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1 Introduction

Principal differential analysis (PDA) (Ramsay 1996; Ramsay and Silverman 2005)
is a technique that enables the estimation of a differential operator from a functional
data set. This technique has already been used to analyze various types of applications
such as the study of free handwriting (Ramsay 2000), the analysis of the movement of
the lips during the release of the syllable Bob (Ramsay et al. 1996), economic models
(Wang et al. 2008), weather (Ramsay and Silverman 2005), chemical models (Poyton
et al. 2006), articulatory motion for speech analysis (Reimer and Rudzicz 2010), and
sounds (Winsberg and Depalle 1999). In these papers, the main goal of PDA was
the estimation of the the unknown parameters of a usually well known underlying
differential operator. In contrast, in this work, we consider situations were there is
not a known differential operator governing the phenomenon behavior. PDA is used
here to better understand and possibly shade some new lights on the phenomenon
under investigation. In particular, the estimated differential operator is used to obtain
a convenient representation of the data. It provides a finite-dimensional space onto
which the data can be projected and where the variability related to linear relations
among derivatives can be explored (Ramsay 1996). In this perspective PDA will be
applied here to analyze the AneuRisk65 data set, in order to explore the geometry of
cerebral vessels.

The AneuRisk project1 is a scientific project that aimed at investigating the role of
vessel morphology, blood fluid dynamics and biomechanical properties of the vascular
wall, on the pathogenesis of cerebral aneurysms. The project has gathered together
researchers of different scientific fields, ranging from neurosurgery and neuroradiology
to statistics, numerical analysis and bio-engineering.

Cerebral aneurysms are deformations of cerebral vessels characterized by a bulge of
the vessel wall. This is a common pathology in the adult population, usually asymp-
tomatic and not disrupting. On the other hand, the rupture of a cerebral aneurysm,
even if quite uncommon, is usually a tragic event, with very high mortality. Unfor-
tunately, rupture-preventing therapies, both endovascular and surgical treatments, are
not without risks; this adds to the fact that in clinical practice general indications
about rupture risk are still missing. Even the origin of the aneurysmal pathology is
still unclear. Possible explanations that have been discussed in the medical literature
focus on interactions between the biomechanical properties of artery walls and hemo-
dynamic factors, such as wall shear stress and pressure; the hemodynamics is in turn
strictly dependent on vascular geometry. In particular, it has been conjectured that the

1 The project involved MOX Laboratory for Modeling and Scientific Computing (Dip. di Matemat-
ica, Politecnico di Milano), Laboratory of Biological Structure Mechanics (Dip. di Ingegneria Strut-
turale, Politecnico di Milano), Istituto Mario Negri (Ranica), Ospedale Niguarda Ca? Granda (Milano) 
and Ospedale Maggiore Policlinico (Milano), and has been supported by Fondazione Politecnico di 
Milano and Siemens Medical Solutions Italia. Detailed descriptions of the project’s aims can be found 
at AneuRisk webpage http://mox.polimi.it/it/progetti/aneurisk/, where AneuRisk65 data can be down-
loaded. These data include the image reconstructions of one of the main cerebral vessels, the Inner Carotid 
Artery (ICA), described in terms of the vessel centreline and of the vessel radius profile. An increas-
ing data warehouse concerning aneurysm pathology can be accessed from the AneuRisk Web Repository 
http://ecm2.mathcs.emory.edu/aneurisk managed by Emory University and Orobix.
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pathogenesis of these deformations is influenced by the morphological shape of cere-
bral arteries, through the effect that the morphology has on the hemodynamics. For
this reason, the main goal of the AneuRisk project has been the study of relationships
between vessel morphology and aneurysm presence and location.

The AneuRisk65 data set is based on a set of three-dimensional angiographic images
taken from 65 subjects, hospitalized at Niguarda Ca Granda Hospital (Milan), who
were suspected of being affected by cerebral aneurysms. These data include the image
reconstructions of one of the main cerebral vessels, the Inner Carotid Artery, described
in terms of the vessel centreline and of the vessel radius profile. A thorough descrip-
tion of the elicitation of the AneuRisk65 data set can be found in Antiga et al. (2008),
Sangalli et al. (2009) and Passerini et al. (2012). In Sangalli et al. (2009), functional
principal component analysis (FPCA) was used to explore variability of the 65 ICA
radius profiles. This pointed out important features amenable of a biological interpre-
tation and able to discriminate aneurysms presence and location. In this manuscript
we study the variability of the 65 radius profiles by means of PDA, thus exploring
interesting possible relations among the radius profile derivatives, in order to further
validate the findings enlightened in Sangalli et al. (2009) and possibly shade new
insights on the data structure.

