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1. Introduction

The use of instrumented indentation for the characterization of
the material properties for industrial and scientific applications has
been gaining popularity in recent years, and current research in
this area is focussing, among others, on methodological enhance-
ments, improvements of experimental procedures, and extensions
of the applicability of the technique. In the early studies, material
properties were estimated by using semi-empirical formulae (see
e.g. [1]) that relied on indentation curves relating penetration
depths to corresponding imposed forces. More recent develop-
ments are based on the processing of the instrumented indentation
test results with inverse analysis theory (see e.g. [2–6]). With this
approach, the experimental data collected from the instrumented
indentation are compared to their computed counterpart by means
of a discrepancy function which quantifies the difference between
the two. This discrepancy function is then minimized to identify
the sought parameters.

Indentation tests combined with inverse analyses have been
applied for the mechanical characterization of different classes of
materials, namely: isotropic and anisotropic elasto-plastic materi-
als, see e.g. [7–9]; soft materials for biological applications, see e.g.
[10,11]; and brittle materials for the identification of fracture prop-
erties, see e.g. [12,13].

The difficulty in making use of only indentation curves for the
characterization of the elastic modulus, yield stress and strain-
hardening parameter was pointed out, among others, by Chen
et al. [14], when dealing with mystical materials. These represent
a class of materials which exhibit same indentation curves despite
having different yield stresses and hardening parameters. Because
of this, it is necessary to enrich the experimental information used
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in input for the inverse analysis as, for example, carried out by the
authors in [15] by including the maximum pile-up height left by
the indenter after the test. In Ref. [15], it is shown that this infor-
mation only is sufficient to make the inverse problem well posed
and, therefore, it is not required to measure and consider the whole
imprint geometry.

Differently from standard tensile tests, which involve a uniaxial
stress–strain field, material properties cannot be inferred directly
from the indentation tests, but a mechanical model has to be
exploited in combination with the outcomes of the experimental
tests to be able to extract quantitative information from these.
Despite this, the complex triaxial stress–strain field induced into
the material by the indenter penetration represents a material
behavior that a standard tensile test cannot capture, and this might
become useful when characterizing the properties of components
subjected to complex loading conditions, see [16].

In the present paper, the identification of the material parame-
ters is carried out by combining, through inverse analysis, experi-
mental data obtained from the indentation curve and pile-up of the
imprint geometry, with a computationally economical, ‘a priori’
calibrated, finite element model reduction procedure, based on
the Proper Orthogonal Decomposition (POD), as described in [17].
The latter is required to avoid the computational demand and pos-
sible convergence problems of running standard finite element
simulations for the direct analyses.

The efficiency and accuracy of the proposed inverse methodol-
ogy strictly depend on the efficiency and accuracy of the imple-
mented POD model, whose main drawbacks arise in the
calibration stage, where a large number of finite element analyses
has to be performed. If the values of the parameters considered in
the calibration are distributed regularly over a grid of ‘‘nodes’’
spanning over the parameter space, the number of simulations
grows exponentially with the number of sought parameters, with
the consequence that the computing time, required to calibrate
an accurate POD model, may jeopardize the advantages and the
computational efficiency of the whole inverse analysis procedure
based on the reduced model. In such cases alternative methods
based on randomness should be used, but these approaches
require further research.

The approximation of a physical model by means of a model
reduction procedure is reliable when the response of the system
to external actions is smooth and does not present sudden changes
of configuration as, for instance, in fracture mechanics problems,
where crack nucleation and propagation represent phenomena
which cannot be directly simulated by this approach.

