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INTRODUCTION

Mathematical models are widely used to simulate
hydrological processes at different temporal and spatial
scales. Operational flow forecasting is one of the most
common applications and provides essential support to a
range of water resources management activities, including
early warning services and the optimal operation of water
infrastructures. In recent years, the interest in operational
flow forecasting systems has steadily raised as advances
in numerical weather prediction have significantly
enhanced their predictive capability in terms of both
forecast accuracy and lead time (Habets et al., 2004).
Hydrological models are often classified into physically

based, conceptual and data-driven (empirical) models. For
operational forecasting, conceptual models, either lumped
or semi-distributed, are often deemed to offer an
acceptable compromise between prediction accuracy and
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ease of use (O’Connor, 1992). In fact, although based on
a number of simplifying assumptions, conceptual models
usually offer reasonably accurate predictions while
requiring much less data than physically based models
in both their calibration and application. On the other
hand, with respect to data-driven models, they have the
advantage of giving an interpretable representation of the
hydrologic processes and as such are more easily
understood and trusted by users.
Since conceptual models are based on strong simpli-

fications of the complex and heterogenous processes
occurring in a basin, they usually cannot reproduce all the
catchment responses with equal accuracy. The forecast
errors induced by these simplifications are usually
referred to as structural errors. Other sources of errors
are the uncertainty in the model parameters and the errors
in the model inputs arising from measurement noise as
well as data pre-processing like, for instance, spatial
averaging (Gupta et al., 2006). When weather forecasts
are used to feed the hydrological model, flow forecast
errors may be amplified by the uncertainties that
propagate from the atmospheric model through the
rainfall–runoff process (Pappenberger et al., 2011).



Different approaches have been proposed to reduce this 
uncertainty and improve the predictive accuracy of 
conceptual models. One option is to combine several 
conceptual models into a multi-model approach (Link and 
Barker, 2006). Models can differ in structure or they can 
share the same structure and have different parameteri-
zations. At each time step, the flow forecast is a 
combination of the forecasts provided by the different 
models. The combination takes into account the accuracy 
that each model demonstrated in hydrological conditions 
similar to the current ones, and it can be based on expert 
judgment or on automatic procedures. Different methods, 
including simple averaging, weighted averaging, neural 
networks and fuzzy systems, have been discussed and 
compared in the literature (e.g. Shamseldin et al. (1997); 
Xiong et al. (2001); Fenicia et al. (2007)). These works 
consistently demonstrate that using a combination of 
several models provides more accurate results than using 
any individual model. Although these findings refer to 
one-step-ahead flow estimates, it may be reasonably 
assumed that they also hold over longer lead time.
Another option explored in the literature is to couple 

the conceptual hydrological model with a data-driven 
error correction model. The error model exploits the 
autocorrelation of forecast errors as well as its correlation 
with other hydroclimatic variables available in real time 
to predict the future error. This is then removed from the 
original flow forecast to produce a ‘corrected’ flow 
forecast. The identification of the error correction model 
follows the conventional steps of data-driven modelling, 
using the historical time series of forecast errors as target 
output. The task is made more laborious because multiple 
correction models must be developed for the errors in the 
various lead time. Brath et al. (2002) and Abebe and Price 
(2003) compare linear and nonlinear (Neural Networks) 
approaches to forecast errors with a lead time up to 6 
hours, while Yu and Chen (2005) use Fuzzy Rules to 
predict forecast errors up to 4 h. Xiong and O’Connor 
(2002) compare four different error correction models, a 
linear Auto-Regressive model, a piecewise linear model, 
a piecewise linear model with fuzzy threshold and a 
Neural Network, to improve model simulations with 
daily time resolution. The conclusion of this work is that 
linear models provide equivalent performances to 
more sophisticated models. Goswami et al. (2005) 
also compare different linear and nonlinear models 
(including Neural Networks and Nonlinear Auto-
Regressive eXogenous-Input Model) and extend the 
lead time up to 6 days using rainfall observations as 
representative of ideal rainfall forecasts. The adoption of 
this ideal input scenario allows for a comparison of 
different error correction models in a setting not 
influenced by the uncertainty introduced by imperfect 
rainfall forecasts. The developed error correction model
can then be equivalently applied in real time with
imperfect forecasts although the final forecasting
accuracy is expected to reduce. As historical weather
forecasts become available, simultaneously accounting
for all uncertainty sources, including errors introduced
by rainfall forecast, is becoming a viable option. For
instance, Bogner and Kalas (2008) develop an error
correction model based on linear and Wavelet Transform
to improve flow forecasts up to 7 days, using different
weather forecast products. In Bogner and Pappenberger
(2011), the lead time is further extended up to 10 days
and the error correction system is coupled with an
uncertainty processor that provides an estimate of the
final predictive uncertainty of the flow forecasting
system after output correction.
In all the above mentioned works, forecast errors

