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The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost
in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and
transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-
lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature
offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach,
while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like)
is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the
structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body
Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model
and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the
Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body
approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected
simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To
better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed
parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations
and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost
design. Furthermore, a case study for a large and flexible space structure in Halo orbits around one of the Earth-Moon
collinear Lagrangian points, L1 or L2, is discussed to point out some relevant outcomes for the potential implementation
of such a mission.

I. INTRODUCTION

During the last decade of the twentieth century human-
ity posed the bases for prolonged human habitation in
space. In fact, the International Space Station (ISS) pro-
gram achieved marvellous objectives in Low-Earth orbit
and allowed to better understand the effects of spaceflight
on human body. In the meantime, robotic exploration
of Solar System made huge leaps forward as well; many
planets and numerous celestial objects were explored as
never before. At present time, space exploration goals
are increasingly ambitious and, in few years from now,
manned and unmanned space missions will cooperate to
bring mankind further and further away from its cradle.
The path to follow has been already proposed by the Inter-
national Space Exploration Group (ISECG) [1], and one of
the milestones to achieve is the so called Evolvable Deep
Space Habitat: a modular space station in lunar vicinity.

The configuration of the entire space station and its

ideal orbit location still has to be determined, even though
a favourable solution for the latter could be found among
orbits that exist under the Three-Body Problem modelling
approach. Actually, recent studies proposed different Kep-
lerian and non-Keplerian options to operate a space system
in cis-lunar space, and orbits that exist in the Circular
Restricted Three Body Problem (CR3BP) seem the most
promising ones [2]. For example, orbits about one of the
Earth-Moon collinear libration points, such as EML (Earth-
Moon Lagrangian Point) Halo orbits, have continuous line
of sight coverage for communications and their Earth ac-
cessibility with existing transportation systems is good.
However, also other CR3BP orbit types have appealing
properties, such as the excellent orbit stability of Distant
Retrograde Orbits (DRO) or the satisfactory ease of access
from the Moon of Near-Rectilinear Orbits (NRO). In this
paper, all the aforementioned families of orbits are con-
sidered and analysed, but greater attention is dedicated to
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libration point Halo orbits, both with regular amplitude
(Halo) or with large amplitude (NRO).

Most of the existing research done in this context is
however founded on dynamical models based on point-
mass dynamics, which is sometimes not sufficient to carry
out accurate analysis when a large space system is con-
sidered. In fact, when the attitude dynamics is coupled
with the orbital motion in a non-Keplerian environment,
the rotational behaviour of the interested body may have
extremely complex evolutions. Nevertheless, under the
chaotic appearance that is typical when more than one
massive body is considered, there could be regular dy-
namical structures that may be exploited to design space
missions, leveraging the attitude dynamics to satisfy very
complicated requirements. For example, naturally periodic
orbit-attitude solutions could enable coarse pointing op-
erational modes for data acquisition or communications
without a relevant control action. Moreover, an important
improvement in pointing accuracy or rendezvous and dock-
ing safety could be obtained knowing the natural attitude
evolution of a spacecraft in complex dynamical environ-
ments. Alternatively, information on attitude instability
can be used to design and drive large slewing manoeuvres.

An additional important aspect, which has rarely been
considered studying the dynamics of a spacecraft in non-
Keplerian orbits, is the influence between the space struc-
ture flexibility and the orbital and attitude dynamics. In
fact, having in mind the structural properties of a ISS-like
space structure, it is reasonable to investigate if it is possi-
ble to assume rigid body dynamics while modelling such
a kind of large space systems. The information gathered
from these analyses can be applied to highlight the validity
range in assuming rigid body motion, to assess true closed
loop stability or effective actuation of an attitude control
systems designed for a large space structure in complex
dynamical environments.

Therefore, there is a legitimized reason to better un-
derstand the coupled interactions between orbital, attitude
and flexible dynamics in non-Keplerian dynamical envi-
ronments, such as the CR3BP regime.

First investigations about attitude dynamics in the re-
stricted three-body problem assumed the spacecraft as ar-
tificially maintained close to the equilibrium points and
only the stability of the motion was considered [3, 4]. Af-
terwards, Euler parameters were introduced to study the
rotational dynamics of a single body located at one of the
Lagrangian point [5]. More recently, other authors focused
their attention to the attitude dynamics of a spacecraft in
the vicinity of equilibrium points, using Poincarè maps
and linear approximations of non-Keplerian orbits [6, 7].

In the last few years, the coupling between orbital and
attitude motion was investigated by Guzzetti considering

planar motion and providing different families of orbit-
attitude solutions [8, 9]. Additional studies conducted
by Knutson explored the full three-dimensional coupled
motion for a multi-body spacecraft in the Earth-Moon
system [10, 11]. Both the two previous authors dedicated
their research works to identify conditions that determine
bounded attitude solutions relative to the CR3BP synodic
frame in non-Keplerian reference trajectories.

Most recently, Colagrossi and other researchers at Po-
litecnico di Milano developed different models to study
fully coupled orbit-attitude motion in three-dimensional
and planar space, with applications to various scientific
and technological objectives [12, 13].

The paper starts presenting a fully coupled model for
orbit-attitude dynamics, which is based on a Circular Re-
stricted Three-Body Problem formulation. The equations
of motion take also into account the most relevant per-
turbing phenomena, such as the Solar Radiation Pressure
(SRP), the fourth-body (Sun) gravity and the variation in
the gravitational attraction due to the finite dimension of
the large space structure. Subsequently, a multiple shooting
algorithm is described and it is used to find solutions that
are periodic in both the orbital and attitude states. More-
over, a method to generate initial guesses for the numerical
boundary value problem solver is presented.

The second part of the research analyses the interactions
between orbit-attitude and flexible dynamics. A distributed
parameters model, based on the Ritz method, is exploited
to simulate the dynamics of a generic slender body un-
dergoing large overall motions. Furthermore, a lumped
parameters model has been developed and compared with
the distributed parameters technique. The two approaches
can be used together to assemble and simulate complex
flexible space structures, because they are developed utiliz-
ing a multi-body formulation.

Lastly, representative solutions are illustrated and dis-
cussed, with particular attention to the case study of a large
and flexible space structure in non-Keplerian orbits around
one of the Earth-Moon collinear Lagrangian points.

II. ORBIT-ATTITUDE DYNAMICAL MODEL

The present orbit-attitude dynamical model is based
on Circular Restricted Three-Body Problem modelling ap-
proach, which consider the motion of three masses m1, m2

and m, where m ⌧ m1,m2 and m2 < m1. m1 and m2

are denoted as primaries, and are assumed to be in circular
orbits about their common centre of mass. The motion of
m does not affect the trajectories of the primaries.

The translational dynamics of m is conveniently ex-
pressed in a rotating reference frame, S, which is called
synodic frame and is shown in figure 1. It is centred at
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the centre of mass of the system, O; the first axis, x̂, is
aligned with the vector from m1 to m2; the third axis, ẑ,
is in the direction of the angular velocity of S, ! = !ẑ;
ŷ completes the right-handed triad. At time t = 0, the
rotating frame S is aligned to the inertial frame I , which
is centred in O and is defined by the axes X̂, Ŷ and Ẑ.