The accuracy of the proposed inverse numerical procedure is
finally validated against the measurements obtained from tensile
tests, performed on the same materials, highlighting the robust-
ness and adequacy of the adopted approach.
2. Experimental study

The ability of the proposed inverse analysis procedure to iden-
tify the mechanical properties of metallic materials is validated
against the experimental data collected on samples made of alu-
minium alloys AA 6061-O and AA 7075-O. In particular, the speci-
mens were cut from metal sheets with thicknesses of 1.55 mm and
1.995 mm for the AA 6061-O and AA 7075-O, respectively. The
annealed samples were tested as received without any heat treat-
ment to avoid the influence of precipitation hardening effects [18].
2.1. Mechanical properties according to tensile tests

The material properties of the AA 6061-O and AA 7075-O sam-
ples were obtained from standard tensile tests performed in accor-
dance with AS1391-2007 [19]. The measured material parameters
are summarised in Table 1, while the corresponding engineering
stress–strain curves recorded during the tensile tests are plotted
in Fig. 1.

Samples made with AA 6061-O alloy exhibited an average yield
stress of 62.9 MPa, with average ultimate strength of 148.6 MPa. In
the case of the AA 7075-O samples, mean yield and ultimate stres-
ses observed were 72.7 MPa and 190.5 MPa, respectively. When
compared to the AA 6061-O alloy, the AA 7075-O alloy exhibited
higher strength and hardening, and a lower level of ductility.
2.2. Indentation tests and imprint mapping

Small samples were cut from the same sheets used for the ten-
sile test specimens and were subjected to indentation tests. The
specimens were prepared by carefully polishing them using
sequentially grit paper 1200, 6 lm and 1 lm diamond suspension
solutions and 0.5 lm silica solution. The micro-indentations were
performed on each sample using a 5 lm radius sphero-conical
tip on a UMIS 2000 micro-indenter.

The measured indentation load-penetration depth curves are
plotted in Fig. 2. The A 6061 alloy samples are quite soft with
indentation depths reaching about 7.22 lm, as compared to the
AA 7075 specimens with maximum depth in the order of
5.88 lm recorded at the same level of load.

At the completion of each indentation, the maximum heights of
the pile-ups were then extracted from the profile mapped with an
atomic force microscope (AFM), following a procedure already
implemented by the authors in reference [15]. The pile-up heights
measured are summarised in Table 2.
3. Inverse analysis based on indentation tests

A computationally efficient inverse analysis procedure was
developed and calibrated as part of this study to characterize the
mechanical properties of materials, by minimizing the discrepancy
between measurable quantities concerning indentation curve and
maximum pile-up height, and the corresponding counterparts
computed by means of an a-priori calibrated reduced model, based
on POD, as a function of the material parameters being estimated.
This latter feature of the proposed methodology, as it is illustrated
later, allows considerable savings in terms of CPU computing time,
with respect to classical inverse analysis procedures.

This approach enabled the estimate of both elastic (modulus of
elasticity E) and inelastic (yield stress fy and exponential hardening
coefficient n) parameters. The value of the Poisson’s ratio has a
negligible influence on the material response in an indentation test
(see [2]), and therefore, it was assumed to be known a priori.

The implementation of an inverse analysis based on the inden-
tion curve only would be drastically ill-posed, because it is not
capable of distinguishing between mystical materials, see e.g.
[14,20]. For this reason, an additional measurement, consisting of
the maximum pile-up height measured after the indentation test,
was used as input for the proposed inverse analysis, similar to a
previous work of the authors, see [15], to make the inverse
approach well-posed.

In the inverse analysis, the experimental indentation curve was
subdivided into T points, including the penetration force Fexp

i and
the corresponding indentation depth uexp

i , with i = 1,2, . . . ,T. At
the end of the test, the maximum pile-up height hexp

pile�up was also
measured. Superscript ‘‘exp’’ highlights that these variables were
obtained from the experiments. The finite element model of the
test, described in Section 3.1, was used to calibrate the Proper
Orthogonal Decomposition (POD) model. This model was then
adopted to compute the response of the system to the indentation



Table 1
Mechanical properties related to the nominal stress–strain curves measured from the tensile tests performed in accordance with reference [19].