The paper is organized as follows. In Sect. 2, the PDA methodology is summarized
and commented. In Sect. 3, PDA and FPCA are applied to the analysis of three simu-
lated data sets to point out similarity and differences between the two approaches. In
Sect. 4, the Aneurisk65 data set is analyzed by means of FPCA and PDA. Finally, in
Sect. 5, some concluding remarks are reported.

All analyses have been performed using R (R Core Team 2012).

2 PDA as a dimensional reduction tool

Let {xi }i=1,...,N be a set of N real-valued functional data xi = xi (·), defined on the
common domain (a, b). To estimate a linear differential operator of order m assume
that xi , i = 1, . . . , N belong to the Sobolev space Hm(a, b). We consider linear
differential operators L , with constant coefficients, of the form

Lx(s) = Dm x(s)+ βm−1 Dm−1x(s)+ · · · + β1 Dx(s)+ β0x(s) for s ∈ (a, b)

(1)

where Dm x denotes the m-order derivative of the function x ∈ Hm(a, b). PDA esti-
mates the operator L , defined by the coefficient vector β = (β0, β1, . . . , βm−1)

′
, by

minimizing the sum of squared differential residuals

RSS(L) =
N∑

i=1

||Lxi ||2, (2)

with ||·|| being the L2(a, b) norm induced by the usual inner product in L2(a, b), which
is indicated in the following with < ·, · >. The driving idea behind the minimization



problem (2) is the search for a differential operator able to describe a large part of the
variability shown by the functional data set {xi }i=1,...,N .

The minimization problem (2) is analytically solved for the value β̂ = A−1b,
where (A) j1 j2 = ∑N

i=1 < D j1 xi , D j2 xi > and (b) j1 = ∑N
i=1 < D j1 xi , Dm xi >

with j1, j2, . . . ∈ {0, 1, . . . ,m − 1}. The corresponding estimate L̂ of the unknown
operator L is:

L̂x(s)=Dm x(s)+ β̂m−1 Dm−1x(s)+ · · · + β̂1 Dx(s)+ β̂0x(s) for x ∈ Hm(a, b).

Notice that the minimization problem (2) is formally identical to the minimiza-
tion problem encountered within the ordinary least squares estimation of the unknown
parameters of a functional–functional concurrent regression model with constant para-
meters,

Dm xi (s) = −βm−1 Dm−1xi (s)− · · · − β1 Dxi (s)− β0xi (s)+ Lxi (s)

for i = 1, . . . , N ,

being in this case Dm xi the functional response, −Dm−1xi , . . . ,−Dxi ,−xi the func-
tional regressors, and Lxi the residual term.

The estimation of the linear operator L and the Partitioning Principle of Hilbert
spaces (see, e.g., Rudin 1991) jointly enable the orthogonal decomposition of the
functional space the data belong to, into two different components ker(L̂) and ker(L̂)⊥,
where ker(L̂) is the m-dimensional linear space of all functions x̂ satisfying the linear
differential relation L̂ x̂ = 0, and ker(L̂)⊥ is its orthogonal counter part. This means
that for i = 1, . . . , N , the function xi can be univocally decomposed in the sum of two
orthogonal components x̂i and êi such that xi = x̂i + êi with L̂ x̂i = 0 and L̂ êi = L̂xi .
The functions x̂i and êi are named structural and residual component, respectively.
Indeed, the function x̂i gathers those differential features of xi , common to the entire
functional data set, that can be described by the linear differential equation L̂ x̂i = 0.
On the contrary, the function êi gathers those differential features of xi that the linear
differential operator L̂ cannot handle, i.e., L̂xi = L̂ êi . Due to the orthogonality of
x̂i and êi , for i = 1, . . . , N the structural component x̂i can be identified with the
solution of the following minimization problem:

min
x∈ker(L̂)

||x − xi ||2 for i = 1, . . . , N . (3)