reflect the limitations of hydrological models in
reproducing natural processes because of noisy obser-
vations, uncertain parameters, oversimplification of the
rainfall–runoff description and uncertainty in input
forecasts. However, in many applications, another reason
for the discrepancy between flow forecasts and obser-
vations is that hydrological models aim at reproducing
only natural processes while actual flows are deeply
influenced by human activities. A typical example is the
alteration of the hydrological regime caused by the
operation of dams and barriers on upstream river reaches
or tributary rivers. In some catchments, such an
alteration is so deep that the flow regime is almost
uninfluenced by natural processes for long periods of the
year. When this happens, flow forecasting systems
cannot rely on models that only explain natural
rainfall–runoff processes but they should also include
components that attempts at predicting human-induced
effects. The effort is becoming more and more urgent as
the integration of environmental and engineering
systems and thus human–water interactions are deepen-
ing while natural, pristine watershed are becoming the
exception rather than the rule (Sivapalan et al., 2012)
In this paper, we show that data-driven forecast

correction models can be used to simultaneously tackle
forecast errors from structural, parameter and input
uncertainty in reproducing the natural hydrological
cycle, and errors that arise from neglecting human-
induced alteration. To account for such different error
sources, we developed a forecast correction system
composed of two layers: (i) a classification system that
detect the current flow condition and thus what is the
most likely source of errors for the hydrological model,
either the uncertainty in reproducing natural rainfall–
runoff processes or the unmodelled human influence on
such natural processes and (ii) a set of error correction
models that are alternatively activated, each tailored to
the specific source of errors. Our approach can thus be



viewed as an attempt at combining the above discussed
methods of output error correction and multi-model
approach. As it will be demonstrated by application to
the case study, the resulting correction system can
significantly improve flow forecasting while employing
relatively simple, e.g. linear, model structures. The case
study is the highly anthropized Aniene river basin in
Italy, where a flow forecasting system is being
established to support the operation of a hydropower
dam located at the Tivoli section. Flow forecasts are
obtained by combining numerical weather forecasts and
a conceptual, lumped hydrological model and then used
to assist in the efficient scheduling of power produc-
tion. While the forecasting system produces rather
accurate predictions in high-flow conditions, in low-
flow conditions, it is largely inaccurate, especially at
the hourly time scale, because it does not consider the
hydrological alteration caused by several upstream
barriers that are operated for hydropower production.
The paper is organized as follows. The Aniene river

basin and the flow forecasting system are briefly
described in the next section. The analysis of time series
of observed and forecasted flows clearly demonstrate the
hydrological alteration induced by the upstream dams and
the inadequacy of the hydrological model in reproducing
such impacts. In the following section, the error
correction system is described. The description is
intentionally maintained at a general level in order to
highlight the general validity of the proposed approach
and its portability to other case study applications. Next,
numerical results for the Aniene River are presented, and
Figure 1. The
the proposed approach is critically discussed. Directions
for further research are given in the last section.
THE ANIENE RIVER BASIN