The system can be defined by the mass parameter,

µ =
m2

m1 +m2
,

the magnitude of the angular velocity of S,

! =

s
G(m1 +m2)

r312

,

and the distance between the primaries r12. The equations
of motion are usually normalized such that r12, ! and
the total mass of the system, mT = m1 +m2, are unitary
in non-dimensional units. These units are indicated with
the symbol [nd] in the paper. As a consequence, after
the normalization, the universal constant of gravitation is
G = 1 and the period of m1 and m2 in their orbits about
their centre of mass is T = 2⇡. The location of m1 along
x̂ is �µ, whereas m2 is located at 1 � µ. In the Earth-
Moon system the parameters to normalize the equations of
motion are r12 = 384 400 km, mT = 6.04⇥ 10

24
kg and

T = 2⇡/! = 27.28 d.
The body m is extended, three-dimensional and, in

this section, is assumed to be rigid. Hence, it has six
degrees of freedom: the position of its centre of mass in S,
which is easily described by the position vector rB , and the
orientation of the body reference frame B with respect to
I or S. To define the orientation of one frame with respect
to another, three parameters are the minimal set required,
but in this model the instantaneous orientation of B is
more conveniently described using the four-dimensional
quaternion vector, also known as Euler parameters, as will
be discussed in the following. The body-fixed frame B is
centred at the centre of mass of m, OB , and it is aligned
with the body principal inertia directions, b̂1, b̂2 and b̂3.

The orbital dynamics of the body m has been mod-
elled considering the usual Circular Restricted Three-Body
Problem formulation, valid for point-mass unperturbed
dynamics, plus the contribution of the Solar Radiation
Pressure, the fourth-body gravity and the variation in the
gravitational attraction due to the finite dimension of m,
expressed with the second order term of the force exerted
on a finite dimension body by a particle.

The resulting problem is written in the following nor-
malized scalar form:

fx =

8
><

>:

ẋ = vx

ẏ = vx

ż = vz

(1)

y

m1

m2

m
rB

rB1

rB2O

b1ˆ

b2ˆ

b3ˆ
ˆ

x̂

ẑ Ẑ≡

X̂

Ŷ

Fig. 1: Synodic and Inertial Reference Frames.

fv =

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

v̇x = x+ 2vy�
(1� µ)(x+ µ)

r3
B1

� µ(x� 1 + µ)

r3
B2

+ aSRPx + a4thx + a1x + a2x

v̇y = y � 2vx�
(1� µ)y

r3
B1

� µy

r3
B2

+ aSRPy + a4thy + a1y + a2y

v̇z = � (1� µ)z

r3
B1

� µz

r3
B2

+ aSRPz + a4thz + a1z + a2z ,

(2)
where x, y and z are the Cartesian coordinates of OB

expressed in terms of the synodic reference frame; vx, vy
and vz are the velocity components of the body m in S.
The distances between the centre of mass of m and the two
primaries are respectively rB1 =

p
(x+ µ)2 + y2 + z2

and rB2 =

p
(x� 1 + µ)2 + y2 + z2, as can be easily

noted from figure 1.
The variation in the gravitational attraction due to the

finite dimension of the body, which is represented by the
additional terms a1x , a1y and a1z for the first primary m1,
and by a2x , a2y and a2z for the second primary m2, is due
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to the fact that the resultant gravity force on a particle and
on an extended body are different. When a large space
structure is taken into account, the gravitational attraction
is also dependent from the relative orientation of m with
respect to each primary. In fact, the force exerted on the
extended body by the i-th primary can be computed as a
series expansion:

�i = �Gmmi

r2
Bi

0

@r̂Bi +

1X

j=2

Gji

1

A , (3)

where Gji is a collection of terms of j-th degree in ⇢/rBi :
⇢ is the distance of a generic point of m with respect to
the centre of mass, OB , and r̂Bi is the unit vector directed
from the i-th primary towards OB . The series expansion
in equation (3) is valid and converges for a body that is
small compared to the distance from the primary, such that
⇢/rBi ⌧ 1. Obviously, the first element in the bracket
is the usual point-mass contribution and it is already in-
cluded in the nominal CR3BP equations, which are written
in the first rows of each right-hand side of equation (2).
Therefore, the variation in the gravitational attraction due
to the finite dimension of the body is determined by the
summation of terms of j-th degree. In particular, limiting
the expansion at the second degree, G2i is given by:

G2i =
1

mr2Bi

�
3
2 [tr(I)� 5r̂Bi · I · r̂Bi ] r̂Bi + 3I · r̂Bi

 
, (4)

where I is the body inertia tensor about the centre of mass
[14]. This equation is computed at each integration step,
knowing the position and the orientation of the body m

with respect to each primary. In particular, the attitude
dynamics is needed to find the direction cosines of the
body reference frame B relative to a frame Ai, which has
the first axis aligned as r̂Bi and the other two axes form
a right-handed orthogonal coordinate frame: the second
and third axis of Ai are chosen to be mutually perpendic-
ular and orthogonal to r̂Bi and to ẑ. In general, G2i is
not parallel to r̂Bi and the resultant gravity force does not
align with the vector from the primary to the body centre of
mass. The acceleration term that is representing this vari-
ation can be obtained from equation (4) and equation (3),
normalized for the CR3BP formulation and inserted in
equation (2) through a1x,y,z and a2x,y,z , respectively valid
for the first and the second primary. These terms are not
particularly relevant for small bodies when compared to
other perturbing phenomena, such as the SRP or the Sun’s
gravity. But, when the dynamics of a large space structure
is investigated, they should be considered together with the
additional perturbing terms to run accurate analyses. For
example, for a ISS-like spacecraft orbiting around L1, their
contribution is only 3 to 4 orders of magnitude smaller than

the one determined by the other perturbations considered
in this investigation.

The presence of the Sun is another important aspect
that should be considered, especially when an accurate
model to propagate the motion at a significant distance
from any primary gravitational attractor is sought. In this
model, the Sun is included both with its gravitational effect
and its radiation contribution. In this regards, the model
is maintained within the Earth-Moon synodic frame but
the position of the Sun is computed in the inertial frame
I , exploiting an ephemeris model contained in the SPICE
Toolkit by NASA / JPL. For this purpose, the frame I is
centred in the Earth-Moon barycentre, O, as previously
introduced, and it is assumed to be parallel to the Ecliptic
J2000 reference. The latter assumption is quite valid also
considering the definition of the synodic frame S; in fact,
the orbital plane of the Moon is inclined to the ecliptic
by only 5deg and it is possible to choose t = 0 when the
x̂-axis is almost aligned with the Vernal Equinox direction
as seen from the Earth. Therefore, S at t = 0, which is
coincident with I , is approximately aligned to the Ecliptic
J2000 reference used to compute the ephemerides. When
the position of the Sun is known in I , it is straightfor-
ward to transform it in the synodic frame. Afterwards, the
solar radiation pressure contribution and the fourth-body
gravitational effect can be easily evaluated.

