
in the optimal harmonic response at ω = 0.67, it becomes the global maximum as the
velocity ratio exceeds ru = 0.75, while the low-frequency maximum disappears for larger
values of ru, see figure 6.
The optimal harmonic gain and the frequency of the pseudo-resonance peaks for m = 0

and m = +1 are shown in figure 7(a) and (b), respectively, as functions of the velocity
ratio ru. Two different regions can be distinguished in the two plots. For small velocity
ratios, ru . 0.5, the maximum harmonic gain and its frequency are almost insensitive
to ru. We conjecture that in this case the flow behaviour is dominated by the inner
jet as in (Segalini & Talamelli 2011), or more precisely by the shear layer between the
inner and outer jet that is rapidly amalgamated with the external shear layer, as visible
in figure 2(a). This observation is confirmed by noticing that the shapes of the optimal
responses for ru = 0, namely for the single jet, and for ru = 0.5, reported in figure 5(d-e),
are very similar and that the optimal response reaches its maximum near the axis for
m = 0 and in a region that corresponds to the inner shear layer for m = ±1. For higher
velocity ratios, ru & 1, the flow behaviour changes. The optimal responses for m = 0 and
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m = +1 have very similar gain. The maximum amplification grows exponentially with
the velocity ratio. This is especially evident for m = ±1, while for m = 0 there could be
some saturation for ru > 2, figure 7(a). More than one order of magnitude in the peak
response amplitude is gained by just doubling the velocity ratio. This result is probably
related to the exponential growth of the maximum harmonic gain as a function of the
Reynolds number observed by Boujo & Gallaire (2015) for the backward facing step, and
that of the maximum transient growth observed by Cantwell et al. (2010) for several
wall-bounded separated flows. Indeed, in the present case the Reynolds number of the
flow is computed as a function of the maximum velocity of the internal jet, but clearly
the ratio of inertia terms over viscous terms for the external shear layer grows almost
linearly with the velocity ratio ru when the Reynolds number is fixed. The frequency of
the maximum amplification, the pseudo-resonance peak, grows linearly as a function of
ru, figure 7(b), showing that, for sufficiently high velocity ratios, the flow properties scale
with the external velocity and the outer jet dominates the stability properties of the flow
(Rehab et al. 1997). It must be added here that the two preferred dynamics associated
with the pseudo-resonance peaks in the harmonic response of the flow at ru = 1.0 persist
for higher values of the velocity ratio. The trend observed here, with the ratio of the
amplitudes of the axisymmetric and m = ±1 modes growing with the velocity ratio, has
been observed also by Dahm et al. (1992). Indeed, they reported the development of a
sinuous m = ±1 mode for ru = 0.59 while an axisymmetric mode is observed for the
higher ru = 0.71, both associated with the external shear layer. Interestingly enough,
our results show, see figure 7(a), a change in the dominating axisymmetric mode for
ru = 0.75. While the total amplification of the axisymmetric mode reaches that of the
sinuous mode only for ru higher than 1, the former is more amplified near the nozzle
than the latter, and could be therefore observed experimentally, especially for Reynolds
numbers higher than the present ones.
The behaviour observed for the frequency of the optimal response is only partially