It is well known that any solution of a non degenerated linear differential equa-
tion of order m can be expressed as a linear combination of m linearly indepen-
dent complex-valued exponential functions ψ1, . . . , ψm . In particular we have that

ker(L̂) = span{ψ̂1, . . . , ψ̂m} with ψ̂1(s) = eλ̂1 s, . . . , ψ̂m(s) = eλ̂m s where λ̂ j are
the m different complex roots of the characteristic polynomial λm β̂m 1λ

m−1

β
m

ψ

λ λ

ˆ1λ + β̂0. This analytical characterization of the space ker(L̂ ) 
+
pro 

−
vides an e

+· · ·
xplicit

+
solution to the problem (3). Indeed, for i = 1, . . . ,  N , x̂i (s) = 

∑
j=1 ĉi j ˆ j (s) 

with scores (ĉi1, ĉi2, . . . , ĉim  )
′ = −C−1di , where (C) j1 j2 =< e ˆ j1 s , e ˆ j2 s > and



(di ) j1 =< eλ̂ j1 s, xi (s) >. Finally, the differential residual term is simply computed
as êi = xi − x̂i .

The final result of the overall procedure is a new functional data set {x̂1, . . . , x̂N }
derived from the original data set {x1, . . . , xN } belonging to an m dimensional func-
tional space provided with an analytical representation and interpretable in terms of
linear relations among different order derivatives.

A useful tool to measure the effectiveness of the obtained dimensional reduction is
the quantity

RSQ =
∑N

i=1 ||Dm xi ||2 − ∑N
i=1 ||L̂xi ||2∑N

i=1 ||Dm xi ||2

introduced in Ramsay (1996). For linear differential operators L with constant coef-
ficients β = (β0, β1, . . . , βm−1)

′
, as in (1), RSQ is a ratio between the structural

variability and the total variability. Indeed RSQ = 1 when there is only structural
variability (i.e., xi = x̂i for i = 1, 2, . . . , N ) and RSQ = 0 when there is no structural
variability (i.e., xi = êi for i = 1, 2, . . . , N ).

A couple of theoretical remarks about the dimensional reduction obtained by the
projection of functional data onto ker(L̂) need to be mentioned. The first remark
concerns to the link between PDA and functional regression. Note that, while in the
minimization problem (3), N actual functional regression analyses are performed
(the only unusual feature with respect to a traditional functional regression being that
the regressors are not known but estimated in a previous stage of the analysis), in
the minimization problem (2), the link is instead just formal and does not concern
the modeling aspect. Indeed, in (2), the functional “regressors” −D j xi , j = 0, . . . ,
m − 1, are random and the random functional “error” Lxi is not independent from the
functional “regressors”.

The second remark is related to the link between PDA and FPCA. FPCA is prob-
ably the most used approach to perform a dimensional reduction of a functional data
set {xi }i=1,...,N , with xi ∈ L2(a, b). This is due to the fact that for any dimension
k = 1, 2, . . . , N − 1 FPCA provides an affine k-dimensional subspace of L2(a, b)
which is statistically optimal in an L2(a, b) perspective. Indeed, it can be proven that
the sum of the squared L2(a, b)-norms of the residuals of the orthogonal projections
of the functional data onto this k-dimensional subspace is minimal over all possible
k-dimensional subspaces of L2(a, b). On the whole, FPCA provides a sequence of
nested best approximating affine subspaces of increasing dimension. In detail, these
subspaces are all centered in the sample mean function and generated by the first k
eigenfunctions of the sample covariance operator, which are real-valued and orthog-
onal being the covariance operator positive semi-definite. The goodness of fit to the
original data of the projections of the data on the k-dimensional FPCA affine subspace
is commonly measured by means of the fraction of explained total variance (namely,
the ratio between the sum of the first k eigenvalues of the sample covariance operator
and the sum of first N − 1 eigenvalues of the sample covariance operator) which rep-
resents the ratio between the average squared L2(a, b) distance of the projections to
the sample mean and the average squared L2(a, b) distance of the original functions



to the sample mean. For further details about FPCA refer for instance to Ramsay and
Silverman (2005).

