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1 Introduction

One of the most studied problems in Robotics deals with the navigation of a mobile 
robot in an unknown environment. It is nowadays clear that a truly autonomous 
agent needs the capacity to build and maintain its own representation of the work-
ing environment. This problem is called Simultaneous Localization And Mapping 
(SLAM). In SLAM, the robot uses the information obtained from its sensors to esti-
mate simultaneously the environment map and its position in this map. To solve the 
SLAM problem became necessary after the observation that structuring the agent 
workspace failed in most practical situations. In SLAM, both the trajectory of the 
mobile robot and the position of all scene features, i.e., the map, are estimated online 
during the exploration. Pure localization can be seen as the case where the map is 
known, while pure mapping as the case where the observer pose is known, at all time 
instants.

Consider a mobile robot moving in a scene and activating its sensing apparatus at 
discrete time instants. Each sensor activation allows to measure some of the scene 
features,1 in a reference frame relative to the robot. At each time t, we have the 
following relevant quantities: the pose of the robot, �t, which changes with time; 
the location Y = {yi} of scene features, i.e., the map, which are considered static;2 

the control ut applied, at previous time, to move the robot to the current pose; the 
observations of the scene features zt, at the current time t. The SLAM problem can 
be recursively expressed in terms of the joint probability distribution of state Xt =
[�t, Y], as a function of the control inputs and the data collected by the observer
sensing apparatus. Such probability P(�t, Y|z1:t, u1:t, �0) can be determined in a
recursive form, by assuming the Markov property for the motion, and the conditional
independence of same time measurements, given the current robot position.

The frequently used representation of this recursive formulation is in the form
of a state-space model, with Gaussian noise. This representation allows the usage
of the Kalman filtering, in its extended variant (EKF), to solve the SLAM problem.
The need for the extended version of the Kalman filter comes from the non-linear
nature of the dynamic part of the state transition relationship, with respect to the

1Here the term feature is left intentionally general; the case of 3D point features will be treated in
details in the rest of the paper.
2In the case of a certain amount of features moving in the environment, tracking their movement
while performing SLAM is the so called Simultaneous Localization and Mapping with Moving Object
Tracking (SLAMMOT) problem [19, 23]; this case is not treated in this paper.



state variables, and from the non linearity in the measurement equation. Other
representations use sigma points, in the Unscented Kalman Filter (UKF), or samples
from the posterior distribution, in Particle Filters (PF), to perform, respectively,
a better Gaussian uncertainty propagation or a non Gaussian representation of
uncertainty [37]. Filtering approaches to visual SLAM are questioned by non linear
optimization based approaches; see, e.g., [35] for the reasoning, and [18, 36] as
examples of the good results that can be obtained with such approaches. In this
paper we will focus on approaches based on the EKF, which is a well established
technique, and it is known being able to deal with large scale environments, thanks
to the adoption of sub-mapping, see e.g., [28].

In order to understand the peculiarities of the SLAM problem, it is important to
notice that the uncertainty on the estimates of any two scene features, observed from
the same pose, is not uncorrelated as one might expect, because the pose where the
observations have been gathered is uncertain, too. After the robot moves to a new
pose and observes again the scene, it might collect just a subset of the features pre-
viously observed. The estimates of the latter observed scene features, and also of the
robot pose, can be updated by integrating the new measures; this in turn updates also
the scene features that were seen previously. Moreover, the correlations between the
estimates of the features grow with the subsequent observations. After some time,
the features and the robot pose will be correlated [13].

The first successes in SLAM were initially obtained by systems exploiting mainly
laser scanners [20], but some negative aspects of such devices (e.g., cost, weight,
power consumption) pushed research towards less expensive, less power-hungry and
less bulky sensors. Nowadays, the main sensors satisfying these criteria (low cost,
power, and weight) are cameras. Although appreciable under these points of view,
data from cameras suffer for a specific issue, which made visual SLAM (VSLAM)
a research topic widely studied in recent years: the inherent impossibility to recover
both the range and the bearing of a scene feature, when using a single image. The case
of using one single camera is known as the Monocular SLAM problem. The case of
using more than one camera, i.e., gathering measures on the same scene feature from
more than one point of view, at the same time, it is known as Stereo, or multi-camera,
SLAM problem.

A single camera actually allows quite accurate measurement of bearing, but it only
allows an uniform uncertainty on the depth of the feature, being its position equally
likely along the entire viewing ray. For this reason, in Monocular SLAM, the ob-
server needs to gather data from different points of view, in order to develop a more
peaked belief about the feature position. After the seminal work by Davison [11], we
assisted to the diffusion of approaches trying to solve Monocular SLAM: subsequent
works showed quite impressive results also in fields such as augmented reality [18] or
3D dense reconstruction [25].