Sample Coupon ID Elastic modulus, E (MPa) Yield stress, fy (MPa) Ultimate stress, fu (MPa) Strain hardening exponent, n

AA 6061-O 6061-1 83,104 63.2 148.8 0.179
6061-2 88,051 62.7 150.6 0.180
6061-3 86,721 62.9 146.4 0.181
Average 85,959 62.9 148.6 0.180

AA 7075-O 7075-1 60,176 72.9 189.1 0.209
7075-2 61,088 73.1 191.4 0.210
7075-3 64,072 72.2 191.0 0.210
Average 61,779 72.7 190.5 0.210

(a) AA 6061-O

(b) AA 7075-O 

Fig. 1. Nominal stress–strain curves measured from experimental tensile tests for
the A 6061-O and A 7075-O alloy samples.

(a) AA 6061-O 

(b) AA 7075-O 

Fig. 2. Indentation (load – penetration depth) curves measured using micro-
indentation for the A 6061-O and A 7075-O alloy samples.

Table 2
Maximum pile-up heights left on the samples at the completion of the indentation
tests.

Maximum heights of the pile-up (lm)

1 2 3 Mean value

AA 6061-O 0.80 0.86 0.89 0.85 lm
AA 7075-O 0.59 0.56 0.50 0.55 lm
test in terms of indentation curve ucom
i ðpÞ at given force Fi, and

maximum pile-up height hcom
pile�upðpÞ on varying of the material

parameters p within the iterative minimization procedure. The
computed quantities are denoted by superscript ‘‘com’’. The actual
values of these quantities were function of the material parameters
to be estimated, i.e. elastic modulus, yield stress and exponential
hardening coefficient, collected in vector p.

The conventional deterministic batch approach was adopted to
minimize the discrepancy function, as in Refs. [21,22], and the
uncertainties which affect both the measurements and the system
modelling were not processed stochastically. The discrepancy
between experimental and computed quantities was defined as
follows:

xðpÞ ¼ w1
ucomðpÞ � uexp

uexp
max

� �T ucomðpÞ � uexp

uexp
max

� �

þw2
hcom

pile�upðpÞ � hexp
pile�up

hexp
pile�up

!2

ð1Þ
where each term was normalized with respect to the corresponding
maximum measured value, i.e. uexp

max and hexp
pile�up. The two parameters

w1 and w2 (assumed equal to w1 ¼ 1 and w2 ¼ 2, respectively) are
weights which were introduced to enable the two sources of errors,
depicted in the two terms of Eq. (1), to be numerically comparable.
As already shown in Ref. [15], the overall procedure leads to a suc-
cessful identification of the material parameters if the source of
errors introduced by the two terms of Eq. (1) remains within one
order of magnitude from each other.



This minimization was performed by the first order Trust
Region (TR) algorithm, see e.g. [23], available in conventional opti-
mization tools [24], which started from an initial choice p of the
material parameters and was then automatically updated by an
iterative procedure based on subsequent evaluations of the objec-
tive function xðpÞ and of its gradient. This process was terminated
when either the variation of xðpÞ in two subsequent iterations was
less than 2 � 10�8, or the Euclidean norm of the variation of nor-
malized values of the optimization variables became smaller than
2 � 10�4.

Since the objective function xðpÞ defined in Eq. (1) is non-linear
and non-convex, the inverse problem had to be solved for each set
of experimental data many times starting from different initializa-
tion vectors to avoid the convergence of the algorithm to a local
minimum. In this study, these initializations were uniformly dis-
tributed over the parameter domain of interest and the final iden-
tified value pi;id, for each i sought parameter, was computed as the
average of the identified values pij;id for each initialization j (j = 1 ...
K) weighted with respect to the inverse of the objective function
value in solution xj:

pi;id ¼
XK

j¼1

pij;id

xj

,XK

j¼1

1
xj

ð2Þ
3.1. Modelling of the indentation test

The finite element simulation of the indentation test was car-
ried out using the commercial code Abaqus (see [25]). Due to the
axial symmetry of the indenter and the absence of anisotropy of
tested specimen, the indentation test was simulated by 2D axi-
ally-symmetric numerical model with 14,800 quadrilateral finite
elements and 28,000 DOFs approximately. The indenter was mod-
elled as rigid analytical, which represented a reasonable assump-
tion given the sharp opening angle of it. The adopted mesh for
the simulations is illustrated in Fig. 3.

