
Object-oriented modelling of general flexible multibody systems

Gianni Ferrettia*, Alberto Levaa and Bruno Scaglionib

aPolitecnico Di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria DEIB Via
Ponzio 34/5, 20133 Milano, Italy; bMUSP Lab, Via Tirotti 9, Le Mose, 29122 Piacenza, Italy

(Received 7 March 2013; final version received 18 May 2013)

1. Introduction

Accurate and efficient computer simulations of flexible multibody systems play an impor-
tant role in the design and performance evaluation of many complex technological systems.
However, multibody dynamics is frequently just one of the physical domains involved. For
example, the design of mechatronic systems requires an integrated approach to mechanical,
electronics and control design [1].

In order to master the complexity of a multidomain physical modelling, a modular
approach is thus required, where the complexity is confined to the development of the
equations of the single component, and system-level model organization is managed by
means of the definition of standard component interfaces.

The overall purpose of the flourishing research on the matter is a real modular approach
to modelling, thus based on the following characteristics:

• realization of models of large, complex and heterogeneous physical systems by
connection of basic components;

• description of components’ behaviours by stating physical principles rather than by
writing calculation algorithms (acausal modelling);

An important result of the mentioned research is the so-called object-oriented modelling
and simulation (OOMS) framework. Object-oriented modelling techniques and tools have

*Corresponding author. Email: gianni.ferretti@polimi.it

mailto:gianni.ferretti@polimi.it

started emerging at the end of the 70’s (e.g. ASCEND [2], OMOLA [3], gPROMS [4],
MOSES [5]). As a main result of this research, some specific paradigms have been stated
[6] and implemented in the Modelica language [7], and some modelling and simula-
tion environments have been designed, both commercial (Dymola [8], MathModelica [9],
SimulationX [10]) and open-source (OpenModelica [11]).

Coming to the specific case of multibody systems, and sticking to the Modelica lan-
guage, although the presented ideas are more general, the adoption of a fully modular
approach requires the description of the dynamics of every single body in terms of local
variables, while the interaction between different bodies has to be described using the con-
nectors of the standard Modelica multibody library [12]. A connector is associated with a
reference frame, so that a connection is equivalent to a rigid junction of the two connec-
tor frames. The connector assumes the cut force and torque as flow variables [6], while the
effort variables are given by the position of the origin of the connector frame with respect to
the world frame and by an orientation object,1 describing the relative orientation between
the world frame and the connector frame.

A local description of a body’s dynamics of the body naturally calls for a floating
frame of reference (FFR) approach [13], which is currently the most widely used method
in computer simulation of flexible multibody systems. In the FFR formulation, each body is
attached to a moving frame of reference undergoing large (rigid) motion, while the (small)
elastic displacements are obtained in local coordinates with respect to the reference frame.
In turn, according to the classical Rayleigh–Ritz method [14], the elastic displacements
are in most cases defined as a linear combination of shape functions, whose coefficients
are the so-called elastic or modal coordinates. In the case of simple geometries, such as
beams [6], the shape functions can be determined analytically, but in more general cases
the use of finite elements (FE) computer codes as preprocessors is necessary. In this last
case the huge number of nodal coordinates must be reduced to a much smaller number
of modal coordinates, through the classical Craig–Bampton method [15] or other recently
proposed methods [16–19].

One of the characteristics of the FFR formulation is that the inertia terms are highly
nonlinear, so that updating them at every time step can become the most central process-
ing unit (CPU) intensive task in simulation. Recently, in [20], two different methods for
performing this task have been compared from the point of view of the computational effi-
ciency. The first method, referred to as the projection method, is based on the corotational
approach by Géradin and Cardona [21], and consists of projecting the constant FE mass
matrix into the generalized coordinates, by means of a variable projection matrix. In the
second one [13] the inertia terms are calculated from some inertia shape integrals, in turn
obtained in a preprocessing stage from the FE model. The projection method is very simple
to implement, but has the main drawback that the CPU time depends anyway on the size
of the original FE model, regardless of the number of mode shapes chosen. On the con-
trary, with the preprocessing method, the CPU time depends only on the size of the reduced
model, so that the mesh can be refined as much as needed without introducing any penalty
to the simulation time. The results of the comparison of [20] confirmed that computational
efficiency is largely increased with the preprocessing method, which is therefore adopted
in our approach.

In the case of large deformation problems the absolute nodal coordinate formulation
(ANCF) [13] is also often adopted. The ANCF, adopting absolute displacements and global
slopes as nodal coordinates, results in a constant mass matrix, while the most demanding
task becomes the computation of the elastic forces, which are highly nonlinear in terms of
the nodal coordinates.

On the other hand, in order to model large deformations, it is possible to subdivide
a body into several flexible components or substructures, adopting for each substructure
a FFR formulation [22]. Using this approach (or substructuring method), it is usually
necessary to formulate the substructure compatibility constraints, to be imposed at the
substructures interfaces, explicitly. The problems arising from the necessity of this explicit
formulation can be avoided adopting a fully modular object-oriented approach, since the
compatibility constraints are automatically generated at the connection of the substruc-
tures’ modules, if they are defined through connectors. In this work, first the last (and
crucial) statement is demonstrated by realizing it in the Modelica language, delegating
to the compiler (in this work Dymola) the task of assembling the whole model, recovering
computational efficiency through the aid of symbolic manipulation algorithms. For the sake
of completeness it must be mentioned that, as recently pointed out by Heckmann [23], the
substructuring method is a technique to find a specific solution for a specific problem but
it is not systemically supported as the ANCF formulation, and requires skilled modellers
(in particular, using more substructures does not necessarily improve the accuracy of the
solution).

Another important question is the choice of the boundary conditions for mode shapes
in flexible multibody systems, thoroughly analysed in [23]. However, in the case of FE
preprocessing, this choice is inherited from the FE analysis and embedded in the body
data, while in the case of the analytical beam model the choice between tangent, pinned
and free boundary conditions is still left to the user by setting a model parameter [6,24].

In this paper an object-oriented modelling of general flexible multibody systems is
described, allowing the inclusion of the flexible multibody dynamics in object-oriented
multidomain physical modelling.

At first, the motion equations of a general flexible body are fully developed (up to the
Modelica code, reported in Appendix C), also with the aim of identifying the necessary
parameters: undeformed positions and orientation of connectors, modal shapes, structural
damping and stiffness matrices, and mass distribution, in the form of inertia invariants.

In the case of bodies of general shape, however, the analytical computation of most of
the said parameters (an example in the case of a beam is briefly reported in Appendix B)
is unfeasible and the use of finite element method (FEM) preprocessing tools is required.
In fact, most commercial FEM packages already store in files, either in binary or in ASCII
format, the flexible body parameters, as the result of a modal reduction step. In this paper,
however, in order to compute the gyroscopic and centripetal terms relevant to the flexible
degrees of freedom in a compact form, two additional inertia invariants are defined, which
can be anyway computed from the stored modal reduction results (inertia invariants).