The solar radiation pressure is an expression for the
interaction between incoming photons from the Sun and a
surface that is invested by such a flux. The radiation can
interact with a generic body by reflection or absorption,
and since it carries momentum and energy, this interac-
tion generates a pressure that perturbs the dynamics. The
average pressure due to radiation can be computed using:

PSRP =
⇤SRP

c
, (5)

where c = 299 792 458m/s is the speed of light, and
⇤SRP is the flux density of solar radiation at the distance of
the body from the Sun. It can be computed with an inverse
square law, knowing the flux of solar radiation at a certain
location in Space. For example, in the Earth-Moon system
⇤SRP ' 1350w/m

2. The fraction of radiation associated
that can be absorbed, specularly reflected and reflected
with diffusion is expressed by a coefficient of absorption,
ca, diffuse reflection, cd, and specular reflection, cr. The
coefficients must sum to unity, ca + cd + cr = 1, and in
this work they are assumed to have the typical values for
the materials used in the space system. The force that is
generated by the solar radiation pressure interaction can be
computed using the expression for the radiation pressure
on a flat surface; no approximation is made in addition
to the one of discretizing the real body with a series of
flat surfaces, and the self-shadowing effect can be taken
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into account with simple geometrical considerations. For
the i-th body planar surface of area Ai, the solar radiation
force can be expressed as:

�SRPi = �AiPSRP


(1� cr )̂s

+ 2

✓
cr cos(↵i) +

1

3
cd

◆
n̂i

�
cos(↵i)Sh, (6)

where ŝ and n̂i are, respectively, the Body-Sun direc-
tion and the surface normal direction in the body-fixed
frame. The angle ↵ is the angle between the Body-
Sun and the normal to the surface directions, and cos(↵)

can only assume positive values since, if n̂i · ŝ is neg-
ative, the surface is in shadow and is not illuminated
by the Sun. This can be mathematically expressed with
cos(↵i)Sh = max(0, cos(↵i)). Equation (6) is obtained
assuming that the absorbed radiation acts in the Body-Sun
direction, the specularly reflected radiation acts in the nor-
mal to the surface direction and the diffuse radiation acts
in both directions. The whole solar radiation force can
be computed summing up equation (6) for each face that
is included in the model. The resulting acceleration is
normalized for the CR3BP formulation and inserted in
equation (2) through aSRPx,y,z . Similarly, for what con-
cern rotational motion, the solar radiation torque can be
obtained knowing the centroid of each planar face and its
position vector, rAiB

, with respect to the centre of mass,
OB . In fact, the torque contribution of each face is directly
computed as the moment produced by �SRPi about, OB .
The net solar radiation torque, TSRP , is the summation
over all the planar faces and the related angular acceler-
ation, ↵SRP , is normalized and inserted in the attitude
equations that will be discussed in the following.

The fourth-body gravitational effect is determined by
the presence of the Sun, while the gravitational forces of
all the other planets are neglected in this model. The dy-
namics of m is influenced by the gravitational attraction
of the two primaries, which are revolving in circular orbits
around their centre of mass, as described by the first part
of equation (2) written in the synodic frame. However, it
is currently assumed that the whole Restricted Three-Body
System is influenced by the gravity of the Sun and O is
revolving according to the Ephemeris model around the
centre of mass of the Solar System. In order to simplify
the description of the overall motion, the S frame is used
anyhow; when the position of the Sun is gathered from the
ephemerides in I , it is subsequently rotated in S, where
the Earth and Moon have fixed positions and the Sun is ro-
tating clockwise around the barycentre of the Earth-Moon
system. Note that the assumed motions do not satisfy
Newton’s equations but, since it is an enhanced version of
the Bicircular Four-Body Model, previous works showed

that, in some regions of phase space, this model gives the
same qualitative behaviour as the real system [15]. The
fourth-body gravitational force can be computed as:

�S = �GmmS

✓
r̂BS

r2
BS

� r̂OS

r2
OS

◆
, (7)

where mS is the mass of the Sun, r̂BS and rBS are re-
spectively direction and magnitude of the vector from the
Sun to the centre of mass of the body, OB , while r̂OS and
rOS are those related with the vector from the Sun to the
barycentre of the Earth-Moon system, O. The previous
equation is composed by two terms: the first one models
the effect of the Sun on the spacecraft, while the second
one models the effect of the fourth-body on the Earth-
Moon system. The latter is needed because the frame I

is not really inertial, having its origin at the barycentre of
Earth and Moon. The acceleration on m can be directly
obtained from equation (7) and, after the normalization for
the CR3BP formulation, it can be inserted in equation (2)
through a4thx,y,z . Particular attention is paid to numeri-
cal difficulties that might arise in computing equation (7),
as typically discussed in the fundamental astrodynamics
literature. For what concern rotational dynamics, the grav-
itational effect of the Sun is not uniform and determines a
gravity gradient torque on a non-symmetric body, which is
also present if the gravitational influence of the two main
primaries is considered, as will be explained in the follow-
ing. The effect of the gravity gradient on the rotational
dynamics of m can be expressed in the body-fixed frame,
B, as:

TS =
3GmS

r3
BS

0

@
(I3 � I2)cS2cS3

(I1 � I3)cS1cS3

(I2 � I1)cS1cS2

1

A , (8)

where cS1 , cS2 and cS3 are the direction cosines of the
Sun-Body direction, r̂BS , in principal inertia axes; and I1,
I2 and I3 are the principal moments of inertia of m. The
resulting angular acceleration, ↵4th, is inserted, after the
normalization, in the attitude equations of motion that will
be examined next.

The attitude dynamics of m allows to represent the
orientation of the body reference frame B with respect to
a different frame. In the present model, the equations of
rotational motion are written in the inertial frame, I , and
the orientation of B with respect to S is computed with
a simple frame transformation. The quaternion vector is
used as attitude parameter and is denoted as:

q = [q1, q2, q3, q4]
T
, (9)

The components of the quaternion vector must satisfy the
constraint:

q
2
1 + q

2
2 + q

2
3 + q

2
4 = 1; (10)
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therefore, just the first three components, [q1, q2, q3]
T,

which identify the Euler axis of rotation, have to be de-
fined to have a complete set of initial conditions. The
fourth component, q4, which gives information about the
Euler angle, is automatically defined by the constraint in
equation (10). The sign ambiguity that exist when q4 is
obtained from the quaternion constraint can be solved giv-
ing an initial condition for the sign of q4 and enforcing
the sign continuity during the numerical integration. The
attitude parameters relate two reference frame and in this
paper they are indicated as C•D, where C and D are two
generic reference frames and • is a generic attitude pa-
rameter. For example, the notation IqB means that the
quaternion relates the frame B with respect to the frame I .
Quaternions have been used as attitude parameters because
they have no singularity condition and just three compo-
nents are sufficient to define the attitude of m, thanks to
equation (10). Moreover, only the analysis of the quater-
nion subspace allows to highlight certain features of the
considered dynamical system, as will be discussed in the
following.