The case study area is the Aniene River in Italy (Figure 1).
The watershed here considered is closed at the Tivoli section,
where the river is dammed and part of the flow diverted to the
S. Giovanni hydropower plant. The catchment surface area
covers about 690 km2,with an altitude ranging from213m to
2156 m a.s.l and an average of 800 m a.s.l. In the five years
period considered in this study (2006–2010), the average
precipitation was 1200 mm/year, of which 83 mm/year was
snowfall. Snow accumulation and melting affects only a
limited part of the basin, with snow covering about the 25%
of the basin at its maximum (January) and snowmelt ending
by early April.
Upstream of the Tivoli section, seven run-of-river

power plants are located with a total installed generation
capacity of 84 MW and a mean annual production of
about 300 GWh. Five of these seven barriers create
small impoundments for a total storing capacity of
770 000 m3. Dividing this amount by an average river
flow rate of 13.5 m3/s, the total water retention capacity is
almost 16 h. It follows that upstream barriers cannot shift
water volumes from one day to another, but they can induce
within-day fluctuations, with higher flows in peak hours
when the electricity demand is higher and lowerflows in low
demand hours. Suchfluctuations are clearly detectable in the
time series of observed flow (Figure 2a).
Aniene basin
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Figure 2. Left: observed rainfall (top panel) and flow (bottom panel) from January to February 2007. Right: cross-correlation function between observed
rainfall and flow (blue) and autocorrelation function of the flow (black) over the period 2007–2011
Another evidence of the altered hydrological regime 
caused by the operation of the upstream barriers is provided 
by cross-correlation analysis. Figure 2b compares the cross-
correlation function between observed rainfall and flow 
(blue line), and the autocorrelation function of the observed 
flow (red line). The rainfall–flow cross-correlation has a 
peak at time lag of 16 (h), which is approximatively the 
travel time of the catchment. The flow autocorrelation 
function instead has many local maxima at time lags 
multiple of 8 h, as a consequence of human-induced 
fluctuations with a time period of approximately 8 h. For all 
lag values, the cross-correlation between rainfall and flow is 
much lower than the flow autocorrelation, which means that 
the human-induced dynamics of the flow generally over-
rides the rainfall–runoff process dynamics.
 

The hydrological model AD2
The hydrological model used to generate flow forecast at 

the Tivoli section is the lumped conceptual AD2 model 
(Manfreda and Fiorentino, 2008; Manfreda et al., 2012). 
The model is composed of several modules that represent 
different processes at the basin scale: snow accumulation 
and melting, evapotranspiration, superficial infiltration into 
the soil, direct overland flow, subsurface flow and deep 
infiltration into groundwater. The model inputs are average 
precipitation and temperature in the basin. Separation of 
rainfall and snowfall uses a simple temperature threshold 
while snowmelt is estimated based on a degree-day 
approach. Evapotranspiration is computed as a function of 
the soil content and the potential evapotranspiration which is 
estimated using the Hargreaves equation. The soil water 
balance is described through the use of a bucket scheme 
taking into account overland flow, interflow and ground-
water recharge. Infiltration and overland flow are estimated 
using a runoff coefficient that depends on the soil water 
content. Subsurface flow is a fraction of the soil water 
content when the latter exceeds a given threshold, here set to 
the 60% of the water storage capacity of the soil. 
Groundwater recharge is proportional to the soil

permeabil-
ity at saturation and to soil moisture. The total discharge is
given by the sum of surface, subsurface and groundwater
flow at different time delays.
The AD2 simulation model was calibrated using

historical data from the period 2006–2007. MODIS snow
cover area data were used to calibrate the degree-day
factor. Time series of hourly precipitation, temperature
and flow were used to manually calibrate the soil water
balance module. Precipitation data from nine rain gauge
stations were averaged to produce the precipitation input
to the model, while temperature data from seven stations
were used to produce two temperature inputs, one for the
snow-covered area and one for the uncovered area, assuming
a temperature–altitude relationship of 6.5 ∘ C/km. The
comparison of observed and simulated flows shows that the
hydrological model is able to effectively reproduce the
evolution of floods on a hourly time scale, while low-flow
conditions are reproduced with sufficient accuracy only at
higher (e.g. daily) time resolution. These limitations will be
discussed and explained in the following paragraphs.
Subsequently, the model was set up to be run in

forecasting mode. Numerical weather forecasts for the
Aniene basin are provided by the numerical model
COSMO-LAMI (Limited Area Model Italy) model. The
model is run at CINECA, a computing centre managed by
a partnership of Italian universities and research institutes.
Weather forecasts have a spatial resolution of 7 km, a
temporal resolution of 3 h and are produced every
morning at 1:00 a.m. for a 72-h lead time. The manager of
the S. Giovanni hydropower plant downloads the weather
forecast from the CINECA website around 8 o’clock. At
that time, the plant manager can also download hourly
data of flow, rainfall and temperature collected until 6:00
a.m. These observations are used to estimate the current
state of the basin by running the model in simulation
mode over the previous 24 h. The state estimate so
obtained is then used as the initial condition for another
model run, this time forced by weather forecasts, in order
to generate the flow forecasts. The procedure is sketched
in the upper left part of Figure 3.
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Figure 3. The flow forecasting system, including the hydrological model (grey box) and the forecast correction system