It must be also pointed out that the efficient choice of the generalized coordinates,
implemented in the Modelica standard (rigid) multibody library, has been maintained.
Thus, when a body is a component of a tree structure, the motion of the FFR is actu-
ally calculated by propagation of the kinematic quantities from the root of the tree while,
in the case of floating bodies, the body itself is a root, introducing its own generalized
coordinates for position and orientation.

Some simulation results, relevant to well-known benchmark cases, are finally reported,
comparing analytical models of flexible beams to models obtained through a FEM
preprocessing with Abaqus.

The paper is organized as follows. In Section 2, the state of the art relevant to the import
of FEM models in multibody packages is reviewed. In Section 3, the motion equations of a
general flexible body are outlined, defining the set of body data needed to characterize the
flexible body for multibody simulation. In Section 4, the structure of the Modelica model of

a flexible body is sketched. In Section 5, the simulation results obtained with reference to
benchmark case studies, both with analytical and FEM beam models, are discussed. Finally,
some conclusion and perspective for further studies are briefly outlined in Section 6.

2. State of the art

Two commercial packages exist that preprocess the output of FE codes to get the Modelica
model of a flexible body, one has been developed by the German Aerospace Center
(DLR) [24] and distributed by Bausch-Gall GmbH [25], the other is distributed by Claytex
Services Ltd [26].

The DLR FlexibleBodies library simply provides two Modelica classes (models): one
for the beam model (Beam) and one for general flexible bodies exported from FE codes
(ModalBody). The results of the FE analysis performed by several general purpose codes
(Abaqus [27], Ansys [28], MSC.Nastran [29], NX Nastran [30], PERMAS [31]) are
first processed by another commercial code: FEMBS, distributed by SIMPACK AG [32],
performing modal reduction in a two-step process. Guyan or Craig–Bampton reduction
methods are applied in the first step to keep the flexible body input file to FEMBS small,
while in the second reduction step the modes of interest (i.e. in the frequency range of
interest) for multibody simulation are selected. The reduced modal representation is then
stored in a standard input data (SID) file [33,34], an object-oriented data structure devel-
oped to define a standard format to exchange data between FE and MBS codes. When
a ModalBody class is instantiated the user has just to specify the name of the SID file
containing the modal description of the body.

The structure of the SID file is quite complex, and contains data relevant to the mass
distribution of the body, the mode shapes, the location of attachment points, the modal
mass, stiffness and damping matrices. The complexity mainly stems from the fact that
the displacement field is approximated by a second order Taylor expansion, with space-
dependent mode shapes and time-dependent modal amplitudes, whose focus is not to
represent large deformations (e.g. for crash analysis) but the inclusion of stress stiffening
and softening effects. Nonlinear strain-displacement relationships can be also character-
ized, which may become important in some cases, as shown in [35]. Finally, the SID file
also stores the original mesh of the FE model, used by Dymola to perform the animation
of the simulated motion of the flexible body.

The Claytex library generates directly the Modelica model of a flexible body from
the output of the model reduction process performed by three FE codes: namely Nastran,
Genesis and Abaqus.

With reference to the fundamental step of FE model reduction, in addition to classi-
cal techniques, such as the modal truncation [36] or the component mode synthesis [15],
several other techniques have been recently investigated, taking into account specific cri-
teria, such as computability for large scale systems, stability preservation, quality of the
reduced order model, model error evaluation, model tuning in a given frequency range,
and more. For example, reduction methods based on Krylov subspaces, singular value
decomposition (SVD), Gramian matrices, proper orthogonal decomposition (POD) have
been considered and implemented in the software package Morembs [19], which gives the
user a tool for selecting several model order reduction techniques. The package imports
FE data from Ansys, Abaqus and Permas and generates a SID file for Simpack contain-
ing the reduced elastic body; the reduced system matrices can be also directly used in the
multibody simulation package Neweul-M2 [37].

3. Motion equations of a general flexible body

To start the treatise, it is convenient to recall the generalized Newton–Euler equations for
a generic unconstrained flexible body, formulated with respect to a local reference frame
rigidly attached to the body itself [6,13,18,20,34,38] and, based on that, to introduce the
inertia invariants, assuming a continuous mass distribution.

The position (in local coordinates) of a point on a flexible body, see Figure 1, is
given by

ū = ū0 + ūf ,

where ū0 is the ‘undeformed’ (i.e. rigid) position vector and ūf is the deformation con-
tribution to position (i.e. the deformation field). The bar above a vector indicates that the
vector is expressed with reference to the local FFR.

If small elastic deflections are considered, the infinite dimensional deformation field on
the body can be approximated by a functional basis space with finite dimension, say M , so
that the vector ūf can be expressed by the finite dimensional product

ūf = Sq, (1)

where S is the [3 × M] shape functions matrix (i.e. a matrix of functions defined over the
body domain and used as a basis to describe the deformation field of the body itself) and q
is the M-dimensional vector of deformation degrees of freedom.

The position of a point on a deformable body can then be expressed in world
reference as

p = r + Aū = r + Aū0 + ASq,

where r is the vector identifying the origin of the body local reference system and A is the
rotation matrix for the body reference system.

The representation of a generic flexible body in the world reference frame requires
then 6 + M d.o.f.: 3 corresponding to the rigid displacements r, 3 to the undeformed body
orientation angles θ and M to the deformation d.o.f. q.

In order to fulfill the derivation of motion equations, the relation between the derivative
of the orientation angles θ̇ and the relevant angular velocity ω must be specified. Leaving

Figure 1. Floating reference system.

aside considerations about the singularity of the chosen set of orientation angles (gimbal
lock), which can be avoided by resorting to a redundant set of parameters, such as quater-
nions, the angular velocity of a floating frame can be computed from the rotation matrix A
as a function of the chosen angles θ :

ω̃ = dA(θ)

dt
AT (θ),

where ṽ is the skew-symmetric matrix associated to vector v.
The motion equations for a generic flexible body, expressed in the local reference

frame, can be developed applying the principle of virtual work [6,38,39], yielding⎡⎢⎣ mI3 m ˜̄dT

C C̄T
t

m ˜̄dC J̄ C̄T
r

C̄t C̄r Me

⎤⎥⎦
⎡⎣ ¨̄r − ḡ

˙̄ω
q̈

⎤⎦ =
[03

03

−Keq − Deq̇

]
+
⎡⎣ hr

ω

hθ
ω

hf
ω

⎤⎦+
[hr

e
hθ

e
hf

e

]
(2)

where ¨̄r, ˙̄ω, q̈ are the linear, angular and deformation accelerations, respectively, ḡ is the
gravity acceleration, I3 is the 3 × 3 identity matrix, Me, De, Ke are the structural mass,
damping and stiffness matrix, respectively, hr

ω, hθ
ω, hf

ω are the vectors of gyroscopic and
centripetal terms and hr

e, hθ
e , hf

e are the vectors of external forces, applied at the body
connectors (recall the discussion in Section 1).