The original work by Davison [11] used an EKF in combination with a delayed
initialization of 3D features, representing 3D points with their Euclidean coordi-
nates. Delayed initialization implies that a feature is added to the filter only after
some parallax has been acquired, i.e., after the camera moved enough, following
a parallax-providing trajectory. Unfortunately, delayed initialization makes data
association difficult at the beginning, i.e., when the feature has been observed very
few times, which is exactly when it is most important to get it correct. To overcome
the shortcomings of delayed initialization, Solà [33] proposed an approach based on a



Mixture of Gaussians. However, this solution requires the presence of multiple depth
hypotheses in the EKF state, and this affects the performance of the proposal.

Differently from these previous works, Montiel et al. [24] proposed the Unified
Inverse Depth (UID) parametrization, the first instance of inverse parametrization
of features; they demonstrated that it is possible to correctly represent the feature
uncertainty using a single Gaussian, by changing the representation of the scene
feature. This allowed un-delayed initialization of features, while allowing the usage
of the well-known EKF machinery.

Nowadays, to the best of our knowledge, the problem of un-delayed feature
initialization in EKF-based Monocular SLAM has four solutions, all related to how
3D points are represented in the filter state: UID [24], Inverse Scaling (IS) [22],
Anchored Homogeneous Point (AHP) [31], and Framed Homogeneous Point
(FHP) [7]. All these parametrizations allow to represent a depth uncertainty that
is skewed and extends up to infinity [15], by using a standard Gaussian distribution.

The VSLAM literature presents different approaches for recursive Bayesian esti-
mation: Extended Kalman Filtering [11, 24, 33], Unscented Kalman Filters [2, 8, 16]
and Particle Filters [4, 30]); in this paper we focus on Extended Kalman Filtering.
After a detailed presentation of EKF-based VSLAM in Section 2), we review in
Section 3 the known parametrizations for EKF-based VSLAM, altogether with the
novel Framed Inverse Depth (FID) parametrization. FID is an evolution of the FHP
parametrization, whose requirements in terms of space per feature are in between
AHP and FHP, while considering the case of shared anchors (see Section 3.6) it
could often need less space. For consistency,3 FID behaves similarly to the other
four parametrizations.

The consistency of the parametrizations is verified in Section 4 with an extensive
validation on a simulated environment, similar the one proposed by Solà in [31],
together with results on real data from the RAWSEEDS datasets [6].

2 EKF SLAM with Cameras

In this section we focus on the use of EKF to solve the VSLAM problem, i.e., to
recursively estimate, from visual measurements, the joint distribution of the current
camera pose and the 3D points in the environment, as a single multivariate Gaussian
distribution. We will briefly explain the basic techniques that allow to treat the EKF-
VSLAM problem in real time, taking advantage of the structure of the problem.
We will define the state vector, the prediction step equations, and the measurement
equations in a general form; further details will be given in the next section.

Let us remark, here, two relevant concepts. Firstly, EKF-VSLAM was demon-
strated able to treat the Monocular SLAM problem, i.e., to solve the VSLAM
problem, using a single camera as source of information; this is of course true only up
to a non observable scale factor [24]. This result can be obtained thanks to specific
parametrizations (see Section 3) for scene point features, which allow to represent
in an appropriate way the unknown depth of a point perceived from a single image.

3Consistency, a concept that will be reviewed in a subsequent section, represents the effectiveness
of the SLAM system to correctly handle the inherent uncertainties; a consistent filter allows the real
values of the unknowns to be in a certain range from their estimate.



If we are interested in retrieving also the scale of the observed scene we need to
introduce some additional constraint in the process, e.g., a second camera as in the
stereo case or some odometric information. Secondly, it was shown in [32] that the
use of these parametrizations simplifies the implementation of multi-camera systems
(e.g., a stereo or trinocular camera rig); we base on this approach when presenting
Stereo SLAM.

2.1 State Vector

In Monocular EKF-SLAM, the state of the filter Xt, at time t, is composed by the
actual camera pose �t in a world reference frame,4 and by the map Y, represented
by a set of features Y = {yi}. Each feature encodes a 3D point of the environment
expressed with respect to the world reference frame, according to some represen-
tation, e.g., as an Euclidean point or by one of the parametrizations that will be
presented in Section 3. The camera pose �t = [

tT
t , qT

t

]T includes a translation term
tt = [

txt tyt tzt

]T and an orientation term qt = [
qwt qxt qyt qzt

]T , which is usually coded
with quaternions.5 Other parameters �t, describing camera motion (e.g., tangential
and rotational speed or accelerations), could be present in the EKF state as well.
They could be represented with respect to the camera reference frame or the world
reference frame, in accordance with the motion model of the system.