It is worth noticing that, differently from FPCA, where the dimensional reduction is
driven just by the point-wise values of the functional data along the domain (a, b), the
dimensional reduction obtained by PDA is driven by the values of linear combinations
of the first m derivatives of the functional data along the domain (a, b). PDA is therefore
able to capture hidden features of the data that are purely functional in their nature.
By definition, FPCA is expected to provide an effective dimensional reduction in
any situation where most of the functional variability is expressed within some finite
dimensional subspace; at the same time a simple analytical expression of the principal
components is often missing and the interpretation of these components is often non-
trivial. On the contrary, PDA is expected to provide an effective dimensional reduction
only in those situations where most of the functional variability is expressed within
specific finite dimensional subspaces, those generated by some functions of the form
e(α±ωi)s with α and ω ∈ R. On the other hand, PDA always provides interpretable
results in terms of constant, exponential, sinusoidal, or damped-sinusoidal functions.
Since the effectiveness of PDA is related to particular finite dimensional subspaces, it
is obvious that the dimensional reduction provided by FPCA is always more effective
than the one provided by PDA. The aim of FPCA is indeed to achieve the most effective
dimensional reduction from a purely geometric point of view. The aim of PDA is
instead to provide a compact interpretable model in term of relationship between
derivatives. It is thus interesting to determine if PDA can be a useful tool to have a
different insight of the functional variability, at least in cases where both PDA and
FPCA provide an effective dimensional reduction. A more thorough discussion about
similarities and differences between PDA and FPCA is reported in Ramsay (1996).

3 Comparing FPCA and PDA of three simulated data sets

In this section we compare PDA and FPCA in the dimensional reduction of three
simulated data sets, of N = 200 functions each, generated according three different
scenarios. In Case A we consider two clusters of functional data generated from the
same orthogonal and sinusoidal basis. In Case B data are generated from a polynomial
basis. Finally, in Case C there is a clear underlying differential model, namely we
consider the harmonic oscillator in a viscous fluid (Feynman et al. 2013). All data
are generated over the interval [0, 10], on a evenly-spaced grid of 101 abscissa points
{sk = k/10} with k = 0, 1, . . . , 100.

In Case A the 200 functional data are generated as

xik = ai + bi sin

(
2π

10
sk

)
+ ci cos

(
2π

10
sk

)
+ εik,

k = 0, 1, . . . , 100, i = 1, . . . , 200,

with random coefficients (ai , bi , ci )
′ ∼ i id  N3((1, 1, 1)′, I) for i = 1, . . . , 100,

(ai , bi , ci )
′ ∼ i id  N3((−1, −1, −1)′, I) for i = 101, . . . , 200, and measurement 

errors εik  ∼ i id  N1(0, 102). The two different distributions assumed for the random



coefficients, respectively of the first 100 and last 100 functional data, generate two
clusters of functions.

In Case B the 200 functional data are generated as

xik = ai
sk

10
+ bi

( sk

10

)2 + ci

( sk

10

)3 + εik, k = 0, 1, . . . , 100, i = 1, . . . , 200,

with random coefficients (ai , bi , ci )
′ ∼ i id N3((2,−2, 2)′, 16 · I), and measurement

errors εik ∼ i id N1(0, 102).
In Case C the 200 functional data are generated as

xik = ai e
λ1sk + bi e

λ2sk + εik, k = 0, 1, . . . , 100, i = 1, . . . , 200,

with random coefficients (ai , bi )
′ ∼ i id N2((2,−2)′, I) for i = 1, . . . , 100,

(ai , bi )
′ ∼ i id N2((2,−2)′, I) for i = 101, . . . , 200, and measurement errors

εik ∼ i id N1(0, 102). Parameters λ1 and λ2 are the real roots of the characteris-
tic polynomial of the differential equation m · D2x = −6πηR · Dx − k · x describing
the dynamics of a sphere of mass m = 1 and radius R = 1/2 attached to a coil with
elasticity constant k = 1 in a viscous fluid with drag constant η = 1/4.

The original data are discrete and noisy observations of curves. PDA requires the
estimation of the function derivatives up to the considered order of the differential
operator. Here in particular we shall explore differential operators of maximum order
m = 4. To obtain the estimates of the curves and correspondingly of their derivatives of
order m ≤ 4 from noisy data we use smoothing splines of degree 5, with penalization
of fourth order derivative. These curve estimates (zero derivative) are also used for
FPCA. The curve estimates, for the three simulation cases, are displayed in the left
column panels of Fig. 1 (Case A top, Case B center, Case C bottom).

In the left panels of Table 1 we report, for the three cases, the RSQ and the estimated
coefficients of the linear differential operators the order m = 1, 2, 3, 4, provided by
PDA. On the right panels of the same table we report the fraction of explained total
variance in FPCA. Figure 1, center and right column panels, displays the estimated
basis functions detected in the three simulation cases by PDA (center panels) for the
chosen order of the differential operator, and by FPCA (right panels) for the chosen
number of principal components.