The terms in the generalized mass matrix depend on some inertia invariants, which in
turn depend on the shape functions and on the body mass distribution, whose computation
is reported in Appendix A:

m = I1, (3)

m ˜̄dC = Ĩ2 +
M∑

i=1

Ĩ3
i qi, (4)

C̄T
t = [I3

1 I3
2 . . . I3

M

]
, (5)

C̄T
r = I4 +

M∑
i=1

I5
i qi, (6)

Me = I6, (7)

J̄ = I7 −
M∑

i=1

(
I8T

i + I8
i

)
qi −

M∑
i=1

M∑
j=1

I9
ij qi qj, (8)

The vectors of gyroscopic and centripetal terms relevant to the rigid degrees of freedom
are given by

hr
ω = −ω̄ × ω̄ × md̄C − 2ω̄ × C̄T

t q̇, (9)

hθ
ω = −ω̄ × J̄ω̄ − ˙̄Jω̄ − ω̄ × C̄T

r q̇, (10)

where

˙̄J = −
M∑

i=1

(
I8T

i + I8
i

)
q̇i −

M∑
i=1

M∑
j=1

I9
ij(q̇iqj + qiq̇j), (11)

while the computation of the vector relevant to the elastic degrees of freedom is much
more involved (see Appendix A) and requires the definition of two more inertia invariants,
namely

hf
ω =

⎡⎢⎢⎢⎢⎣
ω̄1

(∑3
i=1 dii

)
− ω̄T D1

ω̄2

(∑3
i=1 dii

)
− ω̄T D2

ω̄3

(∑3
i=1 dii

)
− ω̄T D3

⎤⎥⎥⎥⎥⎦
T

ω̄

−2
[
ω̄1
(
I11

32 − I11
23

)+ ω̄2
(
I11

13 − I11
31

)+ ω̄3
(
I11

21 − I11
12

)]
q̇, (12)

where

Di =
[di1

di2

di3

]
=
⎡⎢⎣ I10

i1

I10
i2

I10
i3

⎤⎥⎦+
⎡⎢⎣qT I11

i1

qT I11
i2

qT I11
i3

⎤⎥⎦ i = 1, 2, 3. (13)

These last two invariants, I10
ij and I11

ij however can be computed from invariants I8
i and I9

ij
(see Appendix A).

Matrix De, modelling the dissipative properties of the material, is defined as
De = αMe + βKe, where α and β are the so-called Rayleigh damping coefficients.

Assuming Nc connectors attached to a flexible body the vectors of external forces are
given by

hr
e =

Nc∑
i=1

f̄i, (14)

hθ
e =

Nc∑
i=1

(
τ̄i + ˜̄lif̄i

)
, (15)

hf
e =

Nc∑
i=1

(
ST

i f̄i + ŜT
i τ̄i

)
, (16)

where f̄i and τ̄i are the forces and torques acting at the connector frames projected on the
local reference frame, l̄i is the position vector from the origin of the local body reference
frame to the origin of the connector frame, Si and Ŝi are the slices of the modal matrix
corresponding to the translational and rotational d.o.f. of connectors [40]. Note that

l̄i = ū0i + Siq, (17)

with ū0i being the undeformed position of the ith connector.

In order to project the forces and torques acting at the connector frames on the local
reference frame, small rotations of the connectors due to body deformation must be taken
into account. These small rotations can be still obtained by a modal superposition as

θ i =
[

θi1

θi2

θi3

]
= Ŝiq, (18)

so that the rotation matrix between the deformed and the undeformed connector orientation
can be defined as

Âi = I3 + θ̃ i =
[1 −θi3 θi2

θi3 1 −θi1

−θi2 θi1 1

]
. (19)

Therefore, if Āi is the (constant) rotation matrix between the connector frame and the local
frame in the undeformed configuration, the projection of the force fi and the torque τ i

acting at the connector frame i is given by

f̄i = ĀiÂifi, (20)

τ̄ i = ĀiÂiτ i. (21)

To cope with the connector structure it is also necessary to compute the kinematic quan-
tities Ai, ωi and pi relevant to each connector, thus the rotation matrix between the frame
connector and the world reference frame, its angular velocity and the position of the origin
of the connector frame with respect to the world frame. This leads to

Ai = AĀiÂi, (22)

ωi = ω + AĀiŜiq̇, (23)

pi = r + Al̄i. (24)

As a result, the set of data describing a flexible body can be summarized as in Table 1,
while an example of analytical computation of said data in the case of a beam is reported
in Appendix B.

Table 1. Flexible body data.

M Number of deformation d.o.f.
I1, I2, I3

i , I4, I5
i , I6, I7, I8

i , I9
ij, I10

ij , I11
ij Inertia invariants

De, Ke Structural damping and stiffness matrix
Nc Number of connectors
Si, Ŝi Slices of the modal matrix of connectors d.o.f.
ū0i, Āi Undeformed position and orientation of connectors

4. Structure of the Modelica model

The Modelica model of a general flexible body is characterized by an array of Nc multibody
connectors [12] (see model FEMBody in Figure 2), while the data in Table 1 have been
suitably collected in the Modelica record BodyData. The record is defined as replaceable:

replaceable parameter FEMData.BodyData data;

so that it is possible, by exploiting the features of the Modelica language, to assign a dif-
ferent data record to each FEMBody instance, by simply replacing the record in the model
declaration, as in

FEMBody FlexPendulum(redeclare FEMData.PendulumData data,
alpha=1,
beta=0.5,
d=1);

where alpha, beta, d are the parameters defining the damping matrix De.
An important question arises when considering the state variables introduced by the

flexible body model.
In the standard Modelica (rigid) multibody library [12], the generalized coordinates

of joints are used as states if possible, otherwise, e.g. because bodies are freely floating
in space, states are selected from the body coordinates. In this last case, the body frame
is selected as a root of the connection tree and, in particular, the frame orientation and
angular velocity are computed from state variables defined within the body model (by
default, quaternions are used). If the body frame is not selected as root, its orientation and
angular velocity are indirectly computed from the generalized positions and velocities of
the joints connecting the body to the root of the tree. Once the orientation and the angular
velocity of the body frame are determined, all other kinematical quantities are derived by
differentiation and used in the Newton–Euler equations, formulated with respect to the
body frame.

In the case of a floating flexible body it is natural to define the FFR as root, without
necessarily having a connector attached, since every quantity is referred to it. Otherwise, for
the sake of efficiency, it is necessary to find out a connector of the body belonging to the tree
path, say connector r, through the utility function rooted() (rooted(r.R)=true),

Figure 2. Modelica model of the flexible pendulum.

and to explicitly compute the orientation and the angular velocity of the FFR from the same
quantities of the r connector frame:

A =
(

ĀrÂr

)−1
Ar, (25)

ω = ωr − AĀrŜrq̇ (26)

with the orientation and the angular velocity of all other connector frames being still com-
puted by Equations (22) and (23). It is worth mentioning that the said kinematic equations
nave been implemented in Modelica code by calling the methods of the Orientation class
defining absolute, relative and inverse rotations between frames.

Again, having defined the orientation and the angular velocity of the FFR, the flexible
body motion equations can be written in Modelica code as reported in Appendix C, where
the numbers in comments refer to the above equations, in order to help the reader follow
the equations to model conceptual flow.