The material constitutive model adopted assumes the existence
of an initial linear-elastic range followed, beyond the yield limit, by
the classical Hencky-Huber-von Mises (HHM) plasticity model
with exponential isotropic hardening. The inelastic material prop-
erties are fully characterized by the two constants fy and n, which
represent yield stress and exponential hardening parameter,
Fig. 3. Finite element mesh used for the indentation test simulations.
respectively. For the materials considered in this paper (i.e. met-
als), it is reasonable to assume that, locally in a large strains
regime, plastic strains are much larger than the elastic ones and
as a well-known consequence, to assume additivity of the two
parts (see Ref. [26]).

This constitutive law is appropriate for the class of materials, i.e.
aluminium alloys, considered in the experimental part of this study
and it can be formulated, in terms of true stress and true strain
quantities, as follows:

_eij ¼ _eel
ij þ _epl

ij ð3Þ

_rij ¼ Dijkl _eel
kl ð4Þ

_epl
ij ¼ _k

@f
@rij

ð5Þ

f ðrijÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2

sijsij

r
� r0ðepl

eqÞ ð6Þ

r0ðepl
eqÞ ¼ f y

E
f y

!n
f y

E
þ epl

eq

� �n

ð7Þ

epl
eqðTÞ ¼

Z T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_epl
ij ðsÞ _e

pl
ij ðsÞ

r
ds ð8Þ

in which eij represent the strain tensor components decomposed
into the elastic eel

ij and plastic epl
ij components; Dijkl is the fourth-

order isotropic elastic tensor; f ðrijÞ is the yield function which
defines the current elastic domain and the direction of the plastic
strains according to an associated flow rule; k represents the plastic
multiplier; sij are the deviatoric stress tensor components and
r0ðepl

eqÞ represents the current yield stress defined as function of
the equivalent plastic strain epl

eq according to an exponential isotro-
pic hardening rule, which depends on the inelastic parameters f y

and n.
The proposed parameter characterization approach relied on

the minimization of the discrepancy function defined by Eq. (1).
The adopted optimization algorithm is iterative and requires repet-
itive computations of the system response (i.e. numerical genera-
tion of indentation curves and maximum pile-up height) for
various different vectors of parameters p. Due to the non-lineari-
ties present in the numerical model (material, geometrical and
contact between indenter and indented material), the procedure
is extremely lengthy (because computationally demanding) if at
each iteration the response of the system to the indentation test
has to be computed with a finite element model. To overcome this
inconvenience, the numerical calculations were performed by a
reduced basis technique based on Proper Orthogonal Decomposi-
tion (POD) and Radial Basis Functions (RBF), described in the fol-
lowing Section.

3.2. POD–RBF technique for indentation test modelling

In practical problems of parameter estimation, it is common to
require numerous estimations of response of the same system
(same in terms of geometry, boundary conditions, external actions
etc) corresponding to different parameter values. Variation of
parameters in this context generates ‘‘correlated’’ changes of the
measurable quantities in the system response. ‘‘Correlation’’ here
means that, assuming the measurable quantities in each experi-
ment simulation be represented by a vector (called ‘‘snapshots’’
in pertinent jargon), these vectors are going to be ‘‘correlated’’ or
almost parallel in their space. Such correlation naturally suggests
to change the reference axes in the space of snapshots so that



snapshot projections on some of the new axes can be neglected
because exhibiting a relatively small norm. A mathematical tech-
nique which is used to find new orthogonal directions, for which
the error of approximation introduced by the above-mentioned
removal of certain axes is minimized, is called Proper Orthogonal
Decomposition (POD). For completeness, a brief outline of the
applied steps involved in the use of POD in the present context,
is provided in the following, while for a detailed treatment of the
approach reference should be made to specialised literature (e.g.
see [27,28]):

(i) Let the N � Q matrix U gather the above-mentioned snap-
shots ui, with i = 1...Q, each of them collecting N measurable
quantities resulting from FE simulations, based on Q param-
eter combinations.