The complete state of the filter is thus represented as:

Xt = [
�T

t �T
t yT

1 yT
2 . . . yT

n

]T
, (1)

and the EKF-SLAM algorithm follows the steps described in Algorithm 1 to update
recursively the state estimate, together with its covariance matrix �t. In the following,
this algorithm will be explained in details.

2.2 Initialization

Unless we have some prior information, at t = 0 we start with an empty map and the
camera pose is usually considered the origin of the world (�0 = [0, 0, 0, 1, 0, 0, 0]T)
with no uncertainty. If we have also a description of the camera motion, we can
initialize these parameters to zero (�0), but with a non zero initial covariance, so
to ease the estimation of the camera motion in the first steps.

X0 = [�T
0 , �T

0 ]T , �0 =
[

0 0
0 ��0

]
. (2)

4In this paper we assume a world-centric approach to SLAM, where camera and features are repre-
sented with respect to a common world reference frame; in [21] the robocentric approach has proven
able to reduce linearization errors, thus improving filter consistency at a higher computational cost.
A comparison of the two approaches is out of the scope of this paper so we address the interested
reader to [5, 21].
5Several representations for rotations are possible [14]; in this paper, being this marginal w.r.t. the
main issue of feature representation, we use quaternions to allow comparison with visual EKF-
SLAM systems publicly available. It has to be noticed that quaternions present several advantages,
e.g., they allow linear interpolation of orientations.



Algorithm 1 EKF-SLAM
1: {Initialization}
2: t ← 0, Xt ← [�T

0 �T
0 ]T , �t ← diag

(
��0 , ��0

)

3: loop
4: {Prediction step}
5: t ← t + 1
6: X̂t ← f (Xt−1, ut, η = 0)

7: �̂t ← FX�t−1FT
X + Fη�ηFT

η

8: {Measurement step}
9: e ← ∅, H ← ∅, R ← ∅

10: for all yi do
11: if ∃zi compatible with hi(X̂t) then
12: e ← [e; zi − hi(X̂t)]
13: H ← [H; HiX];
14: R ← diag(R, Hiν�νHiν)
15: end if
16: end for
17: {Update step}
18: if e �= ∅ then
19: St ← H�̂tHT + R
20: Kt ← �̂tHTS−1

t
21: Xt ← X̂t + Ktet

22: �t ← �̂t − KtStKT
t

23: else
24: Xt ← X̂t, �t ← �̂t

25: end if
26: {New feature addition}
27: for all new_measurement s do
28: ynew ← g(Xt, s, ξ)

29: Xt ← [XT
t ynew

T]T

30: �t ←
[

I 0
GX 0

] [
�t 0
0 0

] [
I 0

GX 0

]T

+
[

0 0
0 Gξ�ξ GT

ξ

]T

31: end for
32: end loop

2.3 Prediction Step

At each iteration, we perform the prediction step of the Kalman filter; this step
aims at the prediction of the next system state, using the prior state value and an
optional control input ut; we assume a non additive Gaussian noise η ∼ N(0,�η)

perturbates the motion. To update the state covariance matrix we use the Jacobian
matrices6 FX = ∂ f (X, u, η)/∂X and Fη = ∂ f (X, u, η)/∂η evaluated at X̂t, ût, and
ηt = 0. Odometric information, if available, is considered as the control input ut, in

6It could be easily verified that, if noise η is additive to input u then ∂ f
∂η

= ∂ f
∂u .



the absence of odometry we would have a pure Visual EKF-SLAM, which uses the
velocity motion model represented by �t:

X̂t = f (Xt−1, ut, ηt = 0), (3)

�̂t = FX�t−1FT
X + Fη�ηFT

η. (4)

Since features are fixed elements in the scene, the state prediction equation
simplifies into:

[
�̂

T
t , �̂

T
t

]T = f (�t−1,�t−1, ut, ηt = 0)

Ŷt = Yt−1, (5)

and the uncertainty propagation can exploit sparse Jacobians:

FX =
⎡

⎣
∂ f (· · · )
∂(�, �)

0

0 I

⎤

⎦ Fη =
⎡

⎣
∂ f (· · · )

∂η
0

⎤

⎦ . (6)

A reduction in the computational complexity of the prediction step, from O(n2.807) to
O(n), is possible when taking into account this special structure; here n is the number
of features. This is important when the map, and thus the state vector, becomes
populated by a large number of features.