coherent with the results reported by Segalini & Talamelli (2011) that found three
different behaviours as a function of the velocity ratio: for ru < 0.75 the frequency
of the main peak in the radial-velocity spectrum scales as the velocity of the internal jet;
for ru > 1.6 the frequency scales as the velocity of the external jet. These observations
are coherent with the present results. For 0.75 < ru < 1.6, however, Segalini & Talamelli
(2011) observed that the frequency depends on a combination of both. This behaviour is
observed here for m = ±1. For m = 0, the picture is more involved since, as previously
observed, two different peaks in the optimal response exchange the role of pseudo-
resonance in the interval 0.5 < ru < 1. For ru < 0.75, the frequency of the pseudo-
resonance peak for m = 0 scales as that of the optimal m = ±1 mode, consistently
with Segalini & Talamelli (2011). For ru > 0.75, the pseudo-resonance peak moves to
a higher frequency, and its frequency scales almost as the external velocity, especially
for ru > 1, as shown in figure 7(b). The radical change in the shape of the optimal
response as ru is increased beyond 0.75 is associated with the high-frequency dynamics
that becomes dominant in this range of the parameter, as shown in figure 6(b). For low
velocity ratios, figure 5 (d) and (e), the optimal response is very elongated in the axial
direction, with large structures that are more intense on the axis and slowly decay with
z. The axisymmetric structures for both ru = 0 and ru = 0.5 are similar to that found
by Garnaud et al. (2013b) for the single jet, while the frequencies differ, probably due
to the different Reynolds numbers. They presented the spatial structure of the response
only for axisymmetric perturbations, so that a comparison is not possible for m = 1, but
it must be said that they also observed a larger response for m = 1 than for m = 0. For
ru = 1, we observe a totally different shape of the response. First, the response has a
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frequency approximately one order of magnitude higher. Moreover, the space distribution
of the response has two local maxima: one in the region of the external shear layer and
one along a line starting from the wall separating the two jets and reaching the axis after
more than ten internal diameters. The response spreads more in the radial direction than
for lower velocity ratios. Finally, it is evident that the linear response decays very quickly,
being almost negligible 20 diameters downstream the jet exit. This behaviour is similar
to what found experimentally by Dahm et al. (1992) for ru = 1 and 1.14. They observed
a wake-like instability in the shear layers produced by the separating wall frequency
locked to the axisymmetric roll-up associated with the external shear layer. The shape
of the axisymmetric mode in figure 5(f) seems to represent reasonably well both the
instabilities. The change of shape is associated with the higher frequency local maximum
in the frequency response becoming dominant over the lower frequency pseudo-resonance
peak for ru ≈ 0.75, as shown in figure 6(b). The shape of the response is very similar to
that reported by Garnaud et al. (2013b) for the single jet, even if a local maximum is
also found in the present case in the wake of the separating wall. In order to compare the
Strouhal numbers, we need to take into account that, for ru = 1, the jet behaves almost
as a single jet with nozzle diameter equal to that of the external nozzle of the coaxial jets,
and that the Reynolds numbers are different. The present result ω = 1 leads to a Strouhal
number based on the diameter of the outer jet and on the maximum velocity of 0.31.
This value, once rescaled for Re = 1000 using a linear variation of the frequency with
the Reynolds number obtained from results reported later on, agrees very well with the
value St = 0.48 reported by Garnaud et al. (2013b). The observed trend of the response
as a function of the velocity ratio is confirmed by the results reported in figure 8 for a
velocity ratio ru = 2. The shape of the optimal response suggests that for high velocity
ratios the flow is dominated by the outer shear layer. In this case, the amplification of
the axisymmetric mode reaches the value of the sinuous mode with m = ±1. The shape
of the strongest response modes is very similar to that observed for ru = 1, but the
maximum of the optimal axisymmetric response moves considerably downstream. The
fact that the axisymmetric response dominates in the region near the nozzle agrees with
the experimental observations by Rehab et al. (1997) for nonrotating coaxial jets with
ru > 2. It is interesting to note that the switch between the low ru behaviour and the
high ru behaviour is observed for a velocity ratio for which the momentum flux exiting
from the inner nozzle approximately equals that exiting from the outer nozzle.

5.2. Effect of swirl

The effect of the swirl parameter is assessed for coaxial jets with ru = 1. The rotation of
the outer stream breaks the symmetry of the azimuthal coordinate θ, so that retrograde
structures have positive wavenumbers in the series expansion (3.2) for positive values
of ω. While the amplification of axisymmetric structures remains almost unchanged,
huge amplifications of the non-axisymmetric retrograde modes occur in swirling jets, see
figure 9(a): the m = +1 mode prevails for low swirl, while the contribution of larger
wavenumbers emerges as the swirl parameter S exceeds 0.6, see figure 10(a-b). The
optimal amplification of structures with wavenumbers 2, 3, 4 grows exponentially fast
for S > 0.5. The response of the system associated with negative azimuthal wavenumbers
corresponding to forward rotation rapidly decays with ω and S, see dotted lines in figure
10(a-c). For S = 1, the retrograde structures with wavenumbers +2 and +3 are dominant
(c).
The analysis of the spatial structure of the optimal response is also interesting. For

S = 0.2, figure 10(d), the optimal response, a single retrograde helix with wavenumber
m = +1, is mostly amplified quite far from the nozzle. The maximum of the response is
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Figure 5: Influence of the velocity ratio ru on the harmonic response of non-swirling jets
for Re = 200. Relative contributions of the wavenumbers in the harmonic response (left)
and real part of the axial velocity ûz of the preferred response (right): ru = 0.0 (a,d);
ru = 0.5 (b,e); ru = 1.0 (c,f). Thick lines in the left plots represent optimal gains, while
thin lines represent the first suboptimal gain.

observed for a radius slightly less than one. On this point, it is interesting to observe that
Leibovich & Stewartson (1983) predicted that the eigenfunctions should be maximum
around R = 1, and this property was observed also for the peak of the impulse response
of a swirling jet by Gallaire & Chomaz (2003b). As the swirl number is increased, figure
10(b-c), the optimal response is associated with increasing wavenumbers, but the spatial
structure of the optimal response does not change dramatically. The maximum of the
response moves farther from the nozzle as the swirl number is increased; the opposite
trend is observed as the wavenumber is increased. The optimal response associated
with these helical structures extends throughout the whole domain. Moreover, it can
be observed that the radius where the maximum of the optimal response is observed
slowly grows with the swirl number, while remaining always in the neighbourhood of
r = 1. This effect is probably related to the slow growth of the radius of the jet as the
swirl number is increased, see figure 4(a).
Despite the difference in the base flow and Reynolds number, our results seem to

qualitatively agree with the experimental results reported by Liang & Maxworthy (2005).
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response of non-swirling jets for Re = 200. (a) Amplification G0 of the optimal (thick
lines) and first suboptimal (thin lines) axisymmetric harmonic response. Square and
circle markers identify the first and the second local maximum, respectively, as in figure
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Figure 7: Influence of the velocity ratio ru on the harmonic response of non-swirling jets
for Re = 200. (a) Amplification Gk and (b) frequency ω of the pseudo-resonance peaks.
Line colours identify the wavenumbers: m=0, black lines; m=1, red lines with diamonds.
Markers identify the preferred responses: squares and circles represent the first and the
second peak of the axisymmetric harmonic gain, respectively.