Figure 4. Four typical examples of flow regime. In all plots, black lines and circles are past and future (unknown) observations, red squares are forecast,
black squares in bottom panels are model output in simulation mode. Time 0 is the time when the flow forecast is made, i.e. 6 a.m. on a given day (Aug 9,

2007 in (a); Feb 19, 2007 in (b); Mar 22, 2008 in (c); Oct 23, 2009 in (d))
Sources of error in the flow forecasts
The performance of the hydrological model in forecasting 

mode can be reconstructed over the period 2007–2011 for 
which numerical weather forecasts were saved and stored. 
Visual inspection of the time series of observed flows and 
associated forecasts reveals three main system modes, 
illustrated by the examples in Figure 4 (panels a–c). In all 
plots, time 0 refers to the moment when the last 
hydrometeorological observation is collected, i.e. 6:00 

a.
m. on a given day. This is also the time for which the state of
the hydrological model can be reconstructed via simulation
and the initial time of themodel run in forecastingmode (see
previous paragraph). From now onwards, it will be thus
referred to as the time of forecast. Note that the forecast
horizon is reduced to 67 h because weather forecasts from
1:00 a.m. to 6:00 a.m. are not used in this scheme.
Figure 4a is an example of mode 1 (dry conditions). In

mode 1, rainfall events, if any, are small enough to be



intercepted by upstream dams, and the flow pattern is
completely determined by the dams’ operation. For
instance, in Figure 4a, a rainfall event occurred between
the 30th and 35th hour in the forecast horizon (black line
in the top panel), which however did not reflect into the
flow (bottom panel) that follows a fluctuating pattern
during the entire forecast horizon. Notice that, in this
example, the rainfall event was not predicted by rainfall
forecasts (red line in the top panel), and thus flow
forecasts (red line in the bottom panel) equal the base flow.
Figure 4b is an example of mode 2 (recession). Just as

in mode 1, rainfall is very low, but this time the flow
follows a much more natural pattern, which is the
recession curve of a flood event that occurred in previous
days and, as such, is also quite accurately reproduced by
the flow forecast.
Finally, Figure 4c exemplifies mode 3 (flood conditions),

where a significant rainfall event occurs in the forecast
horizon, increasing both observed and forecasted flows.
The above analysis demonstrates the twofold nature of

the forecast errors. In mode 1, the AD2 model cannot
accurately forecast flows because they are largely affected
by the operation of the upstream barriers, which is not
included in the hydrological model. This can be regarded
as a kind of structural error in the sense that the
hydrological model does not include the human compo-
nent that also influences the flow formation process. In
modes 2 and 3, instead, flow forecasts are closer to
observed flows and forecast errors are mainly due to
structural, parameter and input uncertainty in the
reproduction of the natural rainfall–runoff process.
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Figure 5. The forecast correction system, including the classification
system, the linear correction models and the analog model
THE ERROR CORRECTION MODEL

In order to reduce the errors of the hydrological model, a
forecast correction system is developed. The correction
system uses the flow forecast provided by the hydrolog-
ical AD2 model and any other information available at the
time of forecast (6 a.m. on a given day) to produce a new
flow forecast. This information may include
meteorological observations at different time lags but
also model errors in simulation mode as well as forecast
errors made on previous days (Figure 3). Since the
sources of errors of the AD2 model are different
depending on the system mode on a given day, the
forecast correction should also be different from mode to
mode. Therefore, the correction system includes two
components: a classification system that, based on the
meteo-hydrological observation available at the time of
forecast, can distinguish the current mode of the system;
and a correction model that provides an improved flow
forecast according to a set of equations specifically
tailored for each mode. Figure 5 summarizes the structure
of the forecast correction system.

