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1. Introduction

The widespread use of lightweight structures has emphasized
the need to reduce undesired vibrations that can compromise the
integrity of the system. Advances in materials technology have
made available a new generation of structures regarded as smart.
These systems can tune functionality to specific input, for example
by changing their shape, stiffness or damping in response to a con-
trollable input [1,2]. To achieve these results, smart structures are
instrumented with sensors to evaluate system deformation and
actuators to perform control actions [3].

Composite materials are interesting for the construction of
smart structures thanks to their high mechanical properties and
to the possibility of embedding sensors and actuators. Measure-
ments relating to the structure deformation are used in a control
algorithm that is generally based on robust control theory and
structural dynamics [4–6]. Depending on the control algorithm,
signals are sent to the actuators to generate the desired control
forces, whose effect on the structure results in a change of shape,
stiffness [7] or damping [8].

One of the most common applications of smart structures is
vibration control. This field is interesting especially for lightweight
structures, in which vibration phenomena may reduce the fatigue
life of structural components [9], and also worsen the functioning
of the system, causing discomfort and compromising the safety of
people and objects [10].
In this field a sufficiently large number of measurements is pre-
ferred to check the state of vibration of the system [11–13]. More-
over, actuators and sensors must be easily integrated in the
structure and must offer reduced loading effects [14].

Having a large number of sensors can be technically problem-
atic, but Fiber Bragg Grating sensors (FBG) prove to be an interest-
ing solution for inserting a large number of measuring points on a
structure [14–16]. The great advantage of this technology is that a
single optical fiber is able to provide a set of measurements of
deformation at many points, providing distributed measurement
along the structure. The small dimension of the optical fiber and
the near absence of load effects make FBG sensors interesting for
smart structures [17,18]. In literature, the most common applica-
tions of FBGs are structure health monitoring, damage detection
and strain measurement in harsh environments[16,19].

One of the first applications of optical fiber sensors for vibration
monitoring was presented by Houston in the early nineties [20]. In
the following years, several research groups have focused their
attention on achieving active control of vibration with FBG sensors.
A single sensor was used by Chau and Chuang [21–23] to control
the first vibration mode of a cantilever beam. Cheng et al. [24]
use an FBG sensor to monitor the vibration of a flexible structure
immersed in a fluid. Active vibration control has been imple-
mented on a plate by Ambrosino et al. [25]. Gurses [26] presented
an active control using measurements provided by a particular dis-
tributed sensor based on optical fiber technology that provides the
state of deformation of a strip controlled by PZT actuators. More re-
cently, a resonant inertial actuator with a single embedded FBG
sensor was proposed by Cavallo et al. [27].
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In this context, the aims of this paper are:

– to extend the results obtained by previous research, exploiting
the very high number of measurements made possible by
FBG sensors. Thanks to the large number of sensors, a
quasi-distributed measurement becomes available and the
observation of the vibration phenomenon can be optimized
[28–30]. Consequently, the control logics can be improved to
achieve their best possible performance. Different control solu-
tions can be introduced depending on the number of sensors
and actuators involved in the control algorithm.

– to investigate the possibility of using commercial devices to
perform active vibration control, in order to easily extend the
results of the research to a large number of practical applica-
tions. As a matter of fact, much research in this field is carried
out with ad hoc equipment that would be unthinkable in prac-
tical applications outside a research laboratory, thus limiting
the effectiveness and the interest of the research. On the con-
trary, a commercial device is already a standard solution and
can be profitably used in many practical applications.

The paper is structured as follows. Section 2 recalls the basics of
optical fiber and FBG sensor technology, highlighting the advanta-
ges of their use in vibration control applications and their limits.
Section 3 introduces some control algorithms, based on the increase
of structural damping, implemented to demonstrate the effective-
ness of FBG sensors in vibration suppression. Section 4 introduces
the test bench designed to suppress vibrations using FBG sensors
and PZT actuators. The experimental results are presented in Sec-
tion 5. Tests have been carried out to evaluate the performance of
the system with different controllers and different sets of sensors
and actuators. Finally conclusions are drawn in Section 6.

2. Optical sensors in vibration control applications

Fiber Bragg Grating sensors, belonging to the optical strain
gauges family, are a promising technology in active control appli-
cations. The working principle of these sensors is known and it is
described in depth in [14], as are the different techniques available
to measure the peak shift of the reflected light-wave.