Indeed, for strongly swirling jets before vortex breakdown, they found an instability in
the form of retrograde, i.e. counter-winding, helical waves with m = +2 and m = +3.
For smaller values of the swirl number, the instability is associated with axisymmetric
annular vortices, while spiral vortices are associated with a secondary instability. This
last observation is not completely in contrast with our results. While for small swirl
the axisymmetric mode is globally less amplified than the m = +1 helical mode, it is
indeed stronger in the region near the nozzle. Therefore, we conjecture that we observe
axisymmetric vortices since they are the most amplified ones near the nozzle. Then, a
secondary instability sets in before the helical mode is sufficiently amplified to be visible,
as will be clearer in the next section. In contrast, our result are different from that
reported by Gallaire & Chomaz (2003b) where co-winding modes are most amplified.
The main reason to explain this discrepancy probably relies in the different base flow.
In the present case, since only the outer jet is swirling, two azimuthal shear layers are
present that are at the origin of the observed counter-winding modes. As a confirmation,
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preferred response shown in the right frame. (b) Real part of the axial velocity ûz of the
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Figure 9: Influence of the swirl parameter S on the harmonic response: coaxial jets with
unitary velocity ratio and Re = 200. (a) Optimal amplification Gk and (b) frequency
ω of the pseudo-resonance peak. Line colours and markers identify the wavenumbers:
m = 0 black circles; m = +1 red diamonds; m = +2 green squares; m = +3 blue crosses;
m = +4 magenta plus markers. The pseudo-resonance peak of the axisymmetric mode
is approximately ω0 ≈ 1 over the whole range of S explored. Only retrograde dynamics
is represented.

we observe that Weller-Calvo et al. (2013) did not find such modes by a linear stability
analysis of the parallel coaxial-jet flow for ru ≈ 1, when only the central jet is swirling.

5.3. Effect of the Reynolds number

The influence of the Reynolds number Re on three flow configurations is summarised in
figure 11. In general, we can say that the Reynolds number mainly affects the magnitude
of the amplification while it has only a minor impact on the frequency of the pseudo-
resonance peaks. For the single jet, figure 11(a), two main effects are observed. The
amplitude of sinuous response modes with m = +1, m = +2 and m = +3 increases
significantly with the Reynolds number. The most amplified response corresponds to
m = ±1. The peak response amplitude of the axisymmetric mode, in contrast, does not
change significantly, but a second local maximum appears for a nondimensional circular
frequency ω ≈ 2. The situation is different when a coaxial jet with unitary velocity
ratio is concerned, figure 11(b). In this case, all the responses with lower wavenumber
m = 0 ÷ 3 increase significantly. In particular, for the m = 0 and m = +1 modes the
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Figure 10: Influence of the swirl parameter S on the harmonic response of coaxial jets
with unitary axial velocity ratio ru = 1 and Re = 200. Relative contributions of the
wavenumbers in the harmonic response (left) and real part of the axial velocity ûz of
the preferred response (right): S = 0.2 (a,d); S = 0.5 (b,e); S = 1.0 (c,f). Solid lines:
counter-winding structures with m > 0; dotted lines: co-winding structures with m < 0.

amplitude increases by more than an order of magnitude. For the axisymmetric mode
the increase seems a bit larger. This fact may in part explain why, for higher Reynolds
numbers, the axisymmetric mode dominates the flow dynamics near the nozzle (Dahm
et al. 1992). This behaviour is slightly different when a velocity ratio ru = 2 is considered,
figure 12(a) to be compared with figure 8(a), with a slightly stronger increase in the
amplitude of the response of the azimuthal wavenumbers m = ±1, ±2 and ±3 with
respect to the axisymmetric perturbations. When a swirl is present, the picture changes
dramatically. From figure 11(c) it is apparent that the responses of perturbations with
higher wavenumbers, m = +2, +3, +4, increase most with the Reynolds number, so that
they become dominant over the response for m = +1. The increase in the amplitude is
also notable: more than three orders of magnitude by just doubling the Reynolds numbers.
The amplification of the most amplified modes is very similar, so that it is hard to predict
which wavenumber will be selected in the actual flow. A nonlinear analysis as in (Mantič-
Lugo & Gallaire 2016) seems to be necessary to answer this question, but it is out of the
scope of the present work.
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Figure 12: Harmonic response for (Re, ru, S) = (400, 2.0, 0.0). (a) Relative contributions
of the wavenumbers. Thick lines indicate the optimal harmonic gain, while thin lines
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preferred response shown in the right frame. (b) Real part of the axial velocity ûz of the
preferred response.

It is also interesting to compare the change induced by an increase in the Reynolds
number in the shape of the optimal response. This is possible by looking at figure 12(b)
and 8(b). From the figures, it is apparent that increasing the Reynolds number moves the
maximum of the amplitude farther from the nozzle. For m = ±1 there is also a change
in the shape of the response. The maximum response concentrates in the outer jet, with
non-negligible contributions coming from the inner jet and from the outer region.