2.4 Feature Addition

In SLAM we aim at the online construction of the environment map, it is therefore
necessary to increase the set of state variable each time a new landmark is perceived
(see steps 27–31 of Algorithm 1). When a new feature ynew is created, its initialization
is computed, by composing the current pose w.r.t. the world, which is part of the
current state, with the 3D position of the new feature, in the camera frame. As for all
measurements, uncertainties corrupt the measure, and they are especially intense in
VSLAM. Besides the measurement error on the projected 2D point, which is perhaps
minor, we have the large uncertainty in the 3D position, since the depth of point can
not be perceived by a single camera, that is implied by the usage of a bearing-only
sensor. If we call ξ ∼ N(0,�ξ ) the Gaussian noise acting on the imaged point, and s
the a priori expectation on the depth of a 3D feature, then the initial 3D value of the
feature is a function of the current state, s, and the noise. The noise is in general non
additive.

ynew = g(Xt, s, ξ = 0). (7)

The new feature is then added to the filter

Xt = [XT
t ynew

T]T, (8)

and its covariance updated by using its Jacobians, evaluated at Xt and ξ = 0

GX = ∂g(· · · )
∂X

, Gξ = ∂g(· · · )
∂ξ

, (9)

�t =
[

I 0
GX 0

] [
�t 0
0 0

] [
I 0

GX 0

]T

+
[

0 0
0 Gξ�ξ GT

ξ

]T

. (10)



2.5 Measurement

The standard equations of the update step in EKF-SLAM, can be considered
consisting of two different stages: the measurement step and the update step. The
measurement step (see steps 9–16 of Algorithm 1) allows, for each feature yi, to
predict its expected measure, according to the measurement model hi(X, ν), being
ν ∼ N(0,�ν) the model of the measurement noise.7

The total innovation e is computed as the difference between the expected
measures and the real ones. It is determined by iteratively appending the difference
between an expected measure hi(X̂t) and its individually compatible real measure zi,
whenever it exists:

e ← [e; zi − hi(X̂t)]. (11)

The individual compatibility of measurements estimation is usually verified by a
Mahalanobis distance test on:

d = (zi − hi(X̂t))
TS−1

i (zi − hi(X̂t)), (12)

with

Si = HiX�̂tHi
T
X + Hiν�νHi

T
ν , (13)

where

HiX = ∂hi(· · · )
∂X

, Hiν = ∂hi(· · · )
∂ξ

, (14)

are the Jacobian matrices of hi(·) with respect to the state and noise.
As for the innovation vector, Jacobian matrices are properly stacked to H and to

the block diagonal matrix R:

H = [H; HiX], (15)

R = diag(R, Hiν�νHi
T
ν ). (16)

2.6 Update Step

Thanks to the measurement step, a set of observations is created and the innovation
is stored in the e vector, with the matrices H and R. The Kalman gain is computed as

St = HX̂t
�̂tHT

X̂t
+ R, (17)

Kt = �̂tHT

X̂t
S−1

t , (18)

and the filter state is updated as

Xt = X̂t + Ktet, (19)

�t = �̂t − KtStKT
t . (20)

7The independency of the measurement process is guaranteed under the hypothesis of independence
between the noises νi and ν j, affecting each pair of measurement equations hi(·) and h j(·) with i �= j.



Notice that, in case there are no measurements available (i.e., the innovation vector
is empty), the update step is skipped, and the predicted state is assumed as the new
state.

There might be alternative ways to perform the EKF update. For instance, it is
possible to iterate the update step in the following way: (1) sort the e vector in
decreasing order of innovation (evaluated with Eq. 12); (2) integrate one measure
at a time, recomputing the Jacobians at each step. This procedure increases the
complexity of the update step, but provides a better linearization of Jacobians. Notice
that, in practical cases, the straightforward methods above may fail, in the presence
of outliers, e.g., wrong data associations. With real data, the update step has to be
complemented by a robust data association procedure.

Different techniques have been developed to this extent, in particular one of the
simplest and most effective is the 1-Point RANSAC technique presented in [10],
which executes two update steps on two disjoint sets of measurements characterized,
respectively, by low and high innovation, discarding possible outliers.

2.7 Remarks on Filter Sparseness

In Section 2.3 it was shown that the structure of the motion model equations allows to
simplify the computation of the new state and covariance matrix. It has to be noticed
that also in the feature addition, in the measurement, and in the update steps, there
is space for some simplifications, which are not immediately obvious.