The use of Fiber Bragg Grating sensors in active control of vibra-
tions can be advantageous thanks to the small cross-section that
allows them to be embedded in carbon fiber structures with negli-
gible load effects and to the possibility of embedding tens of sen-
sors on the same optical fiber, thus having a large number of
measurements without increasing the number and complexity of
cables and wiring. Both of these aspects are interesting in vibration
control applications, since they provide an insight into the state of
deformation of the structure using a non-invasive measurement
system. Though the advantages of this technology are evident,
there are a number of limitations to its use in applications of vibra-
tion suppression that can undermine the effectiveness of control.
The main negative factors are related to the delay in the feedback
signal due to the processing and the transmission of the signal by
the optical interrogator, the discretization of the measurement sig-
nal and the resolution of the sensors. In this paper, the effects of
these limitations are analyzed and some solutions are presented
for exploiting this technology in vibration suppression applica-
tions. In the paper, in order to allow the use of technology-based
FBG sensors in a large number of potential applications, the inten-
tion of the authors is to use only commercial instrumentation. As
discussed in the introduction, this allows the results obtained in
this work to be extended to a large number of practical applica-
tions and sensor configurations. In detail, the signals coming from
FBG sensors are acquired using an interrogator based on the Swept
laser interrogation technique. This interrogator technology, com-
pared with other ones, allows a larger number of sensors (even lar-
ger than the number of sensors considered in this paper) to be
managed and provides higher flexibility in sensors characteristics
(e.g. the wavelength). This means that the number of sensors could
be further increased if the structure to be controlled requires an
greater number of measurements.

The interrogator adopted is the MicronOptics SM130-500. It
has a resolution of 1pm (corresponding to a strain resolution of
0.84 lm/m) and a sampling frequency of 1 kHz, it has 4 optical
channels and manages a maximum number of 80 FBG sensors on
each channel. The output is provided through a digital TCP/IP
Ethernet transmission. The resolution is due to the peak detection
and cannot be improved with dynamic interrogators. A better res-
olution could be obtained only by using static interrogators, but
these cannot be used for control applications. As previously men-
tioned, the main concern with this digital output is the time delay
between physical light input and digital data transmission through
the Ethernet board. This effect is related to how the peak is mea-
sured from the optical spectrum and to the non-deterministic dig-
ital Ethernet transmission. To evaluate the acquisition system time
delay, tests were done comparing the measurements obtained
with both electrical and optical strain gauges applied to the same
section of a cantilever beam (Fig. 1a).

The system was excited by a shaker using a sinusoidal input.
The mechanical strain is measured simultaneously by the electrical
and optical strain gauges. The optical fiber signal is acquired by the
interrogator, sent to a PC through the TCP/IP connection, acquired
through a simple software and outputted to an electrical analog
signal by a DAC board. The electrical signal is then re-acquired by
an acquisition board together with the signal coming from the
electrical strain gauges (Fig. 1b). This board, set to 51.2 kHz sam-
pling frequency, is able to guarantee the synchronization of the ac-
quired signals, so that a time delay analysis is possible. To acquire
the electrical strain gauges a conditioning module was used. The
delay is measured by means of a cross-correlation analysis be-
tween the two signals. The results show a delay of (1.7 ± 0.6) ms
(Fig. 1c and d). The measured delay includes the interrogator, the
TCP-IP connection, the software and the DAC delay, and represents
the total delay due to the use of a digital interrogator. This limita-
tion is difficult to be overcome. Indeed, the use of an interrogator
based on different technologies (e.g. linear filter interroga-
tors[25,26]) allows to reduce this delay. Unfortunately this kind
of device cannot manage high number of measurements and its
use in different applications is limited owing to the high custom-
ization of the instrumentation.

A significant contribution, in addition to this delay, is due to the
need of low-pass filtering the feedback signal, to avoid high fre-
quency contributions in the control force due to the quantization
of the feedback signal. Indeed, the 1 kHz limitation to the feedback
loop (due to the sampling frequency of the interrogator) is much
lower than the bandwidth of most smart actuators (piezoelectric,
magnetostrictive, etc.). For this application, a 4th order 200 Hz But-
terworth filter was considered. Since the Butterworth filter phase
is almost linear at low frequencies, its behavior can be approxi-
mated with a time delay. As a consequence, the average total feed-
back loop delay in control applications can be calculated as
d = 3.6 ms. Time delay results in a control action phase shift that in-
creases linearly with frequency. As control applications are very
sensitive to delays between system vibrations and the correspond-
ing control action (which results in a phase margin reduction),
there is a limit to the maximum frequency to be controlled. Consid-
ering as acceptable a maximum delay of 0.5 rad, the maximum
control frequency can be computed as

fmax ¼
1

2p
0:5
d
� 20 Hz: ð1Þ
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Fig. 1. Analysis of the time delay of optical measurements: (a) the test beam with both optical and electrical strain gauges excited by the shaker; (b) scheme of the acquisition
setup; (c) an example of a test signal, a 200 Hz sinusoid; (d) cross-correlation analysis of a band-limited random signal.
This time delay, indeed, depends only on the interrogator archi-
tecture, which cannot be modified by the user. In the future and
without considering the use of custom equipment (that would pre-
clude the application of this technology in many contexts), this sit-
uation could be improved if commercial optical interrogators
based on real-time data transmission will be made available.