5. Simulation results

Being focused on a general object-oriented formulation of flexible multibody systems, this
paper adopts the classical modal approach, based on the model reduction performed by
several packages in order to interface the results of the FEM modelling with ADAMS [40].

As a result of the model reduction step, most of the data reported in Table 1 are stored
in a binary Modal Neutral File (.mnf), in turn converted into an ASCII file (.mtx). The
inertia invariants I10

ij and I11
ij however, are not stored in the .mnf and .mtx files, so they are

computed by two Modelica functions according to Equations (A14) and (A15), when the
BodyData record is instantiated, i.e.

parameter Real inv10[3,3,M] = FEMPackage.calcInv10(M,inv8);
parameter Real inv11[3,3,M,M] = FEMPackage.calcInv11(M,inv9).

In this work, the FEM models have been created with Abaqus [27], which is endowed
with a specific tool for the generation of the .mnf file. The procedure (described in the
software documentation) consists of two steps, in the first a modal eigenvalues analysis
must be performed.

As far as the choice of the boundary conditions is concerned, it must be pointed out
that it largely depends on the problem at hand. In this respect, a comprehensive survey is
reported in [23] where, in the case of chain and tree-structured multibody systems, it is
suggested to align the boundary conditions with the local d.o.f. of the connecting joints.

Then the Abaqus Adams interface tool must be executed, in order to extract the
inertia invariants and the modal shape matrices from the Abaqus results file.

To generate the ASCII file containing the Modelica BodyData record, a parsing soft-
ware tool has been built in the context of this work by using the Flex/Bison parser
generation suite [41,42]. The only data needed to define the Modelica model, and not
stored in the .mtx file, are the number and the spatial layout of the connector frames on
the body. Accordingly, the parsing tool ask the user to specify an input list representing the
FEM nodes in which Modelica connectors must be placed.

Several different numerical examples have been considered, so as to thoroughly test
and validate the body model. In the following subsections the most significant test cases

are briefly reported, comparing the results obtained with an analytical beam model and a
FEM beam model.

It must be pointed out that the object-oriented nature of the body model and the full
compliance with the Modelica multibody library allows for an easy set-up of different
simulation scenarios, as well as for the separation between the model dynamic equations
and the specific body data.

All simulations have been performed on a workstation equipped with an Intel Xeon
4 Ghz and 2 Gb RAM processor, and the CPU simulation times have been reported.
However, it must be pointed out that the CPU time varies largely, depending on the damping
ratio, the numerical solver and the numerical tolerance.

5.1. Flexible Pendulum

The first benchmark example is taken from [43], where a flexible rod swings under the
action of gravity.

The Modelica model of the system is sketched in Figure 2: the flexible body is con-
nected to the world reference frame through a revolute joint and to a massless body on the
opposite tip. In order to observe the tip deflection a RelativeSensor component has been
used.

While in the case of the analytical beam model the FFR is always placed in one of
the beam ends (referring to Figure 2 it is attached to the joint connector), in the case of a
model derived by numerical modal reduction the FFR corresponds to the global coordinate
system adopted in the FE solid modelling step.

The rod has a length L = 0.4 m, a cross sectional area A = 0.0018 m2 and a density
ρ = 5540 kg/m3. Differently from [43], in FEM-based models it is not possible to assign
the second moment of area arbitrarily, as it is indirectly calculated in the FEM prepro-
cessing stage. In order to maintain the same body data used in [43] the quantity E × J
(second moment of area × Young’s modulus) was kept coherent with [43], assuming a
round section for the rod (J = πr4/4 m4). The FEM beam model has been therefore cre-
ated with Abaqus, characterized by 20 nodes and 20 B31 one-dimensional elements. Then,
after the frequency and substructuring analysis steps, a number of 15 eigenmodes was
retained.

The differential algebraic systems solver integration algorithm was adopted, with a
tolerance of 1 × 10−6, and the simulation required 0.062 s of CPU time. The results were
compared with those obtained in [44], where the same beam was modelled analytically,
in this case the simulation required 0.032 s of CPU time. Figure 3 shows the translational

Figure 3. Flexible pendulum tip displacement. Solid line: FEM model, dashed line: analytical
model.

Figure 4. Flexible pendulum swing angle. Solid line: FEM model, dashed line: analytical model.

displacement of the pendulum tip in the motion direction, namely the distance between
the tip of the flexible beam and the tip of a rigid beam, while Figure 4 shows the swing
angle, namely the relative orientation between the connector frames at both ends of the
flexible beam in the plane of motion. As it is apparent, the results obtained with the FEM
model (solid line) are in good accordance with the analytic one (dashed line) and with the
experiment reported in [43].

5.2. Elastic slider crank with FEM beam models

The elastic slider-crank mechanism is one of the most widely used benchmark for flex-
ible multibody systems simulation, and involves a closed chain [45–47]. In this respect,
here the same simulation experiment considered in [43] and [44] has been performed. The
Modelica model, composed by a flexible crankshaft, a flexible rod and a rigid massless
slider block, connected with frictionless revolute and prismatic joints, is shown in Figures 5
and 6.

A round section beam was considered for the rod, with a length L = 0.304 m, a
cross sectional radius r = 0.005 m and a density ρ = 2767 kg/m3. The second moment
of area was J = 4.909 × 10−10 m4, calculated as in Section 5.1, with the aim of keep-
ing the quantity E × J consistent with [43] and [44]; the elasticity modulus E was set to
1 × 109 N/m2. The FEM rod model was computed as a beam containing 30 B31 nodes,
and 15 eigenmodes were retained.

The crankshaft was characterized by the same physical parameters of the rod but the
length, which was L = 0.152 m, and the elasticity modulus: E = 5 × 107 N/m2; the FEM
model was made by 15 B31 elements, and 10 eigenmodes were retained.

In accordance with [43] and [44], a simulation time of 1.6 s was assumed, while driving
the crankshaft with the following torque:

τ =
{

M(t) = 0.01(1 − e−t/0.167), t ≤ 0.7 s
0, t > 0.7 s.

(27)

The simulation was performed with a Radau algorithm and a tolerance of 10−6 and the
simulation CPU time was 28.42 s, while the simulation of the analytic beam model required
a CPU time of 21.14 s. Figures 7 and 8 compare again the results obtained with both ana-
lytical (dashed line) and FEM (solid line) beam model, which are also in good accordance
with [43].

FEM body

Torque

Fixed Translation

A
ct

ua
te

 R
ev

ol
ut

e

Prismatic

Revolute 1

World
Body

Tau

r = {0.152 + 0.304,0,0}

r = {0.152/2,0,2}

r = {0.304/2,0,0}

resolve

fixedTranslation1
relativeSensor ..

fixedT
ranslatio...

relativeS
ensor ..

a b a b

n = {1,0,0}

n
=

{0
,0

,1
}

n = {0,0,1}

n = {0,0,1}

m = 0

a
a

a
b

a

a
a

b
b

b

b a

b
b

y

x

Revolute

F
E

M
 body

resolve

Figure 5. The slider-crank simulation scheme.