The fundamental rules of attitude kinematics allow the
propagation the rotational motion from the attitude dynam-
ics. In fact, it is possible to evaluate the time rate of change
of the quaternion vector from the body angular velocity as:

fq =

8
>>><

>>>:

q̇1 =
1
2 (!1q4 � !2q3 + !3q2)

q̇2 =
1
2 (!1q3 + !2q4 � !3q1)

q̇3 =
1
2 (�!1q2 + !2q1 + !3q4)

q̇4 = � 1
2 (!1q1 + !2q2 + !3q3),

(11)

where !1, !2 and !3 are components of the angular veloc-
ity of the body relative to I and expressed in the body-fixed
reference frame B, I!B; q1, q2, q3 and q4 are the quater-
nion components of IqB . The angular velocity can be
obtained integrating the equations for the rotational dy-
namics: the Euler equations of motion.

Euler equations includes the gravity torques exerted by
the two primaries, which can be computed similarly to
what has been done for the fourth body in equation (8).
Moreover, the angular accelerations due to the Solar Radia-
tion Pressure and to the gravity gradient of the fourth-body,
Sun, are included in the model. They are obtained from
the related torques described before and normalized for
the CR3BP formulation. The resulting Euler dynamical

equations for the attitude dynamics are expressed as:

f! =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

!̇1 =
I3 � I2

I1

✓
3(1� µ)

r5
B1

l2l3+
3µ

r5
B2

h2h3

�!2!3

◆
+↵SRP1 + ↵4th1

!̇2 =
I1 � I3

I2

✓
3(1� µ)

r5
B1

l1l3+
3µ

r5
B2

h1h3

�!1!3

◆
+↵SRP2 + ↵4th2

!̇3 =
I2 � I1

I3

✓
3(1� µ)

r5
B1

l1l2+
3µ

r5
B2

h1h2

�!1!2

◆
+↵SRP3 + ↵4th3 ,

(12)
where li are the direction cosines in the reference B of the
unit position vector from m1 to m, r̂B1 ; hi are those re-
lated with r̂B2 ; ↵SRP1,2,3 and ↵4th1,2,3 are the components
of the angular accelerations introduced before, respectively
due to the SRP and to the presence of the Sun.

The contribution of solar radiation torque and fourth-
body gravity gradient torque is in general few orders of
magnitude smaller than the gravity gradient torques gen-
erated by the two primaries. However, their effect should
not be neglected to run accurate simulations, especially
when dealing with large space structures in lunar vicinity.
For example, in a typical L1 orbit, the Earth and the Moon
generate a gravity gradient torque respectively in the order
of 10�4

Nm and 10
�3

Nm, while the fourth-body effect
is around 10

�6
Nm. For what concern the solar radiation

pressure, the magnitude of the torque depends also on the
dimensions and the geometry of the spacecraft itself, but
for a ISS-like structure the magnitude of this perturbing
term is also in the order of 10�6

Nm.

Equations (1), (2), (11) and (12) complete the whole set
of coupled equations of motion that is needed to describe
the orbit-attitude dynamics of a rigid body in a Circular
Restricted Three-Body Problem environment plus the pres-
ence of the gravitational attraction from the Sun and the
Solar Radiation Pressure. Moreover, including the second
order term of the force exerted on the finite dimension body
by a point-mass, the model is not limited to small rigid
bodies and it can be applied to any kind of spacecraft in the
Earth-Moon system. The complete set of non-linear differ-
ential equations will be denoted as f = {fx, fv, fq, f!}.
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III. ORBIT-ATTITUDE PERIODIC MOTION

The equations of motion presented in the previous sec-
tion do not have an analytical solution space, as it is gener-
ally true for the dynamics propagated in a CR3BP environ-
ment. Therefore, equations (1), (2), (11) and (12) have to
be numerically integrated to analyse the motion evolution
of m. However, the solutions are extremely sensitive to the
set of initial conditions and a numerical targeting algorithm
is needed, if one wants to highlight a particular behaviour
or obtain a certain final condition. A very common method
to find specific solutions in non-Keplerian environments is
employed in this research, following the idea introduced in
the last decades of the twentieth century and presented also
in the work of Guzzetti [8]. In fact, a multiple shooting
scheme, together with a multi-variable Newton-Raphson
solver, is exploited to find orbit-attitude periodic solutions.

The idea of this numerical method is founded on the
possibility to propagate the dynamics in the vicinity of
reference solution. In fact, considering a generic non-
linear set of equations of motion and a reference so-
lution, x̄, it is possible to perturb the reference initial
state vector, x̄0, by a small quantity, �x0. Then, the lin-
ear evaluation for the behaviour of the variation, �x =

x(x̄0 + �x0, t)� x̄(x̄0, t), relative to the reference motion
can be obtained using the Jacobian of the original non-
linear system, J(t) = @f

@x , where the state vector is com-
posed by: x = [x; y; z; vx; vy; vz; q1; q2; q3;w1;w2;w3].
Note that only three components of the quaternion have to
be defined to completely define the system f . In fact, the
first-order variational equation can be written as:

�ẋ = J(t)�x. (13)

At this point, the effect of variations in the initial state on
�x can expressed in a linear sense as:

�x =

✓
@x

@x0

◆
�x0. (14)

The linear differential relationship between initial and fi-
nal state, @x

@x0
, which is known as State Transition Matrix

(STM) and is denoted as �(t, t0), can be related to a first-
order differential equation governing its evolution. In fact,
from equations (13) and (14) after some manipulations, it
is possible to write:

�̇(t, t0) = J(t)�(t, t0), (15)

where the elements of the matrix �(t, t0) represent the
partial derivatives of the state, x, at time t with respect
to the initial state, x0, at time t0 that are integrated si-
multaneously with the equations of motion to produce the
STM at any time along the integrated trajectory relative to
a reference solution. Obviously, a variation in the initial

state vector can only influence itself if the equations are
not integrated and just evaluated at t = t0. Hence, the ini-
tial condition for the STM in equation (15), is the identity
matrix:

�(t0, t0) = I. (16)

In order to integrate equation (15), the time-variant
Jacobian of the system must be computed. It contains the
partial derivatives of the system f with respect to the state
vector x:

J(t) =

2

66666666664

@fx
@xB

@fx
@vB

@fx
@IqB

B

@fx
@I!B

B

@fv
@xB

@fv
@vB

@fv
@IqB

B

@fv
@I!B

B

@fq
@xB

@fq
@vB

@fq
@IqB

B

@fq
@I!B

B

@f!
@xB

@f!
@vB

@f!
@IqB

B

@f!
@I!B

B

3

77777777775

, (17)

where xB , vB , IqB

B
and I!B

B
are the elements of the state

vector x, respectively related with the orbital position, the
orbital velocity, the attitude parameters and the angular
velocity of the body m. It must be noted that for the cou-
pled orbit-attitude dynamics without perturbations @fx

@xB
,

@fx
@IqB

B
, @fx
@I!B

B
, @fv
@IqB

B
, @fv
@I!B

B
, @fq
@xB

, @fq
@vB

and @f!
@vB

are equal
to null matrices. However, when the previously introduced
perturbations are included, the orbital motion is directly
influenced by the orientation of the body and the partial
@fv