An alternative solution could be to deal with the time delay in
the definition of the control algorithm. Indeed, in literature many
researches about this topic can be found. An analysis of the effect
of time delay on feedback control can be found in [32,33], while
some applications based on the time delay compensation have
been proposed [34]. Moreover, some particular control logics based
on a delayed feedback of a position [35] or acceleration [36] mea-
surement have been developed. Anyway, all these algorithms pres-
ent some stability limit and, moreover, they are based on the
assumption of known and constant time delay. On the contrary,
in this application the delay is caused by non-deterministic data
transmission and consequently its value varies in an unknown
way over time. For this reason, the use of these logics becomes
dangerous from a stability and robustness point of view. Conse-
quently, as described above, the only solution consists in working
in a frequency range where the delay introduced in the feedback
loop is negligible. Anyway, the introduced frequency limit on the
stability of the system is sufficiently high to allow the use of this
technology in many mechanical applications in which vibratory
phenomena affects low-frequency vibration modes (e.g. [31]).

3. Control techniques

Consider the equation of motion of a linear mechanical system

½M�€xþ ½R� _xþ ½K�x ¼ ½KC �TðnCÞFCðtÞ ð2Þ

where [M], [R] and [K] are the inertial, damping and stiffness matri-
ces of the structure, x is the vector containing the variables describ-
ing system motion, while FC(t) is the nA � 1 vector of control forces
(applied at the position nC) and [KC] is the Jacobian matrix linking
the forces to the system’s degrees of freedom. One of the most effi-
cient ways of reducing vibration is to actively increase system
damping and, as a consequence, the energy dissipation associated
with it. The control forces can be designed as

FcðtÞ ¼ �½g� � _eðnS; tÞ ¼ �½g� � ½KSðnSÞ� � _xðtÞ ð3Þ

where _e is the first derivative of the FBG nS � 1 measurement vector
and [g] is the nA � nS gain matrix, nA being the number of available
actuators and nS the number of measurements. Vector nS represents
the position of sensors, while [KS] is the Jacobian matrix describing
the kinematic relationship between the positions of the ns sensors
and the independent variables x.

To assess the efficiency of FBG sensors in active vibration con-
trol applications, different control algorithms can be considered.
The number of actuators (nA) and sensors (nS), and their relative
position (nS,nC), are varied to take into account their effects on con-
trol performance.
3.1. Co-located feedback

Supposing that one actuator (nA = 1) and the corresponding co-
located sensor (nS = 1) are used, the damping control force Fc1 is gi-
ven by

Fc1 ¼ �g1 � _e ð4Þ

where g1 is the control gain and _e is the first derivative of the FBG
measurement. The control gain can be optimized through the root
locus of the controlled system to maximize the damping on a cer-
tain mode. Theoretically, under the assumption of no noise, no de-
lays, ideal actuators, etc., this solution ensures the stability of the
controlled system for any value of the control gain, even if, in prac-



Fig. 2. A picture of the smart structure (a) and its bottom-side with optical fiber
FBG sensors (b).
tice it is very common to have problems of signal noise, or related to
the A/D conversion, delays, etc.

In order to increase the signal-to-noise ratio and improve the
performance of control on the selected modes, supposing one actu-
ator (nA = 1) is used, an increased number of sensors can been con-
sidered. For example, considering the co-located sensor (ith FBG)
and the two adjacent ones (nS = 3), the control action becomes

Fc1 ¼ �½g1 g2 g3� �
_ei�1

_ei

_eiþ1

2
64

3
75 ð5Þ

where g1, g2, g3 are the control gains associated to each measure-
ment. By tuning the control gains, it is possible to vary the damping
effect achieved on the different modes with respect to (4), obtaining
a better result on the most critical modes.

Both (4) and (5) can be extended to a higher number of control
actuators. For example, considering two control actuators (nA = 2),
(4) can be expressed as

Fc1

Fc2

� �
¼ �

g1 0
0 g2

� �
�

_ei

_ej

� �
ð6Þ

where ei, ej are the measurements of the sensors co-located with the
actuators providing the control forces Fc1 and Fc2, while g1, g2 are
their control gains. Similarly, (5) becomes

Fc1

Fc2

� �
¼ �

g11 g12 g13 0 0 0
0 0 0 g21 g22 g23

� �
�

_ei�1

_ei

_eiþ1

_ej�1

_ej

_ejþ1

2
666666664

3
777777775

ð7Þ

where Fc1 and Fc2 are the two control forces and i, j the indices of the
sensors co-located with the actuators. Results being equal, the use
of multiple actuators allows the forces acting on the structure to
be reduced and avoids saturation of the actuators. Moreover, having
an higher number of independent control parameters, it is possible
to tune them in order to maximize the damping on more than one
controlled mode.