Figure 6. The elastic slider-crank model.

Figure 7. Position of the slider block. Solid line: FEM model, dashed line: analytical model.

Figure 8. Displacement of the rod’s middle point. Solid line: FEM model, dashed line: analytical
model.

5.3. Centrifugal stiffening of a FEM Beam model

When flexible beams are rotating at high angular velocities, the effect of inertial, centrifu-
gal and Coriolis forces becomes significant, producing a geometric stiffening effect that is
referred to in the literature as centrifugal stiffening [48–51].

The FFR formulation presented in the paper is not able to represent the centrifugal
stiffening effect by itself, due, in particular, to the existing coupling between bending and
axial displacements, which cannot be represented by the typical linear strain–displacement
relationship adopted in the definition of the elastic potential energy in the FFR formulation.

Among the various methods proposed in the literature to account for the centrifugal
stiffening [22,49,50,52,53] the easiest one is the application of the substructuring tech-
nique [22], dividing a flexible body into smaller rigidly connected substructures, each one
described by a local FFR. In this way, although each substructure is characterized by small
deformations, the whole assembled structure can represent very large deformations.

The classical spin-up manoeuver problem, another frequently used benchmark in flex-
ible multibody simulation in order to point out centrifugal stiffening [48,54,55], is here
considered. A flexible beam rotates about an axis passing through one of its ends, according
to the following law [48]:

θ (t) =
{

	
T

[
t2

2 + (T
2π

)2(cos(2π t
T) − 1)

]
, t < T

	(t − T/2), t ≥ T ,
(28)

thus, the spin-up manoeuver starts at t = 0 and ends at t = T , reaching a constant angular
velocity 	.

It is worth noticing that the analytical model considers a planar deformation field, while
the FEM model considers a 3D deformation field. As such, in order to compare the results
obtained with both models, in a first simulation experiment no gravity was considered.
The following data were assumed for the beam: length L = 8 m, cross sectional area A =
7.299 × 10−5 m2 and density ρ = 2767 kg/m3. As in the other experiments the product
E × J was kept coherent, so the following value was assumed for modulus of elasticity
E = 1.3359 × 1012 N/m2.

Three different simulation experiments were performed, corresponding to the target
angular velocities of 	 = 2 rad/s, 	 = 4 rad/s and 	 = 10 rad/s and the deflection of the
tip, namely the difference between the tips of a rigid and a flexible beam in the plane of
motion, was recorded [48]. In the case of 	 = 2 rad/s and 	 = 4 rad/s the FEM beam

Figure 9. Beam substructuring.

Figure 10. Tip deflection in spin-up maneuver at different angular velocities. Solid line: FEM
model, dashed line: analytical model.

model was substructured in 4 elements (Figure 9), each one with a length L = 2 m and
consisting of 20 B31 nodes, 15 eigenmodes were retained, while in the case of 	 = 10 the
beam was substructured in 8 elements, each one with a length L = 1 m.

Figure 10 shows a comparison between the results obtained with the analytic beam
model (dashed line) and the FEM model (solid line), as it is apparent, a good agreement
was obtained. The simulations based on the analytic beam model took 0.22 s of CPU time
for 	 = 2 rad/s and 	 = 4 rad/s, 0.40 s for 	 = 10 rad/s, while the simulations based on
the FEM model took 2.06, 2.65, and 3.71 s, respectively.

In a second set of simulation experiments, gravity was added along the negative y-axis,
retaining the model data of the previous simulations. As shown in Figure 11, the deflec-
tion of the beam tip in the plane of motion is de facto unchanged. On the other hand,
the displacement along the y-axis (Figure 12) showed the 3D effects of centrifugal terms,

Figure 11. Tip deflection in the plane of motion with gravity at different angular velocities.

Figure 12. Tip deflection along y-axis with gravity at different angular velocities.

raising up the tip of the beam. The CPU time requested in these simulation experiments
resulted longer, namely 6.59, 7.64 and 10.03 s for 	 = 2, 	 = 4 and 	 = 10 rad/s,
respectively.

6. Conclusion

A general approach to object-oriented modelling of general flexible multibody systems has
been presented, which is fully compatible with the standard Modelica multibody library.

The motion equations of a general flexible body have been derived based on the FFR
approach, while identifying the characteristic parameters, in particular, the set of inertia
invariants. Exploiting the modular nature of the object-oriented approach, a mixed formu-
lation (finite volume-finite element) can be easily adopted, allowing for the modelling of
large deformations, by connecting several FEM components.

Since in general the body data cannot be analytically determined for complex geome-
tries in the full 3D field of deformation, the possibility and convenience of importing the
results of a FEM analysis, performed with standard packages, was investigated, and a good
agreement has been obtained with analytical models in the case of flexible beams.

Flexible multibody analysis in object-oriented simulation tools can now be applied to
real-world cases. In particular, the modelling of machine tools and automotive systems is
currently underway, and will be addressed in future works.

Acknowledgements
The authors wish to thank Dr. Giacomo Bianchi and Dr. Nicola Cau, with Institute of Industrial
Technologies and Automation (ITIA) – National Research Council (CNR) – for their really valuable
help in using FEM tools.

Note
1. The internal representation of the orientation (i.e. the parametrization of the relative rotation

matrix) in the Modelica multibody library is completely masked to the user. In addition to that,
the orientation object is endowed with methods to compute rotation matrices and angular veloc-
ities, to rotate vectors, etc., so that knowledge about the actual description form of orientation is
not necessary.

References
[1] G. Ferretti, G. Magnani, and P. Rocco, Virtual prototyping of mechatronic systems, IFAC J.

Annu. Rev. Control. 28 (2004), pp. 193–206.
[2] P. Piela, T. Epperly, K. Westerberg, and A. Westerberg, ASCEND: An object-oriented computer

environment for modelling and analysis: The modelling language, Comput. Chem. Eng. 15
(1991), pp. 53–72.

[3] S. Mattsson and M. Andersson, Omola – An Object-Oriented Modeling Language, in Recent
Advances in Computer Aided Control Systems, M. Jamshidi and C.J. Herget, eds., Elsevier
Science, Amsterdam, 1993, pp. 291–310.

[4] M. Oh and C. Pantelides, A modeling and simulation language for combined lumped and
distributed parameter systems, Comput. Chem. Eng. 20 (1996), pp. 611–633.

[5] C. Maffezzoni and R. Girelli, MOSES: modular modeling of physical systems in an object-
oriented database, Math. Modelling Syst. 4 (1998), pp. 121–147.

[6] F. Schiavo, L. Viganò, and G. Ferretti, Object-oriented modelling of flexible beams, Multibody
Syst Dyn. 15 (2006), pp. 263–286.

[7] The Modelica Association. Modelica – A Unified Object-Oriented Language for Physical
Systems Modeling, Language Specification Version 3.1 (2009). Available at www.modelica.
org.

[8] Dynasim AB. Dymola, Lund, Sweden (2013). Available at http://www.3ds.com/products/catia/
portfolio/dymola.