6. Nonlinear simulations

The validity of the assumptions made, the results of the harmonic response and the
predominance of the harmonic response of the perturbed system are assessed by means of
three-dimensional, nonlinear time simulations. All the flows analysed in this chapter are
globally stable but behave as noise amplifiers: no self-sustained oscillations are observed
in the system with nominal boundary conditions, namely a flow supplied with the steady
boundary conditions that were used to compute the base flow, see §2. The situation may
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change dramatically when perturbations are present. As a matter of fact, the strong
amplification of the disturbances at the inflow, that inevitably characterise experiments,
may result in substantial deviation of the flow from its stable base state. Therefore,
a random disturbance, uncorrelated in both time and space and among the velocity
components, has been added to the nominal boundary conditions. The disturbance has
a maximum amplitude of 2.5% of the reference velocity and it is uniformly distributed
in the interval (−0.025Ũa, 0.025Ũa). While the assumption that disturbances can be
well represented by a band-limited white noise may seem crude, two observations are
in order: the actual noise in an experiment or in a real device can hardly be fully
characterised, especially when complex nozzle geometries are concerned as in swirled
burners. Vorticity in the wake of internal obstacles, acoustic and thermal perturbations
and incoming turbulence can all be causes of inlet perturbations. Moreover, the stochastic
response analysis relying on the harmonic response analysis usually assumes a white
noise as input. As a matter of fact, it is generally recognised that a white noise can
be considered a sufficiently general and accurate approximation to investigate the jet
behaviour in an experimental environment (Cohen & Wygnanski 1987; Gohil et al.

2012; Balarac et al. 2007; Jeun et al. 2016). This assumption is also exploited in
recent works on the prediction of large coherent structures, which characterise the early
development of turbulent jets, carried out by a resolvent analysis similar to the present
one applied to the mean flow, obtained either experimentally (Semeraro et al. 2016;
Lesshafft et al. 2018) or numerically (Schmidt et al. 2018). The very good matching
between the coherent structures educted by linear resolvent analysis and those extracted
from the experiments and nonlinear simulations testifies for the applicability of the
assumption. The introduction of perturbations is meant to investigate the relevance of
the results of the linear input–output analysis in predicting the nonlinear dynamics of
real coaxial jets. The amplitude of the perturbations has been chosen sufficiently high
to make the amplified perturbations significant in a sufficiently short distance from the
nozzle for the low Reynolds numbers investigated here, even if, from the viewpoint of
a laboratory experiment, they can be considered quite high. The adopted amplitude is
actually slightly less than that used by Balarac et al. (2007) in their DNSs at Re = 3000.

6.1. Coaxial jets (Re, ru, S)=(200, 2.0, 0.0)

We begin with a non-swirled jet with velocity ratio ru = 2. Starting the simulation
from the globally stable base flow, the transient growth of quite a coherent structure is
observed after the noise is turned on: an axisymmetric perturbation grows in the domain
while it is convected downstream. When this initial perturbation is convected out of the
domain and the initial transient is over, clear dynamics appear: axisymmetric oscillations,
in the form of annular vortices, with a frequency ω ≈ 2.0 develop in the upstream part of
the domain; these annular perturbations tilt and a sinuous structure arises in the second
half of the domain, whose frequency is half of the original one.
The Koopman mode analysis is used here to obtain a better insight in the dynamics

of the perturbed jet. A sequence of n = 96 snapshots Un
0 = {ui}

n

i=0 = {u(t0 + i∆t)}
n

i=0,
sampled every ∆t = 0.2 time units, is used in the analysis to identify the structures
associated with the two main frequencies. The corresponding sampling frequency is
largely sufficient to capture all the amplified perturbations. Sampling starts at t0 = 200.0
in order to exclude the transient behaviour. All the Koopman values lie on the unit circle
in the complex plane, i.e. |λj | = 1.0, indicating that the system evolves on an attracting
set (Rowley et al. 2009), see figure 13(a). The two prevailing modes oscillate with circular
frequencies ω1 = ∡λ1/∆t = 0.98 and ω2 = 1.97: these values are very close to the pseudo-
resonance peaks in the harmonic response of the sinuous mode û1(ω) with wavenumber
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Figure 13: Koopman analysis of the flow for (Re, ru, S) = (200, 2.0, 0.0). (a) Koopman
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amplitudes, as defined in the right figure; (b) Normalised amplitudes of the Koopman
modes. Thin loosely and densely dotted lines represent the optimal harmonic gains of
the axisymmetric and sinuous mode respectively.