3.2. Modal feedback

To better exploit all the nS measurements available using optical
strain gauges, Modal Control [6,31] can be implemented. An in
depth description of modal control techniques is described in [6].
To calculate the control forces, the modal-space equation of motion
can be defined starting from (2) through the coordinate change

x ¼ ½Utot�qtot ð8Þ

where qtot is the vector containing all the structure modes and [Utot]
is the eigenvector matrix of [M]�1[K]. In most practical cases, (8) can
be truncated considering only a limited number of modes (m) for
the definition of the control law, since only a limited frequency
range is affected by significant vibration phenomena. In this case,
(8) becomes

x ’ ½U�q ð9Þ

where q is the m � 1 vector containing only the modes considered,
while [U] is the ndof �m corresponding eigenvector matrix. Substi-
tuting (9), (2) becomes

½diagM �€qþ ½diagR� _qþ ½diagK �q ¼ ½U�
T ½KC �T FCðtÞ ð10Þ

where [diagM],[diagR] and [diagK] are the modal diagonal inertia,
damping and stiffness matrices (defined as [U]T[M][U], etc.). This
equation represents a series of decoupled equations, each one rep-
resenting the dynamics associated with one structure mode. When
Independent Modal Space Control (IMSC) is applied, control forces
can be calculated as

FC ¼ � ½U�T ½KC �T
� ��1

½�r� _q ¼ � ½U�T ½KC �T
� ��1

½�r� ½KM�½U�ð Þþ _e ð11Þ

where ½�r� is the m �m modal control gain matrix (whose elements
correspond to the damping introduced by the control on the m con-
trolled modes) and [ � ]+ is the m � nS pseudo-inverse matrix. The
pseudo-inverse matrix allows measurement noise to be filtered
out since it provides the least squares solution of a system of linear
equations minimizing the Euclidean norm ½KM�½U� _q� _e

��� ���
2
. Having

more measurements, errors in estimation of modal quantities _q
can be minimized.
4. Experimental setup

To assess the proposed control layout, a test bench structure
with embedded FBG sensors was created. The structure (Fig. 2) is
a carbon fiber clamped-free beam, instrumented with an array of
16 embedded FBG sensors and 3 piezoelectric actuators.

Its dimensions are 850 mm � 105 mm � 1.7 mm and it is con-
structed from three layers of prepreg unidirectional carbon fiber.
The prepreg is a composite material made of carbon fiber immersed
in a partially polymerized epoxy matrix. To achieve full lamination
of the layers and reach high mechanical properties, the material
must be subjected to a process of curing, after which the carbon fi-
ber reaches a nominal density of 2000 kg/m3 and a Young modulus
of 110 GPa along the direction of the fibers. Piezoelectric actuators
used to control vibrations are QP20W produced by Midé. A chain of
FBG sensors on the same optical fiber is selected, with 16 equally
spaced gratings, both in distance (60 mm) and wavelength
(4.7 nm, from 1515 nm to 1585 nm). Each sensor has a grating
length of 8 mm, with a peak reflectivity of 20%. Only the first 14
gratings are used for control purposes, while the other 2 are used
for temperature compensation. Table 2 summarizes the main fea-
tures of the FBG sensors used, while Table 1 shows the character-
istics of the piezoelectric actuators.



Table 1
Technical data of the QP20w piezoelectric actuator.

Dimensions 0.0508 � 0.0381 � 7.62 � 10�4 m3

Mass 0.0079 kg
Electrode dimensions 0.0460 � 0.0333 � 2.54 � 10�4 m3

Capacity 0.20 � 10�6 F
Voltage ±200 V
Young modulus 63,000 MPa
Maximum operating temperature 100 �C

Table 2
Main features of the adopted FBG sensors (source Fos&S).

Operating temperature �50 to +130 �C

Grating length 0.008 m
Coating diameter 195 � 10�6 m
Coating material Ormocer
Strain range (long term) 0.01 m/m
Strain range (short term) 0.05 m/m
Accuracy (with a 1 pm accuracy interrogator) 1.7 � 10�6 m/m
4.1. Placement of sensors and actuators

The placement of sensors and actuators was effected bearing in
mind that they respectively sense and produce a deformation of
the curvature of the system. In fact, the action of a piezoelectric
patch actuator can be modeled as two opposite torques acting on
the two endpoints of the patch. The actuator, then, works on the
difference of rotation between these points, which is related to cur-
vature. Similarly, FBG sensors measure a linear deformation of the
structure which is a function of the curvature and of the distance
from the neutral axis. Their optimal positioning then corresponds
to the points where the second derivative of the vibrational modes
is maximum. Fig. 3 shows the first three analytical modal shapes
/i(n) of the structure. The position of the actuators is chosen so that
each PZT is co-located with one of the FBG sensors. Moreover, at
least one PZT is placed, for each mode, in a position with non-zero
curvature to ensure the controllability of the system.