In the feature addition step we are creating a new feature, and this is done through
the g(·) function in Eq. 7, and using the s and the current state; the s represents the
“a priori” for a new feature in the sensor reference frame. The aim of this step is to
compute the position of the new feature in world coordinates, i.e., to combine s and
the actual pose �t, i.e., the already existing features yi are independent on s and �t.
This means that:

ynew = g(Xt, s, ξ) = g(�t, s, ξ), (21)

and therefore the Jacobian matrix GX differs from zero only with respect to �:

GX =
[

∂g(· · · )
∂�

0 · · · 0
]

. (22)

As for the prediction step, the complexity of a feature addition is linear in the number
of features in the map. Furthermore, each measurement function hi(X) actually
depends only on the sensor pose � and on the i-th observed feature yi; it follows
that we have a sparse Jacobian:

HiX = ∂hi(· · · )
∂X

=
[

∂hi(· · · )
∂�

0 · · · 0
∂hi(· · · )

∂yi
0 · · · 0

]
, (23)



and the stacked matrix H is also sparse:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂h1(· · · )
∂�

∂h1(· · · )
∂y1

0 0 0

∂h2(· · · )
∂�

0
∂h2(· · · )

∂y2
0 0

...
...

...
...

...
∂hi(· · · )

∂�
0 0

∂hi(· · · )
∂yi

0

...
...

...
...

...
∂hm(· · · )

∂�
0 0 0

∂hm(· · · )
∂ym

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (24)

Since only few features are observed at each time, the computation of the Kalman
gain is speeded up both by the sparsity of the Jacobians and by the reduced dimension
of the measurement vector.

2.8 Perspective Camera Model and Measurements

In VSLAM the measurement model states that when a 3D point is perceived by
a camera, only the direction of its viewing ray is measured from its image, and its
depth remains unknown, i.e., all the points that lie on the viewing ray are projected
to the same pixel of the image (see Fig. 1). This influences both the feature addition
and the measurement steps.

Let us consider a 3D point parametrized by its Euclidean coordinates in a refer-
ence frame centered in the camera optical center PC = [X, Y, Z ]T ; we can define
dC = [X/Z , Y/Z , 1]T as the direction of the viewing ray from PC to the camera
optical center. We can observe that the first two elements of dC are the intersection
of the viewing ray with the xy plane of a reference system translated of one unit in
the z axis, from the camera optical center, i.e., they are the coordinates of a point on
a normalized image plane with focal distance equal to 1. We denote with π2D : R

3 →
R

2, π2D([X, Y, Z ]) = [X/Z , Y/Z ] the function that performs this normalization.
To model the geometry of the image formation for a real camera, i.e., the process

that allows to calculate where on the image a 3D point is perceived, we need two
other steps: (1) the application of a function that models distortion due to lens; (2)

Fig. 1 The figure shows an
ideal projection, i.e., a
projection through ideal optics



the projection on the image in pixel coordinate. The first operation is expressed
by a distortion function dist(pπ , k) : R

2 → R
2 that maps the 2D point pπ on the

normalized image plane to a distorted plane using the coefficient k = [k1, k2]T ; this
is quite a widespread distortion model, although others models could be used for the
same purpose.

pd = dist(pπ , k) = pπ

(
1 + kT · [‖pπ‖2 ‖pπ‖4]T

)
. (25)

The second operation is expressed by the camera projection model K(pd, f, c) : R
2 →

R
2 that projects a 2D point from the distorted plane to the image coordinate, given

the focal length of the camera f = [ fx, fy]T , and the center of the image c = [cx, cy]T :8

K(pd, f, c) = diag(f) · pd + c. (26)

A 3D point is therefore projected to a point on the image plane by
[

u
v

]
= pimg = K(dist(π2D(PC), k), f, c). (27)

Conversely, when we have a point on the image plane pimg, we can calculate its
position on the undistorted normalized plane by inverting the previous formula:

pπ = dist−1(K−1(pimg, f, c), k). (28)

We can also define the viewing ray as rC = [
pT

π 1
]T and the unit vector rC = rC/‖rC‖.

When a point P is referenced to the world reference frame W (PW), and we
know the camera pose � = [

t, q
]

in the same reference frame, we can compute the
projection in the image by first referring the point to the camera reference frame C

PC = RT(q)
(
PW − tW)

, (29)

where R(·) is the function that computes a 3 × 3 rotation matrix from the quaternion
representation of the orientation of the camera frame. We can then apply the
projection Eq. 27.

We can now present a general form of the measurement equations in Visual EKF
SLAM: to measure a landmark yi in the camera pose �t, we apply Eq. 27 to a function
f eature3D that calculates the position of the feature in the camera reference frame
as a 3D point:

[
u
v

]
= K(dist(π2D( f eature3D(�t, yi)), k), f, c) + ν. (30)

The f eature3D function is strictly dependent on the chosen parametrization of
features. Details on this issue are given in the next section, where different para-
metrizations are presented. Notice that we consider the zero mean Gaussian noise

8Usually the projection is expressed in homogeneous coordinate as
[
u v 1

]T = K
[
pT

d 1
]T , with K =⎡

⎣
fx 0 cx
0 fy cy
0 0 1

⎤

⎦. Here we prefer to express K as a function, to allow the usage of possibly different

camera projection models (e.g., catadioptric cameras).