@IqB
B

is not equal to zero anymore.
The coupled orbit-attitude motion is described by 13

equations of motion contained in the system f . Still, having
in mind the constraint equation (10), only 12 equations
are actually independent, because one of the kinematic
relations in equation (11) is not necessary to completely
describe the dynamics of the system: the fourth component
of the quaternion vector can be derived from the Euler
parameters constraint. Anyway, the modification of the
system of differential equations f is not practical and it is
maintained as described before, but the Jacobian and the
STM are reduced to a 12 by 12 matrix, relating only the
independent variables. This is done expressing the partials
of the Jacobian relative to the quaternions as:

dfi
dqj

(q1, q2, q3, q4(q1, q2, q3)) =
@fi
@qj

� qj

q4

@fi
@q4

, (18)

which can be derived from the variational expression of
equation (10). Therefore, considering the 13 equations of
motion and the 12 ⇥ 12 linear differential relationships
between initial and final state, there are 157 differential
equations to be integrated in order to find orbit-attitude
periodic solutions.
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The Jacobian in equation (17) has been derived ana-
lytically for the coupled orbit-attitude dynamics without
perturbations. The analytical expression of the partials has
been obtained also for the variation in the gravitational
attraction due to the finite dimension of the body. The
effort in deriving such analytical expressions is justified by
a relevant reduction in the computational cost of the algo-
rithms that exploits that matrix. The terms in the Jacobian
due to the Solar Radiation Pressure and the Sun gravity are
instead computed numerically, since the presented model
uses the ephemeris position of the Sun. In practice, when
the terms related with the presence of the Sun are included,
the State Transition Matrix is numerically obtained ap-
plying a small perturbation with respect to a reference
initial condition, then the finite difference between the ref-
erence and the perturbed final state is available and the
terms in the matrix can be numerically computed. This
operation is done for each partial and the complete STM
is finally assembled, even though it is not the real State
Transition Matrix but just a numerical approximation. To
assess the accuracy of this numerical STM, the result is
continuously matched with the analytical STM without
perturbations. A completely analytical Jacobian and State
Transition Matrix with perturbations could be possible,
without too much complexity, reducing the fidelity of the
model for the position of the Sun, for example employing
the original Bicircular Four-Body system.

With the availability of the State Transition Matrix, an
algorithm able to find periodic solutions in both the orbital
and attitude state can be implemented. In fact, it is pos-
sible to obtain a periodic motion in the rotating reference
frame by iteratively correcting a reference path, but a good
initial guess is needed. In this work, the targeting scheme
is based on a multiple shooting strategy, which is very
common in modern astrodynamics for the computation
of periodic orbits. The idea is to find a solution that is
continuous between the final and initial states in both the
translational and rotational components, which is a typical
two-point boundary value problem. However, the pre-
sented approach solves many Initial Value Problems where
the different initial states are iteratively corrected, with
a Newton approach, until the constraints at given patch
points are satisfied, within a certain tolerance. In practice,
the trajectory is discretized in N patch points, which are
associated with N � 1 arcs. In the orbit-attitude coupled
problem, each i-th patch point is the 12-dimensional state
vector, xi = [xBi ;vBi ;

I qB

Bi
;
I !B

Bi
]. The first and last

patch points are respectively the initial and final conditions.
Each arc has the same time of flight, Ta, and therefore the
complete solution has time of flight Tt = (N � 1)Ta.

The problem has a free variables vector that includes
the state vector in each patch point, plus the time of flight

of a single arc:

⌫ = [x1; . . . ;xi; . . . ;xN ;Ta]. (19)

Hence the dimension of the problem is n = 12N + 1 and
the free variables vector has to be corrected to satisfy a
set of m given constraints, collected in the vector µ. The
periodic solution is identified as a set of ⌫̄ that satisfies the
constraint equations:

µ(⌫̄) = [µ1(⌫̄); . . . ;µm(⌫̄)] = 0. (20)

This is done expanding the constraint function µ about an
initial guess ⌫0 in a Taylor series to the first order:

µ(⌫) ' µ(⌫0) + Jµ(⌫0)(⌫ � ⌫0), (21)

where Jµ is the Jacobian of the constraint function with
respect to the free variables ⌫. Equation (21) is set equal
to zero and iteratively solved for ⌫̄.

Usually there are more free variables than constraint
equations and so a minimum norm solution is exploited to
produce the updated free variables vector. In fact, at the
k-th iteration, the new solution is found as:

⌫k+1 = ⌫k � Jµ(⌫k)
T
⇥
Jµ(⌫k)Jµ(⌫k)

T
⇤�1

µ(⌫k). (22)

This equation is recursively applied to update the free
variables vector. When the equation (20) is solved within
a certain numerical tolerance, the algorithm is stopped and
the current solution ⌫k is the desired periodic solution ⌫̄.

In this research, the constraint vector µ is strongly re-
lated with the desired coupled orbit-attitude behaviour. The
multiple shooting algorithm iteratively finds a solution that
is periodic in both attitude and orbital state, has internal
continuity at patch points between the different arcs and is
sufficiently close to the desired initial guess. The period-
icity is sought in the rotating synodic reference, but note
that the attitude dynamics is expressed in the inertial frame.
Hence, the quaternion IqB has to be transformed in the
synodic reference, SqB , prior to enforce periodicity. There
is no need to transform the angular velocity of the body m

in the synodic reference, because the difference between
the angular velocity measured in the inertial frame and in
the rotating one is just a constant offset, which is not an
issue for what concern periodicity: the periodicity con-
straints for the angular velocity can be expressed in both
rotating and inertial frames. The orbital states do not need
any addition modification since they are already expressed
in S. Moreover, only 5 translational states have to be peri-
odic; the remaining one is implicitly continuous because
of the existence of an integral of motion, which is known
as Jacobi constant. The presented coupled orbit-attitude
dynamical model preserves this constant and the whole
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algorithm is continuously assessed checking its value. One
additional constraint is needed to fix a coordinate in the
trajectory and phase all the orbits of a given family. There-
fore, the constraint vector which is used in the algorithm
is:

µ(⌫) =

2

66666666666666666666666664

(x1)Ta � x2
...

(xN�1)Ta � xN

xN � x1

zN � z1

vxN � vx1

vyN � vy1

vzN � vz1

y1

SqB

BN
�S qB

B1

I!B

BN
�I !B

B1

3

77777777777777777777777775

, (23)

where the continuity at patch points, the periodicity of 5
orbital states, the phasing of the family and the periodicity
of attitude states are respectively listed. The result is a total
of m = 12N constraint equations composing the vector
µ, which has to be nulled to find a periodic orbit-attitude
solution.

A single periodic solution can be used to generate a
dynamical family of other periodic solutions. The contin-
uation process needs a separate initial guess, which can
be obtained just modifying one parameter to the existing
periodic solution or expanding in the direction of the null
space of the State Transition Matrix computed over one
orbital period of the reference solution (Monodromy Ma-
trix). The latter is a well-known continuation scheme that
is called pseudo-arclength continuation and is used in this
investigation.