The classification system

In our case study, the classification system should
distinguish among three different system modes. Mode 1
is characterized by low rainfall forecast and low-flow
conditions. Mode 2 is also characterized by low rainfall
forecast but differs from mode 1 because observed flows
are higher. Finally, mode 3 is characterized by high
rainfall forecast. This classification can be reproduced by
the following set of if-then rules:
if R̂ < R and �qa < Q
 mode 1

if R̂ < R and �qa≥Q
 mode 2

if R̂≥R
 mode 3
where �qa is the average observed flow in the a hours
before the time of forecast, R̂ is the cumulate forecasted
rainfall in the next 67 h and R and Q are threshold values
to be estimated together with parameter a. In our
application, we first gave these parameters a set of
tentative values, based on visual inspection of the system
trajectories. Later, they were refined through an automatic
calibration procedure that will be discussed in Sec. 3.4

The correction models

The simplest correctionmodel takes up the following form

q̂
0
h ¼ q̂h þ ch (1)

where q̂h is the flow forecast for the h-th hour in the forecast
horizon (h=1, . . ., 67) produced by the hydrological model
on a given day, q̂

0
h is the ‘corrected’ flow forecast and ch is the



Figure 6. Example of flow forecast produced by the analog model (blue)
The analog model replicates the flow pattern (magenta) identified in the
observed flows (black) in the 24 h before the time of forecast (time 0). The
horizontal dashed line is the threshold value (b��q24 ) used to distinguish

between high and low flows
correction factor. The latter is given by an equation of
the form

ch ¼ f z; θhð Þ (2)

where z is a vector of hydrometeorological information that 
are available at the time of forecast, and θh is a vector 
collecting the parameters of the correction function. The 
choice of the input vector z and the function f, as well as the  
calibration of the parameters θh, are driven by data analysis. 
In fact, from the definition of the correction factor ch in 
Equation (1), the identification of model (2) boils down to 
a regression problem over historical time series of 
forecast errors.
The selection of the model input z can be based on the 

analysis of the relation between forecast errors and candidate 
input variables. Candidate input variables in our case study 
included: average forecasted rainfall in the prediction 
horizon; observed flow and rainfall at varying lag times; 
simulated flows and simulation errors by the AD2 model at 
different lags and forecast errors made by the AD2 model on 
previous days. The relation between these variables and 
forecast errors can be explored by multiple statistical tools, 
from correlation and average mutual information analysis to 
more sophisticate input variable selection techniques 
(Bowden et al., 2005). Once the model input have been 
chosen, regression analysis is applied to choose the proper 
function f(�) and its parameters. Following a parsimonious 
approach (Young et al., 1996), in our study, we first tested 
simple relations, i.e. linear, while leaving the option for 
choosing more complex relations only if the modeling results 
were considered not satisfactory. Since the correction model 
is expected to take up different forms depending on the 
system mode, the above analysis is repeated for each mode 
using the subset of data relative to the mode under exam.
In our case study, cross-correlation analysis shows that 

the simulation error made at the time of forecast is a 
relevant predictor of forecast errors in all modes, dry, 
flood and recession. The reason is that the simulation 
error is an indirect estimate of the distance between 
simulated and actual state of the system, which conditions 
the model output along the entire forecast horizon.
In mode 1 (dry conditions) and 2 (recession), the forecast 

errors made on previous days were also selected as input 
variables, because in these modes similar errors are 
reproduced for several subsequent days. In mode 3 (flood 
conditions), instead, forecast errors on previous days are not 
very informative, because when entering flood conditions, 
the persistence in the system behaviour is altered by the 
exogenous meteorological driver. In this mode, the cumulate 
observed rainfall in the last 24 h proved to be a more 
informative regressor, as it helps distinguishing whether a 
rainfall event has already started or not. Following this 
analysis, in mode 1 and 2, the linear correction model takes up
the form

ch ¼ θih1 þ θih2e
sim þ θih3e

for
h i ¼ 1; 2 (3)

where esim is the simulation error at the time of forecast and
eforh is the last available forecast error for lead time h (i.e. the
one produced on the day before for h< 24; two days before
for 24≤h< 48 and three days before for h≥48).
In mode 3, the model takes up the form

ch ¼ θ3h1 þ θ3h2e
sim þ θ3h3�p24 (4)

where �p24 is the cumulate observed rainfall in the last 24 h
before the time of forecast. Each correction model thus
has three parameters θih1; θ

i
h2; θ

i
h3

� �
for each possible lead

time h, for a total of 3 � 67 = 201 parameters, which can
be easily estimated by applying the linear least-squares
formula. As for the linearity assumption, it proved quite
satisfactory but for mode 1, where the linear model
needed to be further corrected, as explained next.