[9] MathCore AB. MathModelica, Linköping, Sweden (2013). Available at http://www.mathcore.
com/.

[10] ITI GmbH. SimulationX , Dresden, Germany (2013). Available at http://www.iti.de.
[11] PELAB, Linköping University. OpenModelica. Sweden (2013). Available at https://www.

openmodelica.org/.
[12] M. Otter, H. Elmqvist, and S. Mattsson, The new Modelica multibody library, in 3rd Modelica

Conference, November 3–4, Linköping, Sweden, 2003.
[13] A.A. Shabana, Dynamics of Multibody Systems, Cambridge University Press, New York, 1998.
[14] W. Ritz, Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen

Physik, Journal für die Reine und Angewandte Mathematik. 135 (1909), pp. 1–61.
[15] R.R. Craig and M.C.C. Bampton, Coupling of substructures for dynamic analyses, AIAA J. 6

(1968), pp. 1313–1319.
[16] P. Koutsovasilis and M. Beitelschmidt, Comparison of model reduction techniques for large

mechanical systems, Multibody Syst Dyn. 20 (2008), pp. 111–128.
[17] M. Lehner and P. Eberhard, A two-step approach for model reduction in flexible multibody

dynamics, Multibody Syst Dyn. 17 (2007), pp. 157–176.
[18] J. Fehr and P. Eberhard, Simulation process of flexible multibody systems with non-modal model

order reduction techniques, Multibody Syst Dyn. 25 (2011), pp. 313–334.
[19] C. Nowakowski, J. Fehr, M. Fischer, and P. Eberhard, Model order reduction in elastic

multibody systems using the floating frame of reference formulation, in 7th Vienna International
Conference on Mathematical Modelling – MATHMOD 2012, February 15–17, Vienna, Austria,
2012.

[20] U. Lugrís, M.A. Naya, A. Luaces, and J. Cuadrado, Efficient calculation of the inertia terms
in floating frame of reference formulations for flexible multibody dynamics, Proceedings of the
Institution of Mechanical Engineers, Part K. J. Multibody Dyn. 223 (2009), pp. 147–157.

[21] M. Géradin and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach, Wiley,
Chichester, Great Britain, 2001.

[22] S. Wu and E. Haug, Geometric non-linear substructuring for dynamics of flexible mechanical
systems, Int. J. Numer. Methods Eng. 26 (1988), pp. 2211–2276.

http://www.3ds.com/products/catia/portfolio/dymola
http://www.3ds.com/products/catia/portfolio/dymola
http://www.mathcore.com/
http://www.mathcore.com/
http://www.iti.de
https://www.openmodelica.org/
https://www.openmodelica.org/

[23] A. Heckmann, On the choice of boundary conditions for mode shapes in flexible multibody
systems, Multibody Syst Dyn. 23 (2010), pp. 141–163.

[24] A. Heckmann, M. Otter, S. Dietz, and J.D. López, The DLR FlexibleBodies library to model
large motions of beams and of flexible bodies exported from finite element programs, in 5th
Modelica Conference, September 4–5, Vienna, Austria, 2006.

[25] Bausch-Gall GmbH. FlexibleBodies Library, München, Germany (2013). Available at http://
www.bausch-gall.de.

[26] Claytex Services Ltd. FlexibleBody Library, Coventry, UK (2013). Available at http://www.
claytex.com.

[27] Dassault Systmes Simulia Corp. Abaqus Analysis Users Manual, Version 6.9 (2009). Available
at http://www.3ds.com/products/simulia/portfolio/.

[28] Ansys Release 11.0 Documentation (2009). Available at http://www.ansys.com.
[29] MSC/NASTRAN Reference Manual, Version 68 – Lahey, Miller, et al. (1994). Available at

http://www.mscsoftware.com/products/cae-tools/msc-nastran.aspx.
[30] NX Nastran (2012). Available at http://www.plm.automation.siemens.com/.
[31] PERMAS (2013). Available at http://www.intes.de.
[32] SIMPACK AG. FEMBS – the SIMPACK-Interface to FE-Tools (2013). Gilching. Available at

http://www.simpack.com/fembs.html.
[33] O. Wallrapp, Standardization of flexible body modeling in multibody system codes, Part I:

Definition of standard input data, Mech. Based Des. Struct. Mach. 22 (1994), pp. 283–304.
[34] R. Schwertassek, O. Wallrapp, and A.A. Shabana, Flexible multibody simulation and choice of

shape functions, Nonlinear Dyn. 20 (1999), pp. 361–380.
[35] H. Sugiyama, A.A. Shabana, M.A. Omar, and W.Y. Loh, Development of nonlinear elastic leaf

spring model for multibody vehicle systems, Comput. Methods Appl. Mech. Eng. 195 (2006),
pp. 6925–6941.

[36] R. Craig and A. Kurdila, Fundamentals of Structural Dynamics, John Wiley & Sons, New York,
2006.

[37] T. Kurz, P. Eberhard, C. Henninger, and W. Schiehlen, From Neweul to Neweul-M2: symboli-
cal equations of motion for multibody system analysis and synthesis, Multibody Syst Dyn. 24
(2010), pp. 25–41.

[38] R. Schwertassek and O. Wallrapp, Dynamik Flexibler Mehrkörpersysteme, Vieweg, Wiesbaden,
1999.

[39] L. Meirovitch, Analytical Methods in Vibration, Macmillan Publishing, New York, 1967.
[40] MSC Software Corporation (2003). ADAMS/Flex – Theory of flexible bodies. Available at

http://www.mscsoftware.com.
[41] T.F. Project The Fast Lexical Analyzer (2013). Available at http://ex.sourceforge.net/.
[42] Bison – GNU parser generator Bison (2013). Available at http://www.gnu.org/software/bison/.
[43] J. Escalona, H. Hussien, and A. Shabana, Application of the absolute nodal coordinate

formulation to multibody system dynamics, J. Sound Vib. 214 (1998), pp. 833–851.
[44] G. Ferretti, F. Schiavo, and L. Viganò, Object-oriented modelling and simulation of flexible

multibody thin beams in Modelica with the finite element method, in 4th Modelica Conference,
March 7–8, Hamburg-Harburg, Germany, 2005.

[45] J. Mayo and J. Domínguez, Geometrically non-linear formulation of flexible multibody systems
interms of beam elements: Geometric stiffness, Comput. Struct. 59 (1996), pp. 1039–1050.

[46] J. Gerstmayr and J. Schöberl, A 3D finite element method for flexible multibody systems,
Multibody Syst. Dyn. 15 (2006), pp. 305–320.

[47] J.S. Chen and C.L. Huang, Dynamic analysis of flexible slider-crank mechanisms with non-
linear finite element method, J. Sound Vib. 246 (2001), pp. 389–402.

[48] H. Absy and A. Shabana, Geometric stiffness and stability of rigid body modes, J. Sound Vib.
207 (1997), pp. 465–496.

[49] M. Berzeri and A. Shabana, Study of the centrifugal stiffening effect using the finite element
absolute nodal coordinate formulation, Multibody Syst. Dyn. 7 (2002), pp. 357–387.