The search for periodic solutions needs an initial guess
that is sufficiently close to the desired motion. Existing
literature presents several methods able to provide approxi-
mation of the desired coupled dynamics, but many of them
tries to find the geometry of the spacecraft that makes pe-
riodic a certain set of initial conditions. In this research
a different method has been developed: starting from a
given mass distribution of the body and, therefore, fixing
its inertia parameters, the initial guess is generated with
two distinct global optimization techniques, which are ap-
plied one after the other. In this way, it is possible to find
a certain periodic orbit-attitude solution for a given mass
distribution, instead of studying which is the body that can
have a periodic motion on given orbit-attitude dynamics.
Moreover, this method is faster and less demanding in
computational resources than a standard search of periodic

behaviours in a Poincarè map. The mass distribution of the
body can be mathematically defined from the moments of
inertia of the spacecraft or a combination of them, as will
be explained afterwards.

The developed method begins with the definition of
the inertia properties of the body, then the family and the
period of the non-Keplerian orbit is introduced to identify
the initial conditions for periodic orbital dynamics. At
this point, the algorithm asks for the angular rate and the
initial orientation of the attitude dynamics; these values do
not have to generate a periodic motion, but they bind the
inspection in a certain region of the attitude subspace. This
step is fundamental to drive the algorithm in the desired di-
rection and a bit of knowledge of the considered dynamical
environment is necessary in order to have a fast conver-
gence of the method. Next, the search for the initial guess
is started, first with a genetic algorithm that optimizes
the orbit-attitude initial conditions, then a pattern search
algorithm refines the output of the genetic optimization.
The goal of the two optimization techniques is to reduce
the sum of the difference in all the orbit-attitude states,
x, at the starting point and after one period: periodicity
error. The search for the initial guess is stopped when the
periodicity error is below a given tolerance, which is low
enough to allow the convergence of the multiple shooting
Newton-Raphson solver.

The variables of the genetic algorithm are the 6 initial
attitude states, while the initial orbital states are fixed and
related to a given periodic orbit. The population is com-
posed by 150 individuals, and it is initially generated with
uniform distribution around a given initial guess. This
user defined starting point, together with the bounds for
the variables, confines the search space within the attitude
subspace. Between two consecutive generations 5 best
individuals are maintained and the crossover fraction of
the remaining individuals is 70%. The maximum number
of allowed generations is 175 and the stopping criteria are
met when the periodicity error goes below 5⇥ 10

�2
nd.

Then, a pattern search algorithm is started from the best
solution found by the genetic algorithm, which has only to
be refined. In fact, the tolerances for the search are very
tight and the feasible poll points remains in the vicinity
of the output of the previous optimization step. This fur-
ther optimization step usually reduces the periodicity error
between 1⇥ 10

�2
nd and 1⇥ 10

�3
nd, allowing a very

fast convergence of the multiple shooting algorithm. On
a 2.5GHz quad core processor that runs the optimization
algorithms in parallel, the initial guess is usually found in
about 20 s, if good starting point and bounds are provided.
The search needs few minutes in the worst conditions,
which are caused by highly sensitive orbital families (e.g.
NRO) and random starting point without bounds. Then,
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on the same processor, the multiple shooting algorithm
usually runs in about 10 s to reduce the periodicity error
down to 1⇥ 10

�10
nd.

The developed method is based on global optimization
techniques to search for an initial guess with heuristic
strategies. The focus has not been directed on a particular
optimization technique and the genetic algorithm has just
proven to work well. No comparison with other heuris-
tic optimization techniques has been carried out. In the
same way, the refinement step accomplished by the pattern
search method has just resulted in a faster convergence of
the Newton-Raphson correction scheme. Further investiga-
tions might be of interest to compare different optimization
methods in order to find the best ones in terms of computa-
tional speed and quality of the initial guess.

In figure 2 an initial guess is confronted with the rela-
tive periodic orbit-attitude solution for an example Halo
orbit. From the picture, it is possible to understand that
the initial guess solution must be very close to the periodic
one, in order to have a good and fast convergence of the al-
gorithm. Moreover, focusing on the coupled orbit-attitude
periodic dynamics, it is evident that the passage close to
the Moon generates a relevant angular acceleration, which
is obviously due to the intense gravity gradient action ex-
erted by the second primary on the body m. The orbit
reported in figure 2a is a L1 Halo with period of 10.5 d;
the distribution of mass for m is the one of a disk-like body
with ratio between the maximum moment of inertia (Imax)
and the minimum one (Imin) equal to 1.5. The initial con-
ditions for the genetic algorithm are set to find an initial
guess close to a simple spin dynamics around the body axis
b̂3, with the body reference frame and the inertial frame
aligned at t = 0. The obtained initial guess is shown in
figures 2a, 2c and 2e, while the periodic solution, output
of the multiple shooting Newton-Raphson correction algo-
rithm, is reported in figures 2b, 2d and 2f. The quaternions
are shown as computed in the rotating synodic reference
and, in order to simplify the notation, the quaternion SqB

has been denoted as qr in the plots. From figure 2d, it is
possible to see that in the reported dynamics, the body m

is just librating and performs no overall rotation in S. The
results shown in figure 2 have been obtained without the
additional perturbing terms in the dynamical model. In
table 1 the numerical values of the quaternion shown in
figure 2d are reported for t = 0, t = Tt/2 and t = Tt, in
order to accurately asses the periodicity of the solution and
the fulfilment of the constraint equation (10).

Many other periodic solutions, for any kind of planar
and spatial family of orbits in the CR3BP, were gener-
ated exploiting the presented multiple-shooting algorithm
applied to the coupled orbit-attitude model. An example
periodic solution is shown in figure 3 for a Near-Rectilinear

Table 1: Numerical Values of Periodic Orbit-Attitude Dy-
namics Quaternions (cf. figure 2d).

qr

t = 0 [+0.000197,�0.020475,�0.009622,+0.999744]

t = Tt/2 [�0.000797,+0.061167,�0.009594,+0.998081]

t = Tt [+0.000197,�0.020475,�0.009622,+0.999744]

Orbit. In this case, the period of the orbit is around 8.5 d

and the mass distribution is the same that has been used to
generate the Halo of figure 2. This case is particularly rep-
resentative for all the NRO, since it shows the huge angular
acceleration that exists during the passage very close to the
Moon. Here, the gravity gradient influence of the second
primary, already noted for the Halo periodic solution, is ex-
tremely emphasized and determines this typical behaviour
for NRO. This aspect will be also discussed in a following
section, but now is already possible to highlight that such
an attitude evolution may pose problems for the structural
integrity of a spacecraft orbiting in this class of orbits; a
real extended space structure may experience difficulties
in bearing the abrupt angular velocity variation shown in
figure 3c. However, the large angular acceleration due to
the Moon may be also effectively exploited to drive and
facilitate large attitude slewing manoeuvres.