Before focussing on the comparison between FPCA and PDA results, it is important
to recall the different meanings of the fraction of explained total variance and of the
RSQ index, used to evaluate the goodness of the dimensional reduction achieved by
FPCA and by PDA, respectively. Indeed, even though these indexes are both bounded
between 0 and 1, with lower values associated to less effective dimension reductions
and higher values associated to more effective ones, these indices should not be directly
compared. Indeed, while the fraction of explained total variance used in FPCA exactly
measures to what extent the variability of the functional data set is captured by its
reduced representation, the RSQ index used in PDA is more similar to a regression-
R2 index, and measures to what extent the mth derivatives can be described by means
of a linear combination of lower-order derivatives and thus provides a goodness of
fit for a particular linear differential model. The different nature of the two indices is



Table 1 PDA for the three simulated cases A, B, and C, the estimated coefficients of the linear differential
operator of order m = 1, 2, 3, 4 provided by PDA and the corresponding RSQ

PDA FPCA

D4 f D3 f D2 f D1 f D0 f RSQ Exp. var.

Case A

m = 1 1 −0.0034 0.0001 k = 1 0.6783

m = 2 1 0.0003 0.2102 0.5342 k = 2 0.8844

m = 3 1 0.0000 0.3965 0.0004 0.9999 k = 3 1.0000

m = 4 1 −0.0243 0.3972 −0.0095 −0.0002 0.9997 k = 4 1.0000

Case B

m = 1 1 −0.2182 0.8155 k = 1 0.9742

m = 2 1 −0.2603 0.0288 0.6955 k = 2 0.9997

m = 3 1 −0.1111 −0.0059 0.0013 0.4763 k = 3 1.0000

m = 4 1 −0.0001 0.0001 0.0000 0.0000 0.0194 k = 4 1.0000

Case C

m = 1 1 0.6246 0.1942 k = 1 0.6650

m = 2 1 1.3226 0.7803 0.9658 k = 2 0.9994

m = 3 1 1.5952 1.2905 0.3870 0.9867 k = 3 0.9996

m = 4 1 1.7676 1.8584 1.1052 0.2698 0.9667 k = 4 0.9999

FPCA for the three simulated cases A, B, and C, the fraction of total variance explained by the first 
k = 1, 2, 3, 4 functional principal components

also enlightened by the fact that the fraction of explained total variance is monotonic 
with respect to the dimension of the functional subspace considered, while RSQ is 
not.

In case A, note that the set {1, sin((2π/10)s), cos((2π/10)s)} is an orthogonal basis 
for the three-dimensional space which all functions (when not affected by measurement 
error) would belong to, and that this space also coincides with ker(D3+((2π/10))2 D). 
It is thus obvious that both the projection on the first three functional principal com-
ponents estimated by FPCA, and the projection on the kernel of a third-order operator 
estimated by PDA, are expected to be effective dimensional reduction tools. Indeed 
they are, as it is shown by the fraction of explained total variance by the first three 
principal components and by the RSQ when a third-order linear differential operator 
is used (see Table 1). In particular, the obtained RSQ strongly support the choice of 
m = 3 order differential operator. This choice is also supported by the comparison 
between the estimated coefficients of the third-order operator and the fourth-order 
operator (see Table 1), as the latter coefficients resemble the former ones, but shifted 
by an order of derivative. Indeed, the estimated third-order operator correctly targets 
the operator D3 + ((2π/10))2 D, while the estimated fourth-order operator targets the 
operator D4 + ((2π/10))2 D2 whose kernel includes the kernel of the previous one. 
Considering FPCA results, it emerges that the presence of two clusters of functional 
data drives in this case the determination of the first principal component, that detects 
the direction connecting the two clusters, while the second and third components



Fig. 1 First column the three simulated functional data sets as estimated by smoothing splines of degree
5; Case A top, Case B center, Case C bottom. Second column corresponding basis functions detected by
PDA. Third column corresponding basis functions (principal components) detected by FPCA

describe the residual variability. The simple description of functional data as sum of
a constant term and a sinusoidal term thus remains unveiled by FPCA. PDA instead
describes these clusters as made of functions characterized by the same differential
model, but with different boundary conditions. Note moreover that PDA provides
explicit estimates of the frequency of the sinusoidal component while in FPCA the
latter can only be estimated heuristically.

Case B represents a scenario where PDA is not in principle expected to be effective,
since data are generated from a polynomial basis, without any underlying differen-
tial model. On the other hand, an analysis of RSQ values highlights that PDA, for
some order of the differential operator, provides in fact an effective representation
of the functional data, that is easily interpretable in terms of exponential, sinusoidal
and dumped sinusoidal functions. This representation is alternative to the orthogonal
representation provided by FPCA.