(ii) The symmetric, positive-semi-definite matrix D is generated
from the snapshot matrix as D ¼ UT � U. The eigenvalue
problem of matrix D is further solved, and the new basis is
constructed with orthogonal directions defined by:
U ¼ ½u1 . . . uN �; ui ¼ U � vi � k�1=2
i ; ði ¼ 1; . . . NÞ; UT �U ¼ I

ð9Þ
where vi is the eigenvector and ki the corresponding eigen-

value of matrix D.
(iii) It is analytically demonstrated (see e.g. [28]) that such basis
represents an optimal basis for the approximation of the
snapshot matrix U, in a sense that by keeping only the first
fixed number of directions, say �N of them, there will
be no better �N-component approximation of the snapshots
collected in matrix U. Therefore, low-order approximation
of previously generated system responses is computed by:
U � �U � �A ð10Þ
with �A called matrix of truncated amplitudes, or projections

of the snapshots to the sub-space spanned by �U, defined as
the first �N orthogonal directions calculated by Eq. (9).
(iv) To have a continuous approximation of the system response,
Radial Basis Functions (RBF) are used to interpolate the
amplitudes and to establish one interpolation function
valid for the whole parameter space. The vector of ampli-
tudes becomes then a function of parameters and can be
written as:
�aðpÞ ¼
XQ

i¼1

bi � giðpÞ ð11Þ
with 1� �N bi vectors collecting interpolation coefficients, to

be defined later, and gi radial basis functions adopted for
the interpolation, which in general form can be expressed as:

giðpÞ � giðkp� pikÞ; i ¼ 1; . . . Q ð12Þ
(v) Coefficients of interpolation are computed by imposing Eq.
(11) for all Q pairs of parameters and corresponding trun-
cated amplitudes, which results in the following system of
linear equations:
�A ¼ B � G ð13Þ
Table 3
Domain of interest considered for the parameter space of the POD–RBF indentation
(vi) Once matrix B is calculated, for any arbitrary combination of
parameters, the system response is computed by combining
Eqs. (10) and (11), namely:
test modelling.
uðpÞ � �U � B � gðpÞ ð14Þ

Min Max

E 50 GPa 120 GPa
fy 25 MPa 120 MPa
n 0.015 0.300
The above sequence of steps, which needs to be performed only
once for a particular application, results in the calibration of matri-
ces �U and B. For any further calculation of indentation curves and
residual imprint, corresponding to an arbitrary parameter combi-
nation, it is required to compute only vector g, and to perform
the matrix multiplication of Eq. (14). This approximation of the test
response is clearly computed much faster than the finite element
simulation, while the error remains on the same level, as it will
be demonstrated further on. The use of this approach contributes
to a significant reduction of overall computing time spent for the
assessment of the sought parameters.

In the 3-dimensional space of the sought parameters, the
‘‘search domain’’ was defined through the lower and upper bounds
adopted for each parameter (see Table 3). The above-mentioned
snapshots ui were computed with respect to a regular grid
obtained by subdividing each interval in a certain number of sub-
intervals. Alternative approaches based on randomness, might be
required in other applications. For the purpose of this study, the
calibration of the reduced basis model was carried out with
Q = 1700 material parameters’ combinations within the ranges
contained in Table 3. This required an overall computing CPU time
of approximately 200 h on a computer with processor i5 and 6 GB
of RAM. From each analysis, 50 penetration depths corresponding
to 50 load levels were taken from the loading part of the indenta-
tion curve as well as from its unloading branch. In addition, 50
points with corresponding x–y coordinates were taken from the
pile-up region and this data was collected within the snapshot vec-
tor u, subsequently approximated by the above described proce-
dure (i.e by Eq. (14)). The basis for the snapshot matrix
(collecting above mentioned vectors u) was truncated after the
seventh new reference direction (i.e. �N ¼ 7), satisfying the accu-
racy criterion of reducing to less than 10�6 the ratio between the
summation of neglected eigenvalues and the summation of all of
them. References included in [27] should be considered for more
information on the accuracy criteria of POD reduced basis models.
For the RBF interpolation the following function was adopted:

giðpÞ ¼ kp� pik
3 ð15Þ

The accuracy of the POD model is highlighted in Fig. 4(a and b),
which presents a comparison between the response of the system
to an indentation test computed by means of both the finite ele-
ment model implemented in Abaqus and the POD model. These
results are expressed in terms of indentation curve and imprint
geometry, adopting a set of material parameters not belonging to
the Q parameter combinations used in the calibration stage. While
the two responses are identical there is a significant difference in
terms of numerical efficiency, which is clearly expressed by the
fact that the POD model required a fraction of a second of CPU time
to compute the response on a computer with processor i5 and 6 GB
of RAM, against the 15 minutes taken by the Abaqus finite element
model on the same PC. Obviously, the gain in computing time
becomes more pronounced the longer the inverse analysis has to
run for.
4. Validation of the pod based identification procedure

The inverse analysis procedure proposed in Section 3 is vali-
dated in the following against the experimental results reported



Fig. 4. Comparison between indentation curve (a) and imprint geometry (b),
computed by means of the finite element model implemented in Abaqus (FEM) and
by means of the POD model, adopting E = 79 GPa; fy = 70 MPa, and n = 0.06.
in Section 2 to highlight the efficiency and the robustness of the
proposed approach to estimate both elastic and inelastic material
properties for the constitutive law expressed by Eqs. 3–8.

For each material considered in this study there were two
sources of information collected independently during the experi-
mental work, which consisted of: (i) the nominal stress–strain
curves obtained from tensile tests, used for the benchmarking of
the indentation-based characterization procedure, and (ii) the
indentation curves with the additional information of the maxi-
mum pile-up heights, included as input in the inverse analysis
procedure.
Fig. 5. Nominal stress strain curves for material AA 6061 obtained from: (i)
experimental tensile tests, (ii) characterization from tensile test results based on Eq.
(7) and (iii) inverse analysis carried out on indentation tests.
4.1. Characterization of the benchmarking material properties
obtained from tensile tests

For the validation of the inverse analysis approach, it is essential
to accurately estimate the values for the modulus of elasticity E,
the yield stress fy and the exponential hardening parameter n from
the tensile test measurements. While a trial and error procedure is
sound in principle, it might not enable a unique identification of
the parameters, especially when dealing with constitutive models
such as those described in Eqs. 3–8, as it is possible to achieve
slightly different combinations of the material parameters which
adequately predict the experimental curves. It is worth pointing
out that the inelastic material parameters measured directly from
the experimental curves, expressed in term of nominal quantities,
such as those reported in Table 1, cannot be compared with those
resulting from the proposed inverse procedure, the latter being
based on a constitutive law defined in terms of true quantities.

In the present study, an additional inverse analysis problem was
solved to estimate the material parameters from the tensile test
results. In the first step, the elastic modulus E was identified as
the slope of the stress–strain curve in its initial loading range, i.e.
for stress levels below 30% of the peak stress measured. Then the
best estimate of the sought inelastic parameters, i.e. fy and n, enter-
ing the true stress–strain curve expressed by Eq. (7), was found by
minimizing the discrepancy between experimental and computed
quantities, expressed in terms of the area under the nominal
stress–strain curve. In this process, the following relationships
between the true stress r0 and true plastic strain epl

eq, required in
Eq. (7), and the corresponding nominal stress S and nominal total
strain M measured from the tensile tests, were adopted:

S ¼ r0ðepl
eqÞ

exp epl
eq þ

r0ðe
pl
eqÞ

E

� � ð16aÞ

M ¼ exp epl
eq þ

r0ðepl
eqÞ

E

!
� 1 ð16bÞ

The elastic modulus was identified separately because, by
including all three parameters (E, fy and n) in the above inverse
analysis procedure, the value obtained for the elastic modulus
was mainly governed by the discrepancies between the inelastic
parts of the numerical and experimental stress–strain curves and,
therefore, did not match well the initial slope of the curve.