m = 1 and the axisymmetric mode û0(ω). Only positive frequencies are shown in figure
13(b), since the Koopman values and modes come in complex conjugate pairs. The first
Koopman mode, oscillating at ω1, is associated with the low-frequency sinuous structure
arising in the downstream portion of the domain, see figure 14(a): this structure closely
resembles the optimal harmonic response û1(1.0) close to the pseudo-resonant peak
shown in figure 14(b). The second Koopman mode, oscillating at ω2, is associated with
the axisymmetric perturbations observed close to the nozzle whose contour levels are
depicted in figure 15(a): the axisymmetric structure grows in the upstream part of the
domain before starting to decay and lose its symmetry, and being eclipsed by the sinuous
structure further downstream. This Koopman mode clearly resembles the axisymmetric
preferred response û0(2.0) in the upstream portion of the domain depicted in figure 15(b).
These observations suggest that the evolution of these modes is almost independent from
each other, for such a low Reynolds number and amplitude, with the linear receptivity of
the flow being responsible for selecting, by linear amplification, the dominating dynamics
in each region of the flow. Apparently, the nonlinear interaction between the two most
amplified modes does not play a role, for the present value of the parameters. Therefore,
the linear analysis is sufficient to draw a clear picture of the flow behaviour in this case.
It is interesting to note that the spatial structure of the modes plays an important role,
not only their amplification. Indeed, the axisymmetric mode is dominant upstream while
the sinuous mode with m = ±1 is dominant downstream, exactly as anticipated by the
linear input-output analysis.

6.2. Coaxial jets (Re, ru, S)=(400, 2.0, 0.0)

As explained in §5, the amplification of the incoming disturbances rapidly grows with
the Reynolds number. It is therefore interesting to investigate the impact of an increased
Reynolds number on the fate of inlet perturbations. For this purpose, we run a DNS for
a non-swirling jet with ru = 2 as before, but with doubled Reynolds number, Re = 400.
The random perturbations have the same properties as in the previous case. While two
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Figure 14: Koopman mode 1 (sinuous) for the flow with (Re, ru, S)= (200, 2.0, 0.0). (a)
Real part of the axial velocity: contour levels corresponding to 15% (opaque) and 2%
(transparent) of the maximum value in the domain. (b) Contour lines of the axial velocity
of the optimal harmonic response for m = +1, ω = 1.0 superimposed on a slice of the
first Koopman mode.

coherent oscillating structures, that behave almost independently from each other, have
been observed in the previous section for Re=200, velocity perturbations at the inflow
promote the transition to a turbulent regime in the globally stable flow for Re=400, see
figure 16. As happened for the lower Reynolds number, also in this case the varicose mode
obtained by the optimal harmonic response prevails in the upstream part of the domain,
for z < 20. This is expected, since the varicose mode dominates the linear response in the
region closer to the nozzle. The varicose mode appears as a train of axisymmetric vortices
that arise owing to a Kelvin-Helmholtz instability of the shear layers formed by the outer
jet. After a few jet diameters from the nozzle, the vortices start interacting nonlinearly,
rolling up and pairing, and are finally subject to a three-dimensional instability

The Koopman analysis of the entire flow field highlights the prevalent low-frequency
broad-band dynamics of the turbulent region, as reported in figure 16(e-f). The spectrum
is almost monotonically decaying with the frequency, figure 16(e), while the dominating
Koopman modes reported in figure 16(f) show a highly irregular pattern and the linear
spreading typical of the turbulent jet (Balarac & Métais 2005). Since, in the Koopman
analysis, the dynamics in the turbulent region stand above the coherent oscillations
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Figure 15: Koopman mode 2 (varicose) for the flow with (Re, ru, S) = (200, 2.0, 0.0).
(a) Real part of the axial velocity: contour levels corresponding to 15% (opaque) and
2% (transparent) of the maximum value in the domain. (b) Contour lines of the axial
velocity of the optimal harmonic response for m = 0, ω = 2.0 superimposed on a slice of
the second Koopman mode.

of the jet close to the nozzle, the laminar and transitional flow in the initial part of
the jet is examined by analysing the flow field on a truncated domain for z < zDMD.
After a cut-off coordinate zDMD is chosen, the observable is defined as the restriction of
the velocity field to the truncated domain. Two different truncated domains have been
analysed, with different lengths: zDMD = 20, that represent approximately the location
where the amplitude of the response in the nonlinear simulation is small, and zDMD = 25,
that represents the approximate maximum axial coordinate for which an ordered flow is
observed in the simulation. The comparison of figures 16 (b), (d) and (f) shows clearly
that the amplitude of the Koopman modes grows with the length of the truncated domain,
from this observation we infer that the amplitude of the response keeps growing until the
flow becomes turbulent.
Let us consider the Koopman analysis carried out in the shortest domain, namely

for zDMD = 20. The frequency–amplitude plot reported in figure 16(a) clearly shows
two peaks. One, has a frequency ω = 2.4 that matches quite closely the most amplified
axisymmetric forcing at the inlet, ω0 = 2.2. The second one has a frequency ω = 3.9
that does not correspond to any of the peaks of harmonic gain for the tested azimuthal
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wavenumbers m. On this point, it is interesting to analyse the most amplified mode at
the truncation threshold. In this case we have a circular frequency slightly larger than 2.2
for the axisymmetric response, while ω±1 ≈ 2.2. It must be said that the amplification
of the axisymmetric mode is approximately one order of magnitude larger than that
of the sinuous mode for this abscissa. This is probably the reason why the sinuous
mode, that can reach an amplification factor two orders of magnitude larger further
downstream, does not dominate over the axisymmetric mode in the present results.
The fact that axisymmetric perturbations are most amplified in this region explains
the basically axisymmetric character of the dominant Koopman modes reported in figure
16(b). Actually, the higher frequency peak observed in figure 16(a) corresponds to that of
most amplified mode for a shorter truncation, zDMD = 8, not shown here for conciseness.
The persistence of such a peak for longer distances from the nozzle could be related to
nonlinear selection effects.
For z > 20, the flow strongly departs from axial symmetry. A detailed analysis of