Finally, in Case C there is a clear underlying differential operator, modeling the 
physics of the observed phenomenon. PDA is in this case expected to yield a more 
meaningful description of the phenomenon than FPCA. Indeed, in this last example, 
the PDA representation is easily interpretable in terms of physical quantities, while 
the eigenfunctions and eigenvalues of the sample covariance operator have no simple 
physical interpretation.

4 Analysis of the AneuRisk65 data set

In this section we compare PDA and FPCA in the analysis of the AneuRisk65 data. 
The aim of the analysis is to to explore a conjecture grounded on practical experience 
of neuroradiologists at Niguarda Ca’ Granda Hospital (E. Boccardi, personal commu-
nication): cerebral arteries of patients with an aneurysm at the terminal bifurcation 
of the internal carotid artery (ICA), or after it, show peculiar geometric features. It 
should be mentioned that aneurysm at or after the terminal bifurcation of the ICA are 
the most life-threatening; the possible rupture of one such aneurysm is fatal in most 
cases.

We recall that AnueRisk65 data contains the image reconstructions of the ICA of 
65 subjects. To explore this conjecture, the 65 patients are divided in two groups:

Upper group formed by 33 subjects having an aneurysm at or after the terminal
bifurcation of the ICA;

Lower group formed by 32 subjects, including 25 subjects having an aneurysm along
the ICA, before its terminal bifurcation, and seven subjects not display-
ing any visible aneurysm during the angiography.

In particular, we shall here focus on the analysis of the radius profiles of the ICA. For 
each subject i , AneuRisk65 dataset includes the measurements of the radius {Ri j  ; j = 
1, . . . , ni } of the vessel lumen section, along a fine grid of points {si j  ; j = 1, . . . , ni }, 
starting from the terminal bifurcation of the ICA moving upstream towards the heart. 
Likewise in Sect. 3, a functional representation of the radius profiles and of their 
derivatives of order m ≤ 4, is obtained by means of smoothing splines of degree five, 
with penalization of the fourth derivative. Moreover, in order to enable meaningful 
comparisons across patients, the 65 ICA radius profiles are registered as described in 
Sangalli et al. (2009), using the fdakma R package Patriarca et al. (2013). Since the 
65 curves are observed on different abscissa intervals, the following analyses focus on 
the segment of the ICA where the radius measurements are available for all subjects, 
i.e., for values of the abscissa between -3.29 and -0.74 cm. The conventional negative
sign of the abscissa parameter highlights that we are moving upstream, i.e., in opposite
direction with respect to blood flow, the origin of the abscissa corresponding to the
terminal bifurcation of the ICA. The registered ICA radius profiles over this abscissa
interval are displayed in Fig. 3, panel E.

We first summarize the results obtained by means of FPCA, along the lines described 
in detail in Sangalli et al. (2009). Figure 3, right panels, show the projections of 
the 65 radius profiles on the subspace generated by the first k = 1, 2, 3, 4 principal 
components of the radius profile, colored in blue for subjects in the Upper group and in 
red for subjects in the Lower group. The right panels of Table 2 report the percentage of



Fig. 2 Panels A and B: boxplots of the amplitudes of the exponential component ψ̂1 (panel A) and of the
amplitudes of the sinusoidal component generated by ψ̂2 and ψ̂3 (panel B), estimated by PDA, for the
Lower and Upper groups in the AneuRisk65 data set. Panels C and D: boxplots of the scores of the first
(panel C) and second functional principal components (panel D)

total variance explained by the first k principal components. A visual inspection of the
projections on the first principal component (Fig. 3, panel F) and on the first and second
principal component (Fig. 3, panel G) highlights that these principal components are
amenable of a clear biological interpretation and are also useful for the discrimination
of the two groups of subjects. The first principal component is interpretable as an
average size of the carotid, distinguishing between narrow and wide ICAs. Notice that
the radius profiles are all characterized by a slight progressive narrowing of the vessel
moving from the heart towards the terminal bifurcation of the ICA; this is the so-called
tapering effect. The second principal components emphasizes this tapering effect in
the terminal tract of the ICA, distinguishing between ICA presenting a more or less
marked tapering in their terminal part.