The curves and values identified with this process have been
plotted in Figs. 5 and 6, and reported in Table 4. These were used
for the benchmarking of the inverse analysis procedure as outlined
in the following Section.

4.2. Inverse analysis procedure applied to indentation test results

The inverse analysis approach described in Section 3 is here
applied for the characterization of the material properties for the
AA 6061-O and AA 7075-O samples presented in Section 2. The
best estimate of the sought parameters is evaluated by minimizing
the discrepancy between the experimental results (indentation
curve and maximum pile-up height) and the outcomes of the
POD model (Section 3.2), relying on the constitutive law described
by Eqs. 3–8. The nominal stress–strain curve is then determined
using Eqs. (16a) and (16b). In this study, the experimental indenta-
tion curves and maximum pile-up heights, used for the inverse
analysis, were taken as the average of the measured ones for each
material considered.

Fig. 5 illustrates the nominal stress–strain curves for the AA
6061-O alloy that were determined based on: (i) experimental ten-
sile tests, (ii) inverse analysis applied to the tensile tests, and (iii)
inverse analysis carried out on the indentation tests. All curves



Fig. 6. Nominal stress strain curves for material AA 7075 obtained from: (i)
experimental tensile tests, (ii) characterization from tensile test results based on Eq.
(7) and (iii) inverse analysis carried out on indentation tests.

Table 4
Material parameters identified from the tensile test results (characterized using Eq.
(7)) and from the indentation tests.

Specimen Properties From tensile
tests

From indentation
tests

Difference
(%)

AA 6061-O E (MPa) 97,405 99,151 +1.7
fy (MPa) 53.4 52.1 �2.4
n 0.215 0.214 �0.4

AA 7075-O E (MPa) 64,640 66,848 3.4
fy (MPa) 74.5 67.2 �9.7
n 0.234 0.255 8.9
are shown to match well. Good results were also observed for the
AA 7075-O alloy samples, as depicted in Fig. 6.

The agreement between the experimental curves and their
best-fitting through Eqs. (7), (16a) and (16b) shows that the mate-
rial model adopted in this study is able to interpret correctly the
material behavior of the AA 6061-O and AA 7075-O alloys.

The good results with the proposed inverse analysis approach
are also highlighted in Table 4, where the material parameters,
related to the true stress–strain curves, identified from both the
experimental tensile and indentation tests by means of the inverse
analysis procedures adopted, are compared, and the differences
between the two sets of results are expressed as a percentage.

For the AA 6061-O alloy, the maximum difference between the
identified and tensile test parameters was equal to �2.4%, calcu-
lated for the yield stress fy. Smaller differences were noted for
the elastic modulus E (+1.7%) and the exponential hardening
parameter n (�0.4%). Larger errors were observed for the AA
7075-O alloy, with maximum difference of �9.7% still exhibited
for the yield stress fy. The remaining errors were 3.4% and 8.9%, cal-
culated for the elastic modulus E and the exponential hardening
parameters n, respectively.

5. Conclusions

The use of instrumented indentation has been gaining popular-
ity in recent years for the characterization of the material proper-
ties, for industrial and scientific applications, thanks to its non-
invasive nature. This paper presented and validated a methodology
aimed at enhancing the computational efficiency of the inverse
analysis procedure for the characterization of metallic material
properties. This was carried out by implementing a computation-
ally efficient approach to simulate the response of the material
when subjected to an indentation test by using an ‘a priori’ model
reduction procedure, developed with a POD scheme. The POD
model was calibrated with a finite element model implemented
in the commercial software Abaqus. The input data specified for
the inverse analysis made use of the indentation curves and max-
imum pile-up heights left on the sample at the completion of the
indentation tests. The accuracy of the numerical procedure was
validated against the experimental results recorded for aluminium
alloys AA 6061-O and AA 7075-O specimens. Benchmarking values
for the material properties were obtained from tensile tests carried
out independently from the indentation tests on the same metallic
samples. The overall procedure was shown to lead to good esti-
mates of the material properties required for the characterization
of the aluminium alloys considered in this study.
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