[50] J. Mayo, D. García-Vallejo, and J. Domínguez, Study of the geometric stiffening effect:
Comparison of different formulations, Multibody Syst. Dyn. 11 (2004), pp. 321–341.

[51] M. Pascal, Some open problems in dynamic analysis of flexible multibody systems, Multibody
Syst. Dyn. 5 (2001), pp. 315–334.

[52] U. Lugrís, M.A. Naya, J.A. Peréz, and J. Cuadrado, Implementation and efficiency of two
geometric stiffening approaches, Multibody Syst. Dyn. 20 (2008), pp. 147–161.

http://www.bausch-gall.de
http://www.bausch-gall.de
http://www.claytex.com
http://www.claytex.com
http://www.3ds.com/products/simulia/portfolio/
http://www.ansys.com
http://www.mscsoftware.com/products/cae-tools/msc-nastran.aspx
http://www.plm.automation.siemens.com/
http://www.intes.de
http://www.simpack.com/fembs.html
http://www.mscsoftware.com
http://ex.sourceforge.net/
http://www.gnu.org/software/bison/

[53] I. Sharf, Geometric stiffening in multibody dynamics formulations, J. Guid. Control Dyn. 18
(1995), pp. 882–890.

[54] P. Shi, J. McPhee, and G. Heppler, A deformation field for Euler-Bernoulli beams with
applications to flexible multibody dynamics, Multibody Syst. Dyn. 5 (2001), pp. 79–104.

[55] R.E. Valembois, P. Fisette, and J.C. Samin, Comparison of various techniques for modelling
flexible beams in multibody dynamics, Nonlinear Dyn. 12 (1997), pp. 367–397.

Appendix A. Inertia invariants
Defining S = [s1 s2 . . . sM] then, from the motion equations as given in [6]:

m =
∫

V
ρ dV = I1, (A1)

m ˜̄dC =
∫

V
ρ ˜̄u dV =

∫
V
ρ ˜̄u0 dV +

∫
V
ρ (̃Sq) dV =

∫
V

ρ ˜̄u0 dV +
M∑

i=1

(∫
V

ρ s̃i dV

)
qi = Ĩ2 +

M∑
i=1

Ĩ3
i qi,

(A2)

C̄T
t =

∫
V

ρS dV =
∫

V
ρ [s1 s2 . . . sM] dV = [I3

1 I3
2 . . . I3

M

]
, (A3)

C̄T
r =

∫
V

ρ ˜̄uS dV =
∫

V
ρ ˜̄u0S dV +

∫
V

ρ (̃Sq)S dV

=
∫

V
ρ ˜̄u0S dV +

M∑
i=1

(∫
V

ρ s̃iS dV

)
qi = I4 +

M∑
i=1

I5
i qi, (A4)

Me =
∫

V
ρST S dV = I6, (A5)

J̄ =
∫

V
ρ ˜̄uT ˜̄u dV =

∫
V

ρ ˜̄uT

0
˜̄u0 dV +

∫
V

ρ ˜̄uT

0 (̃Sq) dV +
∫

V
ρ (̃Sq)

T ˜̄u0 dV +
∫

V
ρ (̃Sq)

T
(̃Sq) dV

=
∫

V
ρ ˜̄uT

0
˜̄u0 dV −

M∑
i=1

(∫
V

ρ s̃i ˜̄u0 dV

)
qi −

M∑
i=1

(∫
V

ρ ˜̄u0s̃i dV

)
qi −

M∑
i=1

M∑
j=1

(∫
V

ρ s̃is̃j dV

)
qiqj

= I7 −
M∑

i=1

(
I8T

i + I8
i

)
qi −

M∑
i=1

M∑
j=1

I9
ijqiqj. (A6)

Two more inertia invariants can be introduced in order to compute the vector hf
ω in (Equation (2)),

given by [13]

hf
ω = −

∫
V
ρST ˜̄ω2ū dV − 2

∫
V

ρST ˜̄ωSq̇ dV =
(∫

V
ρ
[
− ˜(ω̄ × ū)S

]T
dV

)
ω̄ − 2

(∫
V

ρST ˜̄ωS dV

)
q̇.

(A7)

Defining ST = [ŝT
1 ŝT

2 ŝT
3

]
one obtains

hf
ω =

⎛⎝∫
V

ρ

[
ω̄1ūT S − ω̄T ū1S
ω̄2ūT S − ω̄T ū2S
ω̄3ūT S − ω̄T ū3S

]T

dV

⎞⎠ ω̄ − 2

(
ω̄1

∫
V

ρ
(
ŝT

3 ŝ2 − ŝT
2 ŝ3

)
dV

)
q̇

− 2

(
ω̄2

∫
V

ρ
(
ŝT

1 ŝ3 − ŝT
3 ŝ1

)
dV

)
q̇ − 2

(
ω̄3

∫
V

ρ
(
ŝT

2 ŝ1 − ŝT
1 ŝ2

)
dV

)
q̇, (A8)

which yields (Equation (12)) defining

Di =
[

di1

di2

di3

]
=
∫

V
ρūiS dV , I11

ij =
∫

V
ρ ŝT

i ŝj dV i, j = 1, 2, 3. (A9)

In turn, matrix Di is given by

Di =
∫

V
ρūiS dV =

∫
V

ρ (ū0 + Sq)i S dV =
∫

V
ρū0iS dV +

∫
V

ρ (Sq)i S dV

=
⎡⎣ I10

i1

I10
i2

I10
i3

⎤⎦+
∫

V
ρ ŝiqS dV =

⎡⎣ I10
i1

I10
i2

I10
i3

⎤⎦+
∫

V
ρqT ŝT

i S dV =
⎡⎣ I10

i1

I10
i2

I10
i3

⎤⎦+
⎡⎣ qT I11

i1

qT I11
i2

qT I11
i3

⎤⎦ i = 1, 2, 3,

(A10)

where (v)i is the ith element of vector v and⎡⎣ I10
i1

I10
i2

I10
i3

⎤⎦ =
∫

V
ρū0iS dV i = 1, 2, 3. (A11)

Invariants I10
ij and I11

ij may be however computed from invariants I8
i and I9

ij in fact, recalling that

I8
i =

∫
V

ρ

[−ū03s3i − ū02s2i ū02s1i ū03s1i

ū01s2i −ū03s3i − ū01s1i ū03s2i

ū01s3i ū02s3i −ū02s2i − ū01s1i

]
dV , (A12)

I9
ij =

∫
V

ρ

[−s3is3j − s2is2j s2is1j s3is1j

s1is2j −s3is3j − s1is1j s3is2j

s1is3j s2is3j −s2is2j − s1is1j

]
dV , (A13)

one obtains

(
I10

ij

)
k
=
⎧⎨⎩
(
I8

k

)
ji

i �= j = 1, 2, 3 k = 1, . . . , M

1
2

[(
I8

k

)
ii
− (I8

k

)
ll
− (I8

k

)
mm

] i = j = 1, 2, 3
l, m = 1, 2, 3 k = 1, . . . , M

(A14)

(
I11

ij

)
kl

=
⎧⎨⎩
(
I9

kl

)
ji

i �= j = 1, 2, 3 k, l = 1, . . . , M

1
2

[(
I9

kl

)
ii
− (I9

kl

)
mm

− (I9
kl

)
nn

] i = j = 1, 2, 3
m, n = 1, 2, 3 k, l = 1, . . . , M .