The efficiency of both actuators and sensors is guaranteed as
long as they adhere perfectly to the structure. The experience
gained in previous work suggested the use of structural adhesive
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Fig. 3. Position of actuators (PZT) and sensors with respect to the normalized
numerical modal shapes (a) and curvature (b) of the structure constrained as a
cantilever beam.
3M DP490 to bond piezoelectric actuators, while optical fiber are
bonded using the two-component glue HBM X60 [37].

4.2. System identification and numerical model

The large number of available measurement points is a great
potential which, to be fully exploited, needs a numerical model
describing the dynamics of the system. Such a model provides a
relationship between the measurements obtained by sensors and
the effect of actions applied by the actuators. The system is discret-
ized with a Finite Element Method (FEM) mesh of 36 nodes. Each
node can translate and rotate in the plane. The first node is fixed
to the ground, then the model has a total of 105 degrees of
freedom.

FBG sensors are modeled approximating the deformation
sensed with the difference of rotation Dh of two adjacent nodes,
placed at the ends of the sensor itself. Similarly, PZT actuators
are modeled as two torques applied on the nodes placed at the
ends of the devices. Fig. 4a shows the mesh of the system, high-
lighting a sector of the beam with both actuator and sensor.
Fig. 4b–d shows the comparison between analytical, numerical
and experimental modal curvatures of the first three modal shapes
along the beam. The vertical axes represent the curvature of each
modal shape, normalized so that the modal curvature on the sec-
ond FBG sensor is equal to 1. The horizontal axes, whose ticks
are the sensors’ number (from 1 to 14) represents the beam length.
Sensor 1 is the sensor closest to the clamp, while sensor 14 is close
to the beam tip.

The system has been modeled in two different ways. The ana-
lytical model has uniform characteristics along the structure and
then does not include the local stiffening effect due to the actuators
[1]. On the contrary the finite element model is more detailed and
includes this effect. A good match between numerical and experi-
mental modes can be observed. As the local stiffening effect intro-
duced by the PZT patches (not included in the analytical model)
have not been modeled, the analytical model shows differences
with respect to experimental results especially in points where
the PZT actuators are placed (FBG3, FBG7 and FBG10).

At the same time, to determine experimentally the natural fre-
quencies of the structure, actuator PZT3 was used to force the sys-
tem, while sensor FBG1 senses the state of deformation. The
experimental transfer function G13ðsÞ ¼ e1ðsÞ

V3ðsÞ
between the voltage

V3 applied to the actuator PZT3 and the deformation e1 measured
by the sensor FBG1 is shown in Fig. 5. The first three vibrational
modes of the structure are clearly visible both in magnitude and
in phase diagrams.

Fig. 5 shows the comparison between experimental and numer-
ical transfer functions G13 ¼ e1

V3
, computed through the H1 estima-

tor, and the eigenfrequencies and non-dimensional damping of
the numerical model. The phase shift between the numerical and
experimental data (increasing with the frequency) is due to the
time delay of the FBG measurement (not included in the numerical
model). Anyway, except for this, the differences are very small and
the model can be considered valid to describe the dynamics of the
system.
5. Results and discussion

The control logics described in Section 3 were tested on the
smart structure. Fig. 6 shows the scheme of the control loop, high-
lighting the elements involved in the control. Vibrations are mea-
sured by FBG sensors and acquired through the optical
interrogator. The signals are transmitted through the ethernet con-
nection to a PC, used as control board. A custom software acquires
these measurements, calculates the control signals and provides



Fig. 6. Block diagram of the control loop.
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Fig. 4. Finite element model of the system: nodes (a) and numerical-experimental comparison of mode 1 (b), 2 (c) and 3 (d).

Fig. 5. Numerical and experimental transfer functions between PZT3 and FBG1; the
shown values refer to the numerical model.
them as output through a National Instruments NI6259 board. The
control signals are low-pass filtered, to cancel out the high fre-
quency contributions due to the signal quantization, amplified
and provided to the piezoelectric patch actuators.

The control strategies previously discussed are tested to evalu-
ate the performance of a smart structure with embedded FBG sen-
sors in active vibration control application. For all the tests, the
third piezoelectric actuator (PZT3) is used to provide a disturbance
input (a chirp signal from 1 to 60 Hz in 600 s, covering the fre-
quency range of the controlled modes and of the first uncontrolled
one), while the third sensor (FBG3) is used to evaluate control per-
formance. Owing to the frequency limitation caused by the delay of
the control chain, only the first and the second modes of the sys-
tem are controlled.