Figure 2, panels C and D, reports the distributions of the scores correspond-
ing to the first and second principal component for subjects in the Upper group
and subjects in the Lower group. These scores may be used to discriminate the
two groups of patients. In fact, the distribution of FPCA scores have significantly
different means and variances for the two groups, as confirmed by appropriate t
tests and F tests for equality of means and variances. According to these differ-
ences, Upper group patients tend to have wider and more tapered ICAs, compared
to patients belonging to the Lower group. Moreover the variance of these geomet-
rical features is significantly smaller in the Upper group than in the Lower group.
The Upper group is indeed very well characterized in terms of the geometrical fea-
tures represented by the first two principal components of radius. A quadratic dis-
criminant analysis based on the scores of the first two principal components mis-
classifies 20.0 % of subjects (23.1 % using leave-one-out crossvalidation), supporting
a strong association between ICA radius and aneurysm presence and location, and
highlighting strong statistical evidence in favor of the conjecture explored within the
project.



Table 2 PDA For the AneuRisk65 dataset, the estimated coefficients of the linear differential operators of
order m = 1, 2, 3, 4, provided by PDA, and the corresponding RSQ

PDA FPCA

Radius D4 f D3 f D2 f D1 f D0 f RSQ Radius Exp. var.

m = 1 1 0.0082 0.0261 k = 1 0.6654

m = 2 1 0.0128 0.0027 0.0028 k = 2 0.7910

m = 3 1 0.0129 0.9845 0.0076 0.4145 k = 3 0.8557

m = 4 1 0.0145 2.3601 0.0407 0.0038 0.6185 k = 4 0.9061

FPCA the fraction of total variance explained by the first k = 1, 2, 3, 4 functional principal components

We now present the results obtained by means of PDA. In the framework of PDA,
the first problem to face is finding the order m of the linear operator L̂ , that provides
the best compromise between a satisfactory goodness of fit and an easy interpretability
of the results. Figure 3, left panels, show the projections of the 65 radius profiles on the
kernels of the linear differential operators of order m = 1, 2, 3, 4 estimated by PDA.
Table 2 reports the corresponding RSQ values. The RSQ values highlight that the
linear differential operators of order one and two are not able to describe the dynamics
of the radius along the ICA while linear differential operators of higher order do. For
instance, considering the order three operator, the 65 radius functions and their first
two derivatives are able to explain more than 40 % of the variability shown by their
respective third derivatives.

Favoring parsimony and easy interpretability of the results, and considering the fact
that the estimates of high order derivatives might not be very accurate, we consider
here the m = 3 order operator. This is then estimated as follows:

L̂x = D3x + 0.0129D2x + 0.9845D1x + 0.0076x . (4)

The three roots of the associated characteristic polynomial are λ̂1 = − 0.0077, λ̂2 =
−0.0026 + 0.9922i , and λ̂3 = −0.0026−0.9922i . The corresponding basis {ψ̂1, ψ̂2,

ψ̂3}, spanning ker(L̂), is thus given by:

ψ̂1(s) = e−0.0077s, ψ̂2(s) = e−0.0026s cos(0.9922s), ψ̂3(s) = e−0.0026s sin(0.9922s).

ψ

ψ

ψ

The first basis function ˆ1 defines a decreasing function that describes jointly the 
overall size and the tapering of the 65 ICAs. The two remaining basis functions ˆ2 
and ˆ3 jointly define a slightly dumped sinusoidal function (being the real parts of the 
adjoint roots very small), of period 6.33 mm and with arbitrary phase, and describe 
variations of the radius along the ICA.

Figure 3 panel C reports the projections of the 65 ICA radius profiles in Kern(L̂ ), 
colored in blue for subjects in the Upper group and in red for subjects in the Lower 
group. This representation can be heuristically compared with the representation in 
panel G, where the radius profiles are projected in the subspace generated by the 
first two functional principal components. Both the FPCA-based and the PDA-based 
representation highlight important, but also different, features of the functional data
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Fig. 3 Panels A to D: for the AneuRisk65 data set, the projections of the 65 radius functions in the kernels
of the linear differential operators of order m = 1, 2, 3, 4 estimated via PDA. Panels F to I: the projections
on the affine subspaces generated by the first k = 1, 2, 3, 4 functional principal components. Lower panels
the 65 original radius functions. Curves are colored in blue for subjects in the Upper group and in red for
subjects in the Lower group (color figure online)