(A15)

Appendix B. Analytical computation of beam data
An example of analytical computation of the data reported in Table 1 is here briefly discussed, with
reference to the case of a beam. The beam is subdivided into N elements, each one in turn considered
as a thin beam connected to the preceding and following ones. A local abscissa ξ = x/� is defined,
where x is the longitudinal local coordinate and � is the length of a single element, and for each
element a coordinate system is defined associated with the deformation degrees of freedom qj =[
qj1 qj2 qj3 qj4 qj5 qj6

]T
, as shown in Figure B1.

Figure B1. Element coordinate systems.

Accordingly, the generic position ūj of a point on element j can be expressed as

ūj = ū0j + Sqj = [ξj� + (j − 1)�
]

x + SBjq, (B1)

where ū0j is the undeformed position of the root of the jth element, x is the unit vector along the
beam axis, S is the shape function matrix and Bj is the so-called connectivity matrix used to relate
the vector q, containing the M = 3N + 3 deformation degrees of freedom for the whole beam, to the
corresponding jth element [13,44]:

S =
[

1 − ξ 0 0 ξ 0 0
0 1 − 3ξ 2 + 2ξ 3 �(ξ − 2ξ 2 + ξ 3) 0 3ξ 2 − 2ξ 3 �(ξ 3 − ξ 2)
0 0 0 0 0 0

]
, (B2)

Bj = [O6×3(j−1) I6 O6×3(N−j)] , j = 1, . . . , N . (B3)

If m and L are, respectively, the mass and the length of the whole beam and � = L/N and
SBi = [si1 si2 . . . si(3N+3)

]
the inertia invariants can be computed as

I1 = m, (B4)

I2 = m [L/2 0 0]T , (B5)

I3 = m

N

N∑
j=1

∫ 1

0
SBj dξ , (B6)

I4 = m

N

N∑
j=1

∫ 1

0

˜̄u0j SBj dξ , (B7)

I5
i = m

N

N∑
j=1

∫ 1

0
s̃ij SBj dξ , (B8)

I6 = m

N

N∑
j=1

∫ 1

0
BT

j ST SBj dξ , (B9)

I7 = m

N

N∑
j=1

∫ 1

0

˜̄uT

0j
˜̄u0j dξ , (B10)

I8
i = m

N

N∑
j=1

∫ 1

0

˜̄u0j s̃ij dξ , (B11)

I9
ij = m

N

N∑
k=1

∫ 1

0
s̃ik s̃jk dξ , (B12)

while the stiffness matrix Ke is computed as

Ke =
N∑

j=1

BT
j KBj, (B13)

where K is the stiffness matrix of a single element [13]. Considering only two connectors at the
beam ends (Nc = 2) and placing the reference frame in a connector, say connector 1, the undeformed
position of the other connector is ū02 = [L 0 0]T while, for the sake of simplicity, it can be
assumed Ā2 = I3.

Finally, the slices of the shape matrix S2 and Ŝ2 are given by S2 = ScBN and Ŝ2 = ŜcBN where:

Sc =
[

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

]
, Ŝc =

[
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

]
. (B14)

Appendix C. Modelica code of motion equations

...

dq=der(q); //elastic coordinates velocities
ddq=der(dq); //elastic coordinates accelerations
[data.inv1*identity(3),transpose(mDcbartilde),transpose(data.Ct)] //(2)

* [aa_a - g_0;za_a;ddq] = h_w_r+h_e_r; //(2)
[mDcbartilde,Jbar,transpose(Cr)] * [aa_a - g_0;za_a;ddq] //(2)

= h_w_theta+h_e_theta; //(2)
[data.Ct,Cr,data.Me] * [aa_a - g_0;za_a;ddq] =h_w_f+h_e_f -matrix(data.Ke * q) //(2)

− matrix((d/100)*(alpha*data.Me+beta*data.Ke) * dq); //(2)

mDcbar = data.inv2+ sum(data.inv3[:,i]*q[i] for i in 1:M); //(4)
mDcbartilde=skew(mDcbar); //(4)

transpose(Cr) = data.inv4+sum(data.inv5[i,:,:]*q[i] for i in 1:M); //(6)

Jbar = data.inv7 //(8)
− sum((transpose(data.inv8[i,:,:])+data.inv8[i,:,:])*q[i] for i in 1:M) //(8)
− sum(sum(data.inv9[i,j,:,:]*q[j] for j in i:M)*q[i] for i in 1:M); //(8)

h_w_r = matrix(-cross(wa_a,cross(wa_a, mDcbar)) //(9)
− 2*cross(wa_a, (transpose(data.Ct) * dq))); //(9)

h_w_theta = matrix(-cross(wa_a, Jbar * wa_a) - (der(Jbar) * wa_a) //(10)
− cross(wa_a, (transpose(Cr) * dq))); //(10)

h_w_f = matrix(transpose(hwfint)*wa_a //(12)
−2*[wa_a[1]*(data.inv11[3,2,:,:]-data.inv11[2,3,:,:]) //(12)

+wa_a[2]*(data.inv11[1,3,:,:]-data.inv11[3,1,:,:]) //(12)
+wa_a[3]*(data.inv11[2,1,:,:]-data.inv11[1,2,:,:])]*dq); //(12)

for i in 1:3 loop //(13)
for j in 1:3 loop //(13)

D[i,j,:] =data.inv10[i,j,:]+data.inv11[i,j,:,:]*q; //(13)
end for; //(13)

end for; //(13)
sumd=sum(D[i,i,:] for i in 1:3); //(13)
for i in 1:3 loop //(13)
hwfint[i,:]=wa_a[i]*sumd-wa_a*D[i,:,:]; //(13)

end for; //(13)

h_e_r = matrix(sum(fb_a[i,:] for i in 1:data.Nc)); //(14)

h_e_theta = matrix(sum((taub_a[i,:] //(15)
+ cross((data.r0b[i,:]+data.Sb[i,:,:]*q),fb_a[i,:])) for i in 1:data.Nc)); //(15)

h_e_f = sum(matrix(transpose(data.Sb[i,:,:])*fb_a[i,:] //(16)
+transpose(data.SbCap[i,:,:])*taub_a[i,:]) for i in 1:data.Nc); //(16)

...

	Abstract
	1. Introduction
	2. State of the art
	3. Motion equations of a general flexible body
	4. Structure of the Modelica model
	5. Simulation results
	5.1. Flexible Pendulum
	5.2. Elastic slider crank with FEM beam models
	5.3. Centrifugal stiffening of a FEM Beam model

	6. Conclusion
	Acknowledgements
	Note
	References
	6. Appendix A. Inertia invariants
	6. Appendix B. Analytical computation of beam data
	6. Appendix C. Modelica code of motion equations