The co-located control, described by (4), was realized consider-
ing the third sensor (FBG3) and the first actuator (PZT1). Fig. 7a and
b represents the root locus with co-located control, showing the
poles of the first two modes of the controlled structure varying
the control gain. The poles corresponding to the control gain max-
imizing the damping on the first mode (3.5%) are represented by a
red star, while those maximizing second mode damping (2.1%) are
represented by a green star. As shown by the figure, each of these
gains does not provide a good result on the other mode; for this
reason, the control gain has been chosen so that both the 1st and
2nd modes are provided with the same damping (1.85%, corre-
sponding to the ‘‘+’’ in the figure). As said in the preceding para-
graphs, the performance of this simple logic is limited also by
the resolution and signal-to-noise ratio of the FBG sensors. How-
ever more than one sensor can be used to define the control force
(see (5)). Sensors FBG2 to FBG4 are considered, while the feedback
action is still provided by the PZT1 actuator. Fig. 7c and d shows
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Fig. 9. Comparison between controlled and uncontrolled system in terms of FRF magnitude with 2 sensors – 2 actuators co-located control (a) and with 6 sensors – 2
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Fig. 8. Comparison between controlled and uncontrolled system in terms of FRF magnitude with co-located control (a) and with 3-sensor co-located control (b).
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Fig. 7. Root locus of the structure with SISO co-located control (2nd mode (a) and 1st mode (b)) and for the 1-actuator, 3-sensors case (2nd mode (c) and 1st mode (d))
the root locus of the first two modes for this solution. The root lo-
cus has been designed for a given relative weight of the 3 sensors,
following the same notation of Fig. 7a and b: the black ‘‘+’’ repre-
sent the poles corresponding to the chosen gains.
Fig. 8a shows the comparison between the controlled and the
uncontrolled system for the co-located control in terms of fre-
quency response function between the input voltage of the distur-
bance piezoelectric patch and the measurement of the third FBG
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Table 3
Comparison of control performances in terms of peak reduction [dB] on first and
second mode.

Control algorithm Peak reduction [dB]

Mode 1 Mode 2

co-located feedback, 1 actuator, 1 sensor 7.4 3
co-located feedback, 1 actuator, 3 sensors 16.6 9.3
co-located feedback, 2 actuators, 2 sensors 8 3.4
co-located feedback, 2 actuators, 6 sensors 15 9.3
modal feedback, 2 actuator, 14 sensors 24 16
sensor. The result shows a peak reduction corresponding, on the
first mode, to a damping ratio increase from 0.2% to 1.8%. This va-
lue is consistent with the result shown by the root locus diagram.
On the contrary, owing to the higher phase delay, the result on the
second mode is less effective than expected. Fig. 8b shows the per-
formance of this solution. A damping ratio of 7% can be achieved on
the first mode, leading to an high improvement of vibration reduc-
tion with respect to the previous case. A higher frequency shift, due
to the higher control force, can also be observed.

Control performance can be improved using more actuators.
This solution allows the control force provided by the single actu-
ator to be reduced, thus limiting the risk of saturation and a con-
centrated force on a single point of the structure. The following
results are obtained controlling the system with the two actuators
PZT 1 and 2 and the corresponding co-located sensors (see (6) and
(7)). Fig. 9 shows the result of this control solutions. Comparing it
with Fig. 8, it can be noticed that the actuator PZT2 does not pro-
vide a significant contribution to vibration reduction.

As expected, the results achieved show that an increase of the
number of sensors allows vibration control performance to be im-
proved. In this sense, FBG sensors offer a great advantage com-
pared with other sensors (accelerometers, piezoelectric sensors,
etc.) since they can be embedded in the structure in large number.
However, increasing the number of considered sensors and the
complexity of the structure, a simple velocity feedback can be dif-
ficult to use, since the contribution of each mode is unknown and,
as a consequence, it is difficult to define the weights for the feed-
back forces.

When the system is complex and vibration phenomena interest
more modes, it has been shown that IMSC is an effective algorithm
for reducing vibrations exploiting the high number of sensors
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Fig. 11. Comparison between controlled and uncontrolled structure in time domain on the first mode: 1 sensor-1 actuator case (a,b), 3 sensors-1 actuator case (c,d) and
modal control (e,f). The solid blue line (on the left) refers to the FBG1 time history, while the dotted red line and the dashed green one (on the right) refer to the PZT1 and PZT2
control inputs respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



available. In this application (see Section 4) 14 FBG sensors, equally
distributed along the beam, are available and all of them were used
to estimate the system modal coordinates. Owing to the frequency
limitations of this control scheme (see Section 2) the first two
modes of the beam were controlled.

Fig. 10 shows the frequency response function between the dis-
turbance piezoelectric patch input voltage and the 3 s FBG sensor
when IMSC is applied. A target damping ratio of 20% has been im-
posed for the controlled modes and, as a consequence, consider-
able reduction of system vibrations can be achieved. In the
experimental tests, the first mode damping ratio becomes 19% (a
value comparable with the imposed one) while the second mode
one becomes 6%. Thanks to the large number of sensors, the spill-
over problem does not arise and third mode behavior is not wors-
ened by control. As expected, control performance on the first
mode is better, both in terms of damping increase and frequency
shift, owing to the lower delay of the control feedback at lower
frequencies.