The analog model

In mode 1 (dry conditions), some events cannot be
properly corrected by the simple linear structure described
above. Figure 4d is an example. The top panel shows that
a rainfall event occurred just around the time of forecast,
but observed flows (black line in the bottom panel) are
not affected by such rainfall that was probably intercepted
by upstream barriers. However, the hydrological model
reacts to the rainfall input and generates the flood
hydrograph described by the red line. The distance
between measured and forecasted flow in this event is so
large that adding an empirical correction factor to the
latter cannot really close the gap between the two. In this
case, the approach of Equation (1) must be abandoned,
and the correction model consists in generating a
completely new flow forecast q̂

0
h independently from the

forecast q̂h produced by the hydrological model.
To generate the new forecast, we could develop a
.



conceptual reservoir scheme based on profit maximization.
However, this is not a viable option in the case study area,
since the upstream facilities that induce the alteration of the
river regime are operated not only to maximize the profit at
the local level but also to account for other needs, for instance
load balancing, of the wider pool of plants they belong to.
Since reproducing such a complex behaviour by a conceptual
model was not straightforward, we opted again for a data-
driven approach. Specifically, based on the observation that
in dry conditions the hydrological regime often replicates a
given pattern for several days, we decided to use a model
based on analogy, as sometimes done in weather operational
forecasting (Renaud et al., 2012). Figure 4d shows an
example of such replicated patterns. It is composed of ‘high’
flows (around 10m3/s) for 6–7 h and ‘low’ flows (around the
minimum environmental flow of 1.5 m3/s) for 5–6 h. The
analogmodel produces theflow forecasts for the next 67 h by
replication of the pattern identified in the observed flows of
the last 24 h.
Specifically, the analog model performs the following

steps:
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Figure 7. Absolute forecast error before (red) and after (blue) the correction f
2009). Right: average over the

Table I. Performance metrics over the calibration (2008, 2010 and 20
correction for several lead times (MAE is the mean

Lead time (hours)

Calibration MAE before correction
MAE after correction (linear)
MAE after correction (nonlinear)
NSE before correction
NSE after correction (linear)
NSE after correction (nonlinear)

Validation MAE before correction
MAE after correction (linear)
MAE after correction (nonlinear)
NSE before correction
NSE after correction (linear)
NSE after correction (nonlinear)
1. Test whether the correction model should be replaced
by the analog model. The analog model is used when
the flow forecast from the hydrological model is
expected to be too far from the actual system
conditions. This is tested by comparing the average
value of the flow forecasts with the average flow
observed in the last 24 h (�q24 ). Precisely, the analog
model is activated when the average flow forecast is
higher than g��q24 , where g is a parameter to be
estimated.

2. Identify the pattern to be replicated. Hourly flows in
the last 24 h are classified in ‘high’ and ‘low’
depending on whether they exceed a given threshold
or not. The threshold value varies with the event under
exam and is computed as b��q24, where b is a parameter
to be estimated. The pattern is defined as the flow
trajectory between a ‘high-to-low’ change and a ‘low-
to-high’ change (see Figure 6).