the transition process is out of the scope of the present work, but we just observe that,
as a result of the interaction of the oscillations in the high-velocity annular region, a
predominant transitional mode emerges with ω = 1.3, figure 16(c,d), significantly lower
than that of the aforementioned dominant linear modes. This fact is not surprising, since
the nonlinear vortex roll-up and pairing may lead to a significant decrease of the peak
frequency in the spectrum.
A question arises about which, of the dominant modes observed for zDMD = 20,

dominates the transition process, since in the linear analysis there is no evidence of the
dominance of one mode over another. To investigate this point, we ran simulations where
we forced the jet with the optimal inlet forcing with m = 0 and m = +1 resulting from
the optimal harmonic gain analysis described in the previous section, see figure 17. The
simulations show that the dynamics of the jet forced with m = 0 lead to transition by the
process of vortex roll-up, vortex pairing and instability of the vorticity braid connecting
two adjacent vortices that produces outward ejections and quickly leads to transition to
turbulence, as described for the single jet in (Brancher et al. 1994) and (Liepmann &
Gharib 1992). A different process is observed when the jet is forced with m = +1. In
this case, a sinuous mode prevails similar to that observed in swirling jets and leading
to vortex breakdown. The jet becomes turbulent just after the core of the jet shows a
marked helical shape. By comparing the nonlinear response of two jets forced with the
same amplitude, it can be observed that the transition process is significantly faster in the
second case, namely when the jet is forced with m = +1. While this observation does not
answer to the previous question, it seems to indicate that for this value of the parameters,
the effectiveness of the two forcing modes in producing transition to turbulence is not
equivalent, with the m = ±1 inlet forcing, the most amplified according to the linear
analysis, being more effective.

6.3. Swirling coaxial jets (Re, ru, S)=(200, 1.0, 1.0)

We now investigate the impact of a swirling outer jet on the behaviour of the flow in
the nonlinear regime. A DNS of the coaxial jets with unit axial velocity ratio ru = 1.0
and swirling outer stream with S = 1.0 shows a non-trivial combination of structures
with different azimuthal wavenumbers. This behaviour was somehow expected, since the
amplitude of the linear response depicted in figure 10(c) shows that several modes with
different wavenumbers enjoy a strong amplification, those with m = +2 and m = +3
being the most amplificated ones.
To better understand the flow behaviour, we sliced the velocity field with a plane

normal to the axial direction and analysed the velocity field in such a plane. The axial



Non-modal analysis of coaxial jets 23

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

(b)

(c)

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

(d)

(e)

0.0

0.2

0.4

0.6

0.8

1.0

ω

0 2 4 6 8 10

(f)

Figure 16: Coaxial jets with (Re, ru, S) = (400, 2.0, 0.0). DMD analysis of nonlinear time
simulations: spectra and prevalent Koopman modes. (a-b) zDMD = 20, (c-d) zDMD = 25,
(e-f) zDMD = Lc = 60.

velocity field on the slice Ωz, with z = 35.0 unit lengths far from the nozzle, is shown
in figure 18(a): the prevalence of a structure with azimuthal wavenumber m = +3
becomes evident in figure 18(b) when the velocity field is purged from the axisymmetric
contribution. This behaviour can be interpreted by looking at figure 10(c) and (f). From
figure 10(c), it is clear that the two modes with m = +2 and m = +3 are dominant,
with the former slightly prevailing over the latter. Figure 10(f), however, shows that the
mode m = +3 reaches its maximum for a distance from the nozzle lower than that of
the mode m = +2, so that it not surprising that its contribution dominates for z = 35.0.
This slice of the velocity field is analysed by Fourier series in the azimuthal coordinate
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Figure 17: Nonlinear response of the coaxial jet to optimal forcing with wavenumber
m = 0, left, and m = 1, right, for (Re, ru, S) = (400, 2.0, 0.0). The Q criterion is used to
visualise the vortical structures in 3D in both cases. The color map corresponds to the
axial velocity component in a radial plane.

θ,

u(r, θ, z, t) =

∞∑

m=−∞

ũm(r, z, t)eimθ =

∞∑

m=0

um(r, θ, z, t), (6.1)

in order to obtain a more detailed information about the wavenumber contributions. It
is worthwhile to note that the discretisation of the transverse slice in Nθ = 60 circular
sectors implies that the series is truncated to |m| 6 Nθ/2. The real contribution um =
2 re

{
ũmeimθ

}
of the lower positive wavenumbers is depicted in figure 18(d-f): more than

97% of the L2-norm of the non-axisymmetric part of the field comes from the first three
modes, see (c), and the contribution of the fourth mode is approximately 1.7%.
The time average of the L2-norm of the velocity field,

Am =
1

T

∫ ti+T

ti

‖um‖L2(Ωz), (6.2)

is used in figure 19(a-c) to evaluate the relative shares of the modes on three different
sections of the domain. The initial time ti is set to 300 in order to exclude the transient
behaviour and T is set to 300 as well. While energy is almost evenly distributed among
the first three modes at z = 15.0, the second and the third modes prevail downstream
along the domain (b,c). Higher wavenumbers have little contributions only in terms of
energy. Figure 19(d) shows the temporal evolution of the integral quantity