ν to be additive, in the measurement equation. A common choice is to consider
�ν = diag(1, 1), i.e., the measurement process is affected by a noise of a 1 pixel
standard deviation, and whose components are independent.

Similarly, a general form for the feature addition function could be presented as:

ynew = g(�t, s =
[
pimgT

, d
]T

, ξ), (31)

i.e., the inputs are represented by the pixel coordinate of the new point and a
parameter d that acts as “initial depth” of the point along the viewing ray. We can
also consider that, in a general formulation, ξ will be a 3-elements noise: ξ1, ξ2 will
be additive noise on the pixel coordinate with independent covariance of 1 pixel,
to model the error in the detection of the point, while the third element will model
the uncertainty on the depth. Details depend on the specific parametrization and are
shown in the next section.

So far, we have used the camera reference frame in the notation, but all equations
could be easily modified to consider any reference frame rigidly connected to it; this
is, for instance, the case of a mobile robot, where we know the camera pose in the
robot odometric frame, or the case of a stereo camera, where we know the pose of
one camera with respect to the other. Starting from this observation it is rather easy
to see that multi-camera EKF-SLAM system represents a natural extension of the
Monocular EKF-SLAM.

Let us consider a multi-camera system with J cameras, and denote with � j the
fixed rototranslation of the j-th camera with respect to one common reference frame
�t that could be either one of the cameras or the odometric center of the robot.
The motion model of this reference frame remains the same of Eq. 3 whereas the
measurement equations for each camera are slightly different from the Monocular
case in Eq. 30; when the feature yi is perceived by the j-th camera we apply

[
u
v

]
= K j(dist j(π2D( f eature3D(�t ⊕ � j, yi)), k j), f j, c j) + ν j, (32)

being �t ⊕ � j the composition of the rototranslation of the odometric reference of
the multi camera rig at time t, w.r.t. the world reference frame, with the rototransla-
tion of the j-th camera w.r.t. the odometric center of the rig. In the case of a stereo rig,
we could consider the optical center of one of the cameras as the odometric center;
this is what was originally proposed by Solà in [32] under the name of BiCamSLAM.

Implementing a multi camera system as the fusion of many single camera systems,
which share the same state of the environment, has several advantages. It can
exploit the information coming from the observation of features perceived by just
one single camera, being triangulation not required; of course, for such cases, the
uncertainty will reduce only after some parallax will have been gained, i.e., by means
of the observer motion. Moreover, and most importantly, we can leverage on the
parametrizations used for Monocular SLAM to reduce the feature uncertainty, at
the same time, as if we had moved. We have to point out that triangulation is
done implicitly each time a feature is observed by more than one camera. If new,
a feature is initialized from its view from the first camera where it appears; if it
has been already observed, it is just updated as presented before. The multi-camera
advantage comes when the feature is also observed by another camera(s). In such a
case, its expected measure is predicted in the other camera(s); if the data association
produces a valid result, the feature gets also measured from there, i.e., from the place



where the other camera is, therefore the uncertainty on the depth is strongly reduced.
The uncertainty on the depth, modeled by the chosen parametrization, will allow to
implicitly treat the epipolar geometry in searching for feature correspondences. In
the following section we review the state of the art in feature representation, i.e., the
different ways to express the g(·) and f eature3D(·) function, in the monocular case,
while the extensions to stereo or multi-camera are easily derivable.

3 Point Feature Parametrizations in 3D

The simplest way to represent a 3D point is by means of its Euclidean coordinates:
yE = [XY Z ]T . However, in the context of EKF, Euclidean points can be used
directly only in a stereo setting and only with small depth-to-baseline ratio, i.e., only
when the uncertainty on their reconstruction is reasonably approximated by a normal
distribution. In other words, being impossible to estimate their depth from a single
image, they are not suited for Monocular SLAM, unless we accept some delay in
their initialization, as proposed in [11], i.e., to observe the same point feature in
more than one image, with different camera poses, so that an appropriate parallax is
gained and the uncertainty on the feature turns reasonably normal. The problem
being that the potentially uniform distribution of probability on the depth is not
directly representable as a Gaussian variable. This intrinsic limit of Euclidean points
motivated proposals of different parametrizations suited for undelayed initialization
[7, 22, 24, 33]; in the following, we review these proposals and present a new one,
underlining their computational complexity and non linearity.