3. Replicate the pattern. The corrected flow forecast q
0
h is

set equal to the flow value in the pattern for the
corresponding lead time h.
0 10 20 30 40 50 60
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or different lead time h. Left: average over the validation period (2007 and
entire dataset (2007–2011)

11) and validation (2007 and 2009) horizon before and after error
absolute error; NSE is Nash–Sutcliffe efficiency)

h= 1 h= 24 h= 48 h= 67

5.45 5.99 6.35 6.37 (m3/s)
2.67 3.92 4.55 4.57 (m3/s)
2.35 3.76 4.17 4.14 (m3/s)
0.78 0.67 0.62 0.71 (�)
0.93 0.76 0.69 0.73 (�)
0.94 0.78 0.74 0.76 (�)
7.17 6.51 6.59 6.26 (m3/s)
3.29 3.68 4.17 3.64 (m3/s)
3.29 3.99 4.00 3.26 (m3/s)
0.71 0.71 0.68 0.83 (�)
0.90 0.85 0.82 0.84 (�)
0.89 0.77 0.82 0.85 (�)



The analog model includes the two parameters, g and
b. Just as done for the classification system, these
parameters were first manually tuned, and later their
value was refined using the parameter estimation
procedure described in the next paragraph.

Final parameter refinement

The parameterization of the correction system’s compo-
nents can be obtained using a mix of manual and formal
(automatic) calibration procedures. First, the parameters of
the classification system are decided and then data split
accordingly and the single correction models calibrated.
To improve the parameterization so obtained, all

the parameters are re-optimized in a single, automatic
calibration process, using a global optimization algorithm
suitably modified to our goal. The algorithm explores
the space of manually tuned parameters (in our case, the
parameters R,Q, a of the classification system, and the
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Figure 8. Measured flow (black dots), flow forecast before correction (red)
and after correction (blue) with lead time h= 1 (top panel) and h= 24 h
(bottom panel). Zoom of about 5 months in the validation horizon (2007)

Figure 9. Flow forecast after correction (blue circles) in the four cases of
observations, red circles are forecast before correction,
parameters b and g of the analog model). At each iteration,
the selected parameter set (R,Q, a,b, g) is used to split the
calibration dataset, the parameters of each empirical model
are estimated by automatic calibration (linear least squares
in our case), and the correction model so obtained is
evaluated by a performance metric. Based on such metric,
the global optimization algorithm selects a new parameter
set and iterates the above procedure until a given termination
condition is reached.
In this study, a genetic algorithm (Goldberg, 1989) was

used (implemented by the ga function of the Genetic
Algorithm and Direct Search Matlab Toolbox). The
performance metric acts as the fitness function of the
genetic algorithm. The mean absolute error (MAE) after
correction was used in our case study. It is computed as the
average across days of the MAE over the forecast horizon
made on a given day. The latter is defined as

MAE ¼ 1=67
X67

h¼1

j�qh � q̂
0
hj (5)

MAE is preferred over other more widely used metrics
(e.g. mean squared error or Nash–Sutcliffe efficiency
(NSE)) because it does not increase the relevance of
datapoints of higher magnitude and thus is particularly
suitable when calibrating a model that is expected to
perform well especially for low errors (Dawson et al.,
2007), as in our case. However, other choices may be
made depending on the specific purpose of the modelling
exercise.
Figure 4. Again, black lines and circles are past and future (unknown)
black squares are model output in simulation mode



 

APPLICATION RESULTS AND DISCUSSION

The correction system so obtained was validated by 
comparing the flow forecasting accuracy before and after 
the correction, over a time period not used for calibration 
(years 2007 and 2009) and over the entire available time 
series (2007–2011). Figure 7a shows the absolute forecast 
error of the model before (red) and after (blue) the 
correction, for different lead times (average over the 
forecasting days). The absolute error obviously increases 
with the lead time; more interestingly, it is significantly 
lower after the correction, thus demonstrating the value of 
the proposed correction system.
The same values are reported in Table I, where besides 

the MAE of the forecasting system, the NSE is also 
reported for several lead times. It can be seen that also in 
terms of the latter metric, performances after correction 
are significantly improved, especially at lower lead times. 
As a matter of comparison, the table also reports the same 
figures for the case of nonlinear correction models, that is, 
using the same classification system and model inputs but 
replacing Equations (3) and (4) by nonlinear relations 
(specifically, two feedforward neural networks with four 
tangent sigmoid neurons in the hidden layer and a linear 
output layer). It can be seen that the performances of the 
nonlinear error correction system are slightly better than 
those of the linear one over the calibration dataset and 
almost equivalent over the validation dataset.
A visual inspection of the modelling results is given in 