Table 3 summarizes the performance of the control logics tested
in terms of peak reduction achieved on the first and second mode,
while Fig. 11 shows a comparison between the different controls in
the time domain. The results were obtained exciting the structure
at its first natural frequency with the PZT3 actuator. In all the tests,
the system remains uncontrolled in the first two seconds and then
the control is switched on. The figure compares the results ob-
tained in terms of time histories of FBG1 (on the left) and actuators
control input voltage (on the right). Both Table 3 Fig. 11 confirm
that the increase of the number of sensors and actuators, fully
exploited with IMSC, allows a significant reduction of vibrations
on both the controlled modes. As expected, the peak reduction
on first mode is always higher than the reduction on the second,
owing to the lower phase delay of the control force at lower
frequencies.

6. Conclusions

The possibility of building lightweight structures that can ac-
tively change their mechanical properties (e.g. damping) is of great
interest. This work demonstrates the possibility of creating a smart
structure, made of carbon fiber, with embedded arrays of FBG sen-
sors for active vibration control. The system is able to reduce low
frequency vibration by increasing system structural damping.

This was investigated as a function of the implemented control
logic and of the number of sensors and actuators used.

Experimental tests were carried out to evaluate control perfor-
mances considering different numbers of actuators and FBG sen-
sors. The most significant results are achieved by implementing
Independent Modal Space Control. In fact, thanks to the large num-
ber of FBG sensors available, this technique is very effective since it
allows a distributed measurement of system deformation, provid-
ing an estimate of modal coordinates and avoiding the occurrence
of unwanted spillover effects.

References

[1] Vepa R. Dynamics of smart structures. John Wiley Sons Ltd; 2010.
[2] Wagg D, Bond I, Weaver P, Friswell M. Adaptive structures engineering

applications. John Wiley Sons Ltd; 2007.
[3] Chopra I. Review of state of art of smart structures and integrated systems.

AIAA J 2002;40(11):2145–87.
[4] Meirovitch L, Baruh H, Oz H. A comparison of control techniques for large

flexible systems. J Guid Control 1983;6(4):302–10.
[5] Balas MJ. Active control of flexible systems. J Optim, Theory Appl

1978;25(3):415–36.
[6] Braghin F, Cinquemani S, Resta F. A new approach to the synthesis of modal
control laws in active structural vibration control. J Vib Control
2013;19(2):163–82.

[7] Ghoshal A, Wheater EA, Kumar CRA, Sundaresan MJ. Vibration suppression
using a laser vibrometer and piezoceramic patches. J Sound Vib
2000;235:26180.

[8] Balas M. Direct velocity feedback control of large flexible structures. J Guid
Control 1979;3(2):252–3.

[9] Hyer MW. Stress analysis of fiber-reinforced composite materials. New
York: WCB/McGraw-Hill Inc; 1998.

[10] Cazzulani G, Ghielmetti C, Giberti H, Resta F, Ripamonti F. A test rig and
numerical model for investigating truck mounted concrete pumps. Automat
Construct 2011;20(8):1133–42.

[11] Khulief YA. Vibration suppression in rotating beams using active modal
control. J Sound Vib 1985;242(4):681–99.

[12] Inman DJ. A comparison of control techniques for large flexible systems. Philos
Trans: Math Phys Eng Sci 2002;359(1778):205–19.

[13] C Hughes P, E Skelton R. Controllability and observability of linear matrix
second order systems. ASME J Appl Mech 1980;47:415–20.

[14] V Grattan KT, Sun T. Fiber optic sensor technology: an overview. Sens Actuat A:
Phys 2000;82(1–3):40–61.

[15] Othonos A. Fiber bragg gratings. Rev Sci Instrum 1997;68(12):4309.
[16] Kreuzer M. Strain measurement with Fiber Bragg Grating sensors. HBM; 2006.
[17] Luyckx G, Voet E, De Waele W, Degrieck J. Multi-axial strain transfer from

laminated CFRP composites to embedded Bragg sensor: I. Parametric study.
Smart Mater Struct 2010;19.

[18] Udd E. Fiber optic smart structure. Proc IEEE 1996;84(1).
[19] Comolli L, Bucca G, Bocciolone M, Collina A. First results from in line strain

measurements with FBG sensors on the pantograph collector of underground
trains. In: Proceedings of photonics Europe Bruxelles, Belgium; 2010.

[20] Huston DR, Fuhr PL, Beliveau JG, Spillman WB. Structural member vibration
measurements using a fiber optic sensor. J Sound Vib 1991;149:348–53.

[21] Chau K, Moslehi B, Song G, Seth V. Experimental demonstration of Fiber Bragg
Grating strain sensors for structural vibration control. In: Proceedings of SPIE
753-64; 2004.