3.1 Unified Inverse Depth (UID)

In the Unified Inverse Depth parameterization proposed by Montiel et al. in [24], a
3D scene point yU I D (see Fig. 2) is defined by the vector

yU I D = [
tT ϑ ϕ �

]T
, (33)

which represents a 3D point located at t + (1/�) · m(ϑ, ϕ). Here tT is the camera
projection center when the 3D point was first observed; ϑ and ϕ are respectively the
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W
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Fig. 2 The geometrical meaning of the different parameterization for a 3D point



azimuth and the elevation (in a world-aligned reference frame) of the line m(ϑ, ϕ) =
[cos(ϕ) sin(ϑ),− sin(ϕ), cos(ϕ) cos(ϑ)]T , and � = 1/d is the inverse of the point depth
along this line (see [24] for more details). The initialization is performed by:

yU I D
new = gU I D(�t, s = [

pimg, �0
]T

, ξ) = [
tT
t , θ(rW), φ(rW), �0

]T
, (34)

where

rW = R(qt) · rC , (35)

is the viewing ray of pimg in a frame that is oriented as the world reference frame,
R(q) converts the quaternion q (camera orientation) to a 3 × 3 rotation matrix, and

θ(r) = atan2(rx, rz); φ(r) = atan2(−ry,
√

r2
x+r2

z). (36)

The noise ξ is a 3-elements zero mean Gaussian variable. The first two ele-
ments represent additive noise on the pimg, while the third element represents the
uncertainty on the initial inverse depth value �0. The covariance matrix is �ξ =
diag(1, 1, σ�0). The values of �0 and σ�0 are chosen according to the minimum and
maximum depth of the feature. The advantages of inverse depth resides mainly in the
ability to include the infinity (� = 0) without loosing the ability to code near points.
It has to be noticed that ϑ(·) and ϕ(·) are applied to the viewing ray represented in a
world aligned frame, i.e., to the composition of the current orientation of the robot
with the direction of the viewing ray in the robot frame.

To define a measurement equation we have only to specify the f eature3D(·)
function of Eq. 30, i.e., we have to express the 3D point in the current robot frame;
after some manipulation the f eature3D(·) turns to:

f eature3D
U I D(�t, yt) = � (t − tt) + m(ϑ, ϕ). (37)

where t is the part of the feature state that represents the camera position when the
point was observed the first time.

While an Euclidean point requires three parameters, the UID representation
requires the storage of six parameters for each map feature as state vector in the filter.
It is possible to convert UID points into Euclidean 3D points once their estimation
is sufficiently accurate, as suggested in [9] to reduce the computation time, and is
relevant as EKF complexity is O(n2), with n being the size of the state variable. This
holds for the other parametrizations too.

3.2 Inverse Scaling (IS)

In [22] the Inverse Scaling parametrization, a.k.a. Homogeneous Point (HP) in [31],
was presented; the IS name came to the authors because the point is obtained by
scaling the triangle with vertex in the projection centre, the focal length and the
line from the image centre to the image of the point. It is also the homogeneous
representation of a 3D point (see Fig. 2)

yIS = [
tT ω

]T
. (38)



The transformation of a point from IS to Euclidean coordinates is simply t/ω, while
the initialization of a feature could be performed in two ways:

yISN
new = gISN (�t, s = [

pimg, ω0
]T

, ξ) =
[ (

rW + ω0tt

)T

ω0

]T

, (39)

yISS
new = gISS(�t, s = [

pimg, ω0
]T

, ξ) = [ (
rW + ω0‖rC‖tt

)T
ω0‖rC‖ ]T

, (40)

where rW = R(qt) · rC is the unit vector of the viewing ray rotated in the world
reference frame. Notice that ‖rW‖ = ‖rC‖ because of the module preserving property
of the rotation operation. The difference between the two initialization relies on the
use of the viewing ray rW or the unitary viewing ray rW . Both initializations grant the
initial distribution of the depth uncertainty to be comparable to the UID initialization
with ω0 = �0 and the points lie on a sphere at 1/ω0 from the optical center.

The f eature3D part of the measurement equation for IS turns into the following:

f eature3D
IS (�t, yt) = R(qt)

T (t − ωtt) . (41)

IS requires only four parameters to represent a 3D point, thus reducing the time
complexity of the EKF. This speed up, however, comes at the cost of consistency as
demonstrated in [7, 31].

3.3 Anchored Homogeneous Point (AHP)

The Anchored Homogeneous Point (AHP) parametrization was proposed in [31],
and combines aspects of the UID and the IS [22] parametrizations, to overcome the
consistency issues of IS. In AHP, see Fig. 2, a point is represented by a seven elements
vector; AHP takes from UID the idea of representing the Euclidean position of
the optical center at the initialization time, and from IS the use of homogeneous
coordinates to represent a 3D point, i.e., a four elements vector encoding the viewing
ray direction and the inverse distance. An AHP point is hence coded as:

yAH P = [
tT mT ω

]T
, (42)

where t is the position of the camera, and [m ω]T is the 3D point in homogeneous
coordinates, where m is a vector applied in the camera pose pointing towards the
feature, and ω is the inverse of the scale of m. The transformation into a 3D point is
described by the sum of two vectors t + m/ω.