Figures 8 and 9. Figure 8 reports the time series of flow 
forecasts before and after (linear) correction for lead time 
h = 1 and h = 24. It shows that overall, the corrected flow 
forecast follows more closely the measured flows, 
although the forecasting accuracy is obviously much 
lower for higher lead time. Figure 9 analyzes the flow 
forecast after correction for the four typical events already 
reported in Figure 4. It shows that the corrected flow 
forecast (blue line) is much closer to observed flows 
(black) especially when the system is in mode 1, i.e. in 
case (a) and (d) (both in the validation period).
Validation results show that the correction system can 

significantly contribute to improve flow forecasting 
accuracy on the proposed case study, despite the relative 
simplicity of its single components. On the other hand, 
the modular structure of the correction system allows for 
easily improving any of its components whenever 
increased data availability would permit it or when 
applying the same methodology to a different case study. 
The classification system can be easily scaled to more 
than three modes and/or be based on more complex rules 
than those used here. A review of the available
approaches to building modular models for hydrological 
applications can be found in Solomatine and Siek (2006).
Correspondingly, the correction models for each mode
can be tailored to the regime under study, just as we did in
mode 1 with the analog model.
However, increasing the complexity of the input–

output relationship of Equation (2) may significantly
increase the computing time for the parameter refinement
procedure. With this respect, using linear relationships as
we did in our study is quite effective since at each
iteration of the global optimization, linear least squares
can be used to calibrate the correction models and thus the
refinement procedure is very fast. For instance, the results
reported in this paper were obtained using a population of
20 individuals and 51 generations, for a total of 20 �
51 = 1020 model evaluations, which requires applying the
linear least-squares formula 1020 � 3 = 3060times, for a
total computing time of less than 3 min (on a laptop with
2.53 GHz Intel Core 2 Duo Processor, 4 GB 1067 MHz
memory).
In our case study, limited data availability and thus the

risk of overfitting was another reason for preferring
simple relations like linear ones. On the other hand, since
a different linear relation is identified for each mode of the
system, we expect it to be a more reasonable approxima-
tion of the input–output relation than if one relation was
used for the entire regressor space. In other terms, since
we use different model in different domains, we expect
the linear approximation to be more acceptable in each
domain. Such a modular approach has been previously
demonstrated to be effective in rainfall–runoff modelling
(Iorgulescu and Beven, 2004; Solomatine and Xue,
2004). The hypothesis is also confirmed by the compar-
ison with a more complicated, neural network model,
which does not improve forecasting efficiency signifi-
cantly on our case study.
Another advantage of the modular approach is that it

enhances interpretability of the modelling results in
hydrologically sound terms. While building the
correction system, the modeller can gain a deeper
understanding of the variety of catchment responses and
the sources of errors in the hydrological model. Once the
model is calibrated and implemented, it provides the user
with an indication of what is the current mode of the
system, why correction is needed, and even the possibility
not to activate the correction model if the original
hydrological model is considered sufficiently reliable in
the current mode (as it could be for mode 3 in our case).
CONCLUSIONS

In this paper, we proposed a modular data-driven flow
forecast correction model composed of a classification
system that activates alternative error correction routines
based on the current flow conditions. The classification
detects whether the source of error is natural or human



induced and correspondingly launches a data-driven
model tailored to the identified source of error. This very
simple approach exhibits a number of advantages with
respect to more sophisticated approaches such as: (i) it is
computational efficient and easily implementable; (ii)
help in gaining a deeper understanding of the catchment
behaviour and the sources of errors in the original
hydrological model and (iii) is highly portable and does
not require any specific data, e.g. on the human-induced
variability, to detect and correct flow forecasting error.
As a case study, we considered the highly anthropized

Aniene river basin in Italy, where a flow forecasting
system is being established to support the operation of a
hydropower dam. Results show that, even by using very
basic methods, namely if-then classification rules and
linear correction models, the proposed methodology
considerably improves the forecasting capability of the
original hydrological model under different flow regimes.
Future research will focus on studying the uncertainty

associated to the corrected hydrological flow forecast for
different lead times and developing suitable methods for
quantifying the residual uncertainty remaining after error
correction. This is a step of outmost importance to
enhance the reliability of the operational flow forecasting
system and assist decision makers in model-based
operation while recognizing uncertainty.
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