I(θ, t) =

∫ R

0

|u(r, θ, z, t)| r dr. (6.3)

This function exhibits quite a regular pattern in the θ − t plane, because of the
interference of the dominant modes with m = +2 and m = +3. Local extrema of
the function I(θ) emerge from the local extrema of the prevailing modes, whose phase
velocity is almost constant in time. A constant approximation of the phase velocity of
the modes is obtained as the slope of the linear fit of the “characteristic lines” describing
the azimuthal coordinates of the maximum values of Im(θ) as a function of time, being
Im(θ) the integral quantity obtained from the m-th mode. Interference occurs as a result
of the combination of modes with different phase velocity and the regular pattern in
figure 19(d) lies on the frame described by the characteristic lines associated with the
prevailing modes. The constant approximation of the phase velocity Ω = ∆θ/∆t leads
to Ω2 = −0.078 and Ω3 = −0.032 for u2 and u3 respectively. These values are close
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Figure 18: Coaxial jets for (Re, ru, S) = (200, 1.0, 1.0). Axial component uz(r, θ, z, t)
of the velocity field on the transverse section z = 35.0. (a) Field at time t = 490.0;
(b) non-axisymmetric part of the field, uz − uz,0; (d-f) non-axisymmetric real modes

uz,1, uz,2, uz,3, whose contribution
∑3

k=1 uz,k is shown in figure (c). The relative
contribution of a mode to the complete field is defined as the ratio of L2-norms,
pm = ‖um‖L2(Ωz̄)/‖u‖L2(Ωz̄). In contrast to what done in previous figures, black contours
are used in this figure only to increase the readability of the colour map.

to the phase velocity of the pseudo-resonant harmonic perturbations shown in figure
9(b), −ω2/2 = −0.083 and −ω3/3 = −0.034. This result confirms the relevance of the
linear input-output analysis to predict, not only qualitatively but also quantitatively, the
behaviour of absolutely-stable, but convectively unstable, developing flows.
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Figure 19: Coaxial jets for (Re, ru, S) = (200, 1.0, 1.0). Time-averaged mode contributions
as functions of the axial coordinate z, (a) z = 15.0, (b) z = 25.0, (c) z = 35.0, and (d)
time evolution of the field I(θ) on Ωz̄: green dotted line and blue dashed line are the best
linear fit of the black lines representing the evolution of the coordinate θ of the maximum
of the modes with m = +2 and m = +3, respectively. The slope of these lines represents
the average value of the phase velocity ω = ∆θ/∆t of the corresponding mode.

7. Conclusions

In this work, we present the first published investigation dealing with the convective
stability of swirling coaxial jets to both axisymmetric and non-axisymmetric perturba-
tions in a global framework. In particular, the response of coaxial jets to external forcing
at the inlet is investigated for subcritical Reynolds numbers. Three parameters identify
the coaxial jets considered here: the Reynolds number Re, which is defined here in terms
of the velocity and diameter of the inner jet, the outer-to-inner axial velocity ratio ru
and the swirl number S of the outer stream. Their effects on the response of the system
have been assessed by means of non-modal analysis in the frequency domain.

The main new findings provided by the present work can be summarised as follows: i. In
non-swirling coaxial jets, two axisymmetric modes, corresponding to two local maxima
in the harmonic response, swap their role as most amplified mode when the velocity
ratio is increased over 0.75. This swap explains the importance of the axisymmetric
mode observed experimentally for high velocity ratios, since the dominant mode for high
Reynolds number is quite concentrated in the region near the nozzle. ii. In non-swirling
coaxial jets, the axisymmetric m = 0 and sinuous m = ±1 modes compete as mostly
amplified modes for high velocity ratios. This competition can lead to different forms
of transition, depending on which component dominates the inlet perturbation. iii. In
swirling jets, azimuthal wavenumbers higher than m = +1 are progressively dominant, as
the swirl number is increased. iv. The amplification of inlet perturbations is dominated by
the Kelvin–Helmholtz instability for swirling coaxial jets, while centrifugal instabilities
are relatively unimportant in the portion of the parameter space investigated here. v.
For the lower Reynolds number tested here, the results of the linear harmonic-gain
analysis are very successful in predicting the nonlinear flow behaviour, while doubling
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the Reynolds number the indications of linear analysis are less effective in predicting the
flow behaviour.

To be more precise, our results show that non-swirling jets are dominated by the
response at lowest wavenumbers, with m = 0 and m = ±1, with the relative amplitude
of the dominant modes, and the spatial structure of the response, changing with the
velocity ratio ru. In particular, the axisymmetric mode, which is subdominant for low
ru, becomes more and more important for ru > 1 and has a spatial structure very
different from that of the sinuous m = ±1 modes, being stronger than the latter in the
region near the nozzle. This result agrees well with both experimental and numerical
simulations reported in the literature.