ψ

ψ ψ

ψ

ψ ψ

set. The FPCA-based dimensional reduction obtained through the first two principal 
components points out the existence of an average tapering of the vessels (represented 
by the functional mean), the presence of wider versus narrower vessels (represented 
by the first principal component), and the presence of an extra source of variability 
in the radius at the very end of the ICA, controlling the tapering in the terminal 
part of the ICA (represented by the second principal component). See Sangalli et 
al. (2009) for details. The PDA-based dimensional reduction obtained through the 
third order differential operator in (4) points out the presence of wider and more 
tapered ICAs versus narrower and less tapered ICAs (represented by the exponential 
function ˆ1, that jointly describes the size and tapering effects) and the presence of 
ICAs with smoothed profiles, characterized by regularly a decreasing radius, versus 
ICAs with corrugated profiles, characterized by stronger fluctuations in the radius 
(represented by the sinusoidal function generated by ˆ2 and ˆ3, that describes this 
rippling effect).

Likewise FPCA, also PDA highlights differences in the geometrical features of 
the ICA of Upper and Lower group subjects. Focussing on the discrimination of 
the two groups, panels A and B of Fig. 2 report the boxplots of the amplitudes 
of the exponential component ˆ1 and the boxplots of the amplitudes of the sinu-
soidal component generated by ˆ2 and ˆ3, for the two groups of subjects. As shown 
by Fig. 3 panel C and by these boxplots, and confirmed by suitable tests, Upper 
group subjects have more homogeneous ICA radius profiles with respect to Lower 
group subjects, which display more varying behaviors. In particular, Upper group 
subjects typically present wider, more tapered, and less rippled ICAs than Lower 
group subjects. The phase of the sinusoidal component turns out to be uninforma-
tive in terms of Upper and Lower group characterization. Moreover, it is interest-
ing to note the presence in the Lower group of subjects whose ICAs have strong 
fluctuations in the radius. Finally, a bivariate quadratic discriminant analysis based 
on the amplitudes of the exponential and sinusoidal components misclassifies 8.4 %
of the subjects (21.5 % using leave-one-out crossvalidation), a slightly better mis-
classification error than the one achieved relying on the first two principal compo-
nent.

It is interesting to note that the first principal component scores and the amplitudes 
of the exponential component provided by PDA are almost linearly dependent, while 
the second principal component scores and the amplitudes of the sinusoidal compo-
nent provided by PDA are almost uncorrelated. This supports that the rippling effect 
detected by PDA is not associated to the variability described by the second func-
tional principal component. Looking at panel H of Fig. 3, one could claim that the 
rippling effect is gathered also by the third principal component. This hypothesis is 
though rejected since the third principal component scores are not discriminant of the 
Lower and Upper groups, differently from the amplitudes of the sinusoidal component 
provided by PDA that describes this rippling effect.

Summarizing, the conclusions drawn from PDA about the size and tapering effects 
of the ICA are in complete agreement with the results obtained by FPCA. The con-
clusions about the rippling effect of the ICA are instead specific of the PDA approach, 
as a similar feature is not pointed out by FPCA. This can be explained by the fact 
that these fluctuations in the radius, even if large and present in many subjects, do 
not



occur at the same abscissa values; thus FPCA, that differently from PDA focuses on
pointwise values of the functions, is not able to recognize them as a unique variability
feature.

As a final remark, the different meaning of RSQ value in PDA and of the fraction
of explained total variance in FPCA, pointed out in the last paragraph of Sect. 3, is
clearly enlightened in the comparison between the dimensional reduction obtained
by using the first differential operator provided by PDA (Fig. 3, panel A) and by
using the first principal component (Fig. 3, panel F). The two representations are
qualitatively similar, both gathering the size and tapering effect, and are identical in
terms of discrimination between the Upper and the Lower group subjects, being the
amplitudes of the exponential components almost proportional to the first principal
component scores. Despite of that, the RSQ used in PDA is very low (2.61 %) while
the fraction of total variance explained by the first principal component is quite high
(66.54 %).

5 Conclusions

The analysis of the AneuRisk65 data set and of the synthetic data sets show that PDA
can be a useful tool, as an alternative to FPCA, to perform a dimensional reduction of
a functional data set, also when the phenomenon under investigation is not commonly
described via a differential model governing the phenomenon behavior. In particular,
when effective as a dimensional reduction tool, PDA can provide a representation of
functional data (easily interpretable in terms of exponential, sinusoidal, or dumped-
sinusoidal components) that can detect important features of the data that FPCA is not
able to reveal, providing a different insight into the analysis of a functional data set.
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