[22] Chuang KC, Ma CC, Liao HT. A point-wise fiber Bragg grating displacement
sensing system and its application for active vibration suppression of a smart
cantilever beam subjected to multiple impact loadings. Smart Mater Struct
2012;21(6). art. no. 065003.

[23] Chuang KC, Ma CC, Wu RH. Active suppression of a beam under a moving mass
using a pointwise fiber bragg grating displacement sensing system. IEEE Trans
Ultrason Ferroelectr Freq Control 2012;59(10):2137–48.

[24] Cheng L, Zhou Y, Zhang MM. Controlled vortex-induced vibration on a fix-
supported flexible cylinder in cross-flow. J Sound Vib 2006;292(1–2):279–99.

[25] Ambrosino C, Diodati G, Laudati A, Gianvito A, Concilio A, Sorrentino A, et al.
Active vibration control using fiber Bragg grating sensors and piezoelectric
actuators in co-located configuration. In: Proceedings of SPIE, art no. 661940;
2008.

[26] Gurses K, Buckham BJ, Park EJ. Vibration control of a single-link flexible
manipulator using an array of fiber optic curvature sensors and PZT actuators.
Mechatronics 2009;19(2):167–77.

[27] Cavallo A, May C, Minardo A, Natale C, Pagliarulo P, Pirozzi S. Active vibration
control by a smart auxiliary mass damper equipped with a fiber Bragg grating
sensor. Sens Actuat A: Phys 2009;153(2):180–6.

[28] Rapp S, Kang LH, Han JH, Mueller UC, Baier H. Displacement field estimation
for a two-dimensional structure using fiber Bragg grating sensors. Smart Mater
Struct 2009;18(2). art. no. 025006.

[29] Kim HI, Kang LH, Han JH. Shape estimation with distributed fiber Bragg grating
sensors for rotating structures. Smart Mater Struct 2001;20(3). art. no. 035011.

[30] Jiang H, Van Der Veek B, Kirk D, Gutierrez H. Real-time estimation of time-
varying bending modes using fiber bragg grating sensor arrays. AIAA J
2013;51(1):178–85.

[31] Resta F, Ripamonti F, Cazzulani G, Ferrari G. Independent modal control for
nonlinear flexible structures: an experimental test rig. J Sound Vib
2010;329(8):961–72.

[32] Ramachandran P, Ram YM. Stability boundaries of mechanical controlled
system with time delay. Mech Syst Signal Process 2012;27(1):523–33.

[33] Peng J, Wang L, Zhao Y, Zhao Y. Bifurcation analysis in active control system
with time delay feedback. Appl Math Comput 2013;219(19):10073–81.

[34] Shao MQ, Chen WD. Active vibration control in a cantilever-like structure: a
time delay compensation approach. JVC/J Vib Control 2013;19(5):674–85.

[35] Hosek M, Olgac N, Elmali H. The centrifugal delayed resonator as a tunable
torsional vibration absorber for multi-degree-of-freedom systems. JVC/J Vib
Control 1999;5(2):299–322.

[36] Qiu ZC, Han JD, Zhang XM, Wang YC, Wu ZW. Active vibration control of a
flexible beam using a non-collocated acceleration sensor and piezoelectric
patch actuator. J Sound Vib 2009;326(3–5):438–55.

[37] Comolli L, Micieli A. Numerical comparison of peak detection algorithms for
the response of FBG in non-homogeneous strain fields. In: Proceedings of
optical fiber sensors (OFS-21), Ottawa, Canada; 2011.

http://refhub.elsevier.com/S0957-4158(13)00150-5/h0005
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0010
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0010
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0015
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0015
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0020
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0020
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0025
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0025
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0080
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0080
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0080
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0030
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0030
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0030
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0035
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0035
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0040
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0040
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0045
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0045
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0045
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0050
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0050
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0055
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0055
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0060
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0060
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0065
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0065
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0070
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0075
http://refhub.elsevier.com/S0957-4158(13)00150-5/h4080
http://refhub.elsevier.com/S0957-4158(13)00150-5/h4080
http://refhub.elsevier.com/S0957-4158(13)00150-5/h4080
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0085
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0090
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0090
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0095
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0095
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0095
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0095
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0100
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0100
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0100
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0105
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0105
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0110
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0110
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0110
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0115
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0115
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0115
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0120
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0120
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0120
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0125
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0125
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0130
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0130
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0130
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0135
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0135
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0135
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0140
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0140
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0145
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0145
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0150
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0150
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0155
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0155
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0155
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0160
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0160
http://refhub.elsevier.com/S0957-4158(13)00150-5/h0160

	Vibration control of smart structures using an array  of Fiber Bragg Grating sensors
	1 Introduction
	2 Optical sensors in vibration control applications
	3 Control techniques
	3.1 Co-located feedback
	3.2 Modal feedback

	4 Experimental setup
	4.1 Placement of sensors and actuators
	4.2 System identification and numerical model

	5 Results and discussion
	6 Conclusions
	References