Figure 4 shows different periodic orbit-attitude dynam-
ics in L1 Lyapunov Orbits, which were found to be re-
markably sensitive to out-of-plane perturbations. In fact,
the perturbations due to the Sun have been neglected and
the orbit-attitude motion has been constrained on the x-y
plane. Additional investigations for Sun-perturbed Lya-
punov orbits, within the employed ephemeris model, will
have to be carried out, but an orbit control action may
be necessary. However, the presented naturally periodic
solutions reports three dissimilar rotational motions for a
disk-like spacecraft, with moment of inertia ratio equal
to 5. They are related to Lyapunov Orbits with period
equal to 12.1 d, 14.1 d and 18.88 d. The attitude dynamics
analysed in the quaternion subspace allows to point out
and uniquely characterize the various dynamical families,
which have different behaviours according to the orbital
period and, therefore, the energy of the orbit. These results
can be explained, as already highlighted by Guzzetti [9],
considering the dynamical bifurcations and the changes in
the stability of the motion along the family. With respect to
the previous studies, the presence of the second order term
of the gravity exerted on a finite dimension body slightly
modifies the results of the current research work.

The previous results identify a strong connection be-
tween the size of the orbit and the associated periodic
attitude motion, which is quite typical for this class of
problems. Looking at the differences between the three
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Fig. 2: Initial Guess and Periodic Orbit-Attitude Dynamics. (EML1 Halo Orbit: Tt = 10.5 d - Imax/Imin = 1.5).
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Fig. 3: NRO Orbit-Attitude Periodic Dynamics. (EML1
NRO Orbit: Tt = 8.5 d - Imax/Imin = 1.5).

different attitude families in figures 4b to 4d, it is evident
that for a certain energy level of the orbital motion there
exists a single family of attitude solutions. In fact, in
the vicinity of each orbit shown in figure 4a, the allowed
periodic rotational solutions share similar dynamical prop-
erties, such as the stability level or the quaternion subspace
shape. Obviously, a minor change in the orbit would result
in a small variation in the rotational motion. However, if
the energy gap between two similar orbits is large enough
to move across a bifurcation point, the attitude dynamics
could have the features of distinct dynamical families. This
example is representative of the coupling between orbital
and attitude dynamics in non-Keplerian environment, but
further investigation is warranted to understand the weight
of this dynamical pairing.

An additional family of very important and useful pla-
nar orbits is the DRO family. DRO are remarkably stable in
the long-term and can be reached at a reasonable cost. For
these reasons, they may be exploited for many interesting
applications around the Moon. An example of DRO family
is reported in figure 5 for a rod like mass distribution with
ratio between maximum and minimum inertia moments
equal to 2.5. The different elements of the family share the
same orbit, which has a period of 14 d, but they differ for
the number of overall rotations of m in the synodic frame.
In fact, the attitude dynamics in figure 5a shows 2 overall
clockwise rotations in S, while figure 5b and figure 5d
perform just one rotation per orbital period, respectively
clockwise and counterclockwise. A particular scenario is
represented by figure 5c, where the body is not spinning
in S, but it is just librating about the equilibrium condi-
tion. Numerous periodic solutions of a single dynamical
family with diverse spinning conditions open to a wide
set of operational opportunities. In fact, the distinct atti-
tude alternatives allow to exploit a single orbit, which may
be constrained from several requirements coming from
the mission design, for various operational phases. For
example, the librating solution could facilitate the telecom-
munication subsystem, while the fast spinning one can be
exploited to reduce the station-keeping effort, since a spin-
ning platform behaves better, with respect to the librating
configuration, in terms of perturbations counteracting.

IV. FLEXIBLE DYNAMICS

At this point of the research, the rigid body dynamics
assumption is discarded and the body m is assumed to be
flexible. Therefore, the effects of the previously shown dy-
namical evolutions on the structural dynamics of the space
system have been studied. The outcomes of this investiga-
tion may be used to define the validity range in assuming
rigid body motion while studying the dynamics of a large
space structure in complex dynamical environments.
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Fig. 4: Family of Lyapunov Orbit-Attitude Periodic Dy-
namics - Quaternion subspace, components 1 and 2.
(EML1 Lyapunov Orbits: Tt1 = 12.1 d, Tt2 = 14.1 d

and Tt3 = 18.88 d - Imax/Imin = 5).
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Fig. 5: Family of DRO Orbit-Attitude Periodic Dynamics,
Different Spinning Velocities - Quaternions with respect
to time. (EM DRO Orbit: Tt = 14d - Imax/Imin =

2.5).
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Fig. 6: Distributed Parameters Model (DPM).

This section is founded on the pioneering work of Kane,
who studied the dynamics of flexible structure undergoing
large overall motions [16]. In fact, a non-linear strain mea-
sure and a change of coordinates allow to automatically
include numerous motion-induced effects, such as cen-
trifugal stiffening or vibrations induced by Coriolis force,
which are usually neglected by the canonical structural
techniques based on linear Cartesian modelling approaches.
A quadratic form of the strain energy helps to obtain an
accurate model, which produces exact simulations and can
be easily implemented for numerical computation through
a Rayleigh-Ritz method to approximate the involved vari-
ables. The theoretical foundation of the developed model
has been gathered from the work of Yoo [17] and other
authors at the Aerospace Science and Technology Depart-
ment of Politecnico di Milano [18]. The development of
this work is a distributed parameters model of a flexible
structure attached to the centre of mass of the body m

under the effects of the coupled orbit-attitude dynamics
in CR3BP, displayed in figure 6 for the simple case of
the cantilever beam. This model allows further extensions
and different beams or plates may be attached to the same
rigid body with minor modifications of the algorithm. All
the non-linear strain terms due to the large motion of the
flexible structure are retained, while the inertia forces are
linearized to obtain the final equations of motion for the
present modelling method, which can also be referred as
foreshortening approach.

The distributed parameters technique is then exploited
as a reference for a less refined but effective model, which
is denoted in this paper as lumped parameters model. The
lumped parameters model produces less precise results,
but is less expensive in terms of computational load and
allows an easier and faster investigation of space struc-
tures composed by many elements. In fact, both models
for flexible dynamics have been developed exploiting a
multi-body formulation and several simple elements can
be interconnected to represent the structural dynamics of
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ˆuD
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k

Fig. 7: Lumped Parameters Model (LPM).

a complex spacecraft. However, if the overall structure
is composed by numerous distributed parameter elements,
the time to simulate a system is excessively long.

The lumped parameters technique, with reference to
figure 7, is based on rigid rods, lumped masses and springs
to represent the inertia and flexibility properties of a given
extended flexible body. An algorithm has been developed
to automatically write the analytical equations of motion
of the system, once the list of the various elementary struc-
tural components and the mutual connection between them
have been specified. The different elements are assembled
exploiting rotation matrices between the local coordinate
systems of each part of the structure and satisfying the
imposed constraints. The resulting dynamic equations are
obtained with a Lagrangian approach, starting from the
Lagrangian function of the multi-body system.