The rotation of the outer stream has destabilising effects on the globally stable
columnar flow. Counter-winding modes are the most amplified, suggesting that the
amplification mechanism may be associated with a Kelvin–Helmholtz instability and
not with a centrifugal instability. The response amplitude of intermediate wavenumbers
m = +2, +3, +4 grows exponentially fast with the swirl parameter for 0.5 6 S 6 1. The
harmonic response of the system involves structures with larger azimuthal wavenumbers
whose amplification grows exponentially with S leading to the helical responses with
m = +2 and m = +3 being dominant for the highest swirl numbers investigated. The
spatial structure of the response is similar for the dominant modes, with the maximum
peak being located quite far from the nozzle. The Reynolds number is mainly related
with the amplitude of the response for non-swirling flows. When swirl is present, the
intermediate wavenumbers seem more affected, so that the hierarchy of the amplification
can change with the Reynolds number.

Direct numerical simulations confirm the absolute stability of the unperturbed flow,
with initial perturbations being washed out of the computational domain and the flow
approaching asymptotically the steady baseflow computed for the linear stability cal-
culations. To mimic experiments, direct numerical simulations of the flow perturbed at
the inlet with a small spatially and temporally uncorrelated white noise distribution have
been performed for two different Reynolds numbers, Re = 200 and 400, for a non-swirling
flow with ru = 1, and for Re = 200, ru = 1 and S = 1. A Koopman analysis has been
used to obtain a better insight in the flow behaviour of the non-swirling jets. For the
lowest Reynolds number, the analysis shows that the nonlinear response matches almost
perfectly that predicted by the linear analysis. For the highest Reynolds number, the
response in the region close to the nozzle, say for z < 20, retains some properties that
can be related to the linear response of the flow, while further downstream of this region
nonlinear effects become more and more important and rapidly lead to transition to
turbulence. This result seems important as it underlines, at least in the present case, the
effectiveness of the linear analysis in predicting the early phases of the transition process.
The present analysis shows that for spatially developing flows as jets, both the amplitude
and the spatial structure of the harmonic response play an important role in predicting
the actual response of the disturbed system. The good predictive capability of the linear
analysis is confirmed also when a swirl motion is added to the flow. The Fourier analysis
of some slices of the velocity fields obtained by means of nonlinear simulations shows
prevailing modes whose wavenumber and phase velocity correspond well with the results
of the frequency response of the linearised system. However, in the nonlinear regime, for
the higher Reynolds number investigated here, we found the flow sensitive to the actual
shape and amplitude of the perturbation. The reason is probably related to the fact that
competing transition mechanisms can become effective, depending on the properties of
the perturbation, especially when the Reynolds number is high and the amplification
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Mesh Ne Ndof

M1 193414 1265763
M2 259744 1698847
M3 331824 2168781

Table 2: Meshes used for the grid sensitivity analysis. Ne number of triangular elements.
Ndof number of degrees of freedom for the P2 approximation of three-dimensional velocity
field and the P1 approximation of the pressure field.
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Figure 20: Grid sensitivity for (Re, ru, S) = (200.0, 1.0, 0.0). Optimal (thick) and first
sub-optimal (thin) gains for varicose and sinuous response: M1 (circles), M2 (crosses),
M3 (spline interpolation).

of the perturbations becomes very strong. Further studies seem to be necessary to fully
understand the transition process in coaxial jets.

Appendix A. Grid sensitivity

Mesh independence of the results obtained in this work has been checked. The nu-
merical domain used for non-modal analysis has the same axial extension Lc = 60 as
the numerical domain used by Canton et al. (2017) for the modal analysis. The radial
extension of the domain is set to Rc = 8. Figure 20(a) shows the results of the non-
modal harmonic analysis of the coaxial jets for (Re, ru, S) = (200, 1, 0) carried out on
the meshes listed in table 2. The harmonic gains computed on the coarser meshes match
the corresponding gains obtained on the most refined mesh M3, over the whole range
of frequencies examined. The maximum amplification of the axisymmetric and sinuous
modes computed using meshes M1 and M2 differs less than 0.4% and 0.01% from the
values obtained using mesh M3, respectively.
The independence of the results with respect to the domain extent has also been

checked. In particular, we checked that the shape of the optimal response is not affected
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Figure 21: Optimal linear response of the coaxial jet to optimal forcing with wavenumber
m = 0 and ω = 1.0, left, m = 1 and ω = 0.3, right, for (Re, ru, S) = (200, 1.0, 0.0). The
top of the two frames represent the results for a domain length of 30 inner diameters,
the bottom ones for a domain length of 20 inner diameters.

by an extension of the domain, as reported in figure 21. The same is not true for the
gain value when the harmonic response extends very far from the nozzle, as for instance
when swirl is present, since the gain is computed using the classic L2 norm. In this case,
reaching domain independence would require extremely long domains with limited added
value, since the most interesting flow phenomena take place in a region not too far from
the nozzle. On this point it is worthwhile to notice that, as pointed out by Garnaud
et al. (2013b), the choice of the most suitable norm for computing the harmonic gains is
still an open question. Our results suggest, in particular, that the region near the nozzle
becomes more and more important as the Reynolds number is increased, but a deeper
investigation will be necessary to answer the question on which the best norm would be
to use in the linear harmonic gain analysis to investigate transition.
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