The result reported in figure 8 shows a three-
dimensional spin-up motion of a 10m cantilever beam
in free-space without any external force or torque. The
beam is attached to a rigid base, with an angle of 45deg
with respect to the spinning axis of the support, which un-
dergoes a prescribed spin-up motion characterized by the
parameters stated in the caption of figure 8. Together with
other simulations, the one discussed here has been used to
validate the model with respect to the existing results of
Yoo [17].

In figures 8 to 10 the dimensional units have been used
in place of the non-dimensional ones, which are typically
related with the CR3BP formulation. This change of units
is due to the relationship of this part of the research with
structural dynamics and its typical quantities. In fact, in
this section the characteristic lengths are in the order of
10

1 � 10
2
m and the characteristic times in the order of

10
1
s; hence, the use of non-dimensional units is not handy.

When the multi-body equations of motion are available,
both for the distributed and the lumped parameters model,
they are coupled with the periodic orbit-attitude dynamics
transformed in the inertial non-rotating reference, and the
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Fig. 8: Lumped and Distributed Parameters Model Valida-
tion. (Cantilever beam with lb = 10m, mb = 12 kg and
elastic modulus Eb = 71GPa. Spin-up motion: steady
state angular speed ⌦s = 3 rad/s and time constant
Ts = 15 s, as defined by Yoo [17]).

flexible dynamics is propagated. However, the coupling is
currently not full, since the effect of the flexible dynam-
ics on the orbit-attitude motion is neglected in the present
model. One example result is shown in figure 9, where the
tip displacements of a distributed parameter beam aligned
with the principal inertia axes of m is plotted as a func-
tion of time. The coupled orbit-attitude dynamics that has
been taken as input is related with a periodic solution simi-
lar to the one represented in figure 2. The displacements
u1, u2 and u3 are labelled according to figure 6. Note
that the displacements are large when compared to real
conditions, but they are due to the characteristics of the
selected beam, which have been chosen to highlight the
effects of flexibility. In fact, the beam is 100m long, it has
a square cross-section and it has the physical properties of
a generic aerospace aluminium alloy (⇢Al = 2800 kg/m

3

and EAl = 71GPa). The size of the cross-sectional area
has been derived imposing a target first bending natural
frequency in the order of the lowest frequency of the In-
ternational Space Station, approximately equal to 0.06Hz.
The flexible dynamics is therefore characterized by a quasi-
static deformation due to the overall rotational motion, plus
a superposition of the natural frequencies of the flexible
structure. In fact, the dynamics in figure 9 is composed
by a slow overall deformation and a fast sinusoidal oscilla-
tion with period of approximately 16 s, corresponding to
the first bending natural frequency. The resulting flexible
behaviour is due to a complex interaction with the full
orbit-attitude dynamics in the perturbed CR3BP.

The presented result is in agreement with other simula-
tions that have been performed: a strong coupling between
orbit-attitude dynamics and flexible dynamics seems to be
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Fig. 9: Flexible Dynamics in Halo Orbit. (EML1 Halo
Orbit: Tt = 10.5 d - Imax/Imin = 1.5. Distributed
Parameters Beam: lb = 100m, ⇢b = 2800 kg/m

3,
Eb = 71GPa and first bending natural frequency
�b1 = 0.06Hz).

not present. The flexibility properties of a space system
may be selected independently from the planned orbit-
attitude evolution. In fact, the dynamical response of the
space structure is composed of a quasi-static term plus a
superposition of natural modes, since there is a huge sepa-
ration between typical lowest natural frequencies of real
extended space systems and the one related with the non-
Keplerian dynamics. This conclusion is valid in general
also for other orbit-attitude periodic motions and extended
structures with different physical properties, geometry and
dimensions, as long as the natural frequencies of the ex-
tended structure stay well above the frequency content of
the overall motion, which is true, in general, for actually
feasible space systems. This statement can be explained
looking at the frequency content of a periodic orbit-attitude
dynamics; figure 10 shows a fast Fourier transform of the
angular acceleration along a Halo orbit. Similar results are
obtained considering various families of orbits and alterna-
tive dynamical quantities, such as the linear acceleration
or the angular velocity.

V. LARGE SPACE STRUCTURES IN HALO ORBITS

Research topics dealing with large space structures in
cis-lunar space are of great interest in the scientific com-
munity of today, as explained in the first section of this
paper. The present investigation has been carried out to
have some preliminary insights on this modern and broad
area of aerospace science.

The mutual influence of orbit-attitude and flexible dy-
namics should not be completely neglected, but seems to
be reasonable to decouple the problem at least in the first
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research phases. However, even if a rigid body is consid-
ered, different configurations and mechanical properties of
the extended structure can have a strong effect on the cou-
pled orbit-attitude dynamics. For instance, many periodic
families are generated only by well-defined inertia param-
eters. For this reason, the study of the effect of dissimilar
mass distribution on the periodic dynamics seems to be
remarkably important. As example, the sequence in which
a future space station will be assembled is of a maximum
relevance. In that case, the inertia moments will vary in
time, as docking operations are performed and independent
modules are attached and detached from the main struc-
ture. These operations will have to be carefully planned
to avoid the departure from a stable periodic dynamics
or to minimize the station-keeping effort. Alternatively,
particular operations may be designed in order to obtain
unstable behaviours able to facilitate large manoeuvres and
transfers.

Various simulations show that periodic solutions for
large space structures in Halo orbits, both with regular
amplitude or with large amplitude (NRO), have a lower
orbit-attitude stability with respect to DRO. Small per-
turbations are able to arise deviations from the nominal
attitude; thus active attitude control is needed. Moreover,
the large angular acceleration corresponding to perilune
passages might represent a potential issue for the structure
of extended space structures.

VI. FINAL REMARKS

This paper was intended to present just few preliminary
example results that may be obtained after some analyses

with the developed models and algorithms. The infor-
mation coming from the presented coupled orbit-attitude
model may be used to drive the design of a large spacecraft
in lunar vicinity. Additional information can be gathered
from other analyses, hence a deeper investigation is needed
and will follow this work.

The flexibility of a large space systems should not be ne-
glected, but its influence seems to be not strongly coupled
with the overall orbit-attitude dynamics. Further studies
are needed in these regards, in particular if higher fre-
quency phenomena are present and have to be inserted
in the model. For instance, attitude dynamics associated
with particular operational activities and manoeuvres or
the presence of an active control system.

Also the importance of the coupling between orbital
and attitude dynamics should be further investigated. In
particular, dedicated analysis are needed to highlight the
influence of the attitude motion on the dynamics of the cen-
tre of mass. The preliminary results discussed in this paper
delineated a certain effect of the orbital dynamics on the
associated naturally periodic rotational motion. A future
research work will be directed to investigate more the mag-
nitude of the orbit-attitude dynamics coupling, which has
not been deepened in this paper because it was intended to
study also the coupling with the flexible dynamics of the
spacecraft.

The best orbit to host a large space structures in the
vicinity of the Moon, together with the related coupled at-
titude dynamics, is far to be completely defined. However,
this paper wants to underline the need to consider not only
the orbital dynamics but also the rotational motion when
dealing with large and flexible space structure in Halo and
other classes of non-Keplerian orbits.
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