AHP initialization could be performed in two ways:

yAH PN
new = gAH PN (�t, s = [

pimg, ω0
]T

, ξ) =
[
tT
t rWT

ω0

]T

, (43)

yAH PS
new = gAH PS(�t, s = [

pimg, ω0
]T

, ξ) =
[
tT
t rW T

ω0 · ‖rC‖
]T

. (44)

With AH PN we mean the use of a unit module viewing ray r̄WT
for initialization;

with AH PS the initial inverse scaling value is scaled by the norm of the viewing
ray. As for IS parametrizations, also in this case both initializations grant the initial
distribution of the depth uncertainty to be comparable to the UID initialization with
ω0 = �0 and the points lie on a sphere at 1/ω0 from the optical center.

The f eature3D
AH P(·) function in measurement Eq. 30 becomes:

f eature3D
AH P(�t, yt) = R(qt)

T (ω · (t − tt) + m) . (45)



3.4 Framed Homogeneous Point (FHP)

In [7] the FHP parametrization has been presented; FHP extends the anchor point
used in AHP and UID to the complete frame, i.e., the position and orientation of
the camera when the feature was initialized (see Fig. 2). Since the camera frame
is completely specified, we can represent the viewing ray rC using only its first two
elements, as the third is 1 in the camera frame; the last parameter is again the inverse
distance along the viewing ray. The parametrization results in a ten elements vector:

yF H P = [
tT qT pT

π ω
]T

, (46)

where t and q are the camera position and orientation when the feature was
initialized, pπ the first two elements of a viewing ray in camera coordinates, i.e., the
coordinate on the normalized undistorted image plane, while ω is the inverse scaling
factor. The transformation into a 3D point is:

t + 1
ω

R(q∗) ·
[

pπ

1

]
, (47)

being q∗ = q/‖q‖ the normalized quaternion. This normalization is needed because
the EKF update does not guarantee quaternions to remain normalized. The initial-
ization is:

yF H P
new = gF H P(�t, s = [

pimg, ω0
]T

, ξ)

= [
tT
t , qT

t , dist−1(K−1(pimg)), ω0 · ‖rC‖]T
, (48)

where the parameters, but pimg, in dist(·) and K(·) are skipped in order to compact
the notation. Notice that, as in Eq. 44, we scale the initial inverse depth value to
guarantee that the initial distribution of the depth uncertainty is comparable to the
UID initialization. This was not done in [7], so the FHP results presented here are
not directly comparable to the ones presented in the original publication.

From the analysis of the Eq. 48 we observe that, differently from UID and AHP,
FHP sports a more linear initialization: the elements that are already in the state
(the camera pose tt and qt) are simply copied to the new element, while the pixel
coordinates of the new feature and its initial depth are put into the respective
elements without any nonlinear operation involving state variables. This implies that
the viewing ray and the initial depth are initially uncorrelated with the rest of the
filter state, and no information on the camera pose when the feature was initially
perceived is lost due to linearization. The f eature3D(·) function in measurement
Eq. 30 becomes:

f eature3D
F H P(�t, yt) = R(qt)

T

(
ω (t − tt) + R(q∗

i )

[
pπ

1

])
. (49)

3.5 Framed Inverse Depth (FID)

Analyzing the FHP parametrization, we can observe that the element pπ represent,
in the filter state, the initial pixel coordinates on the normalized image plane. Under
the hypothesis of such point being accurately measured, we can assume the initial
point on the normalized plane not to change too much during the updates, and
approximate it with its initial value. Such hypothesis implies a properly calibrated



camera, a relatively high image resolution, and a low noise intensity, and it will
never be perfectly valid. On the other hand, this implies that we can reduce the FHP
parametrization to the following eight elements vector, giving a significant saving in
space, and making FID a significant trade-off of accuracy and time-complexity, as for
EKF savings in space means savings in time-complexity.

yF I D = [
tT qT ω

]T
, (50)

In FID the image point pimg, which allows to recompute pπ , is stored outside the filter
state. Initialization is done in a very similar way to FHP, sharing the benefits that
come from the linearity of simply putting new values into the new variables without
combining them. The FID initialization becomes thus

yF I D
new = gF I D(�t, s = [ω0] , ξ) = [

tT
t , qT

t , ω0 · ‖rC‖]T
. (51)

Notice that, in this case, the input vector s contains only one element, the usual
inverse depth initial value. Similarly, the ξ noise is unidimensional and represents
only the initial variance of the inverse depth σ 2

ω.
Since FID parametrization does not re-estimate the initial point on the normalized

image plane, we could model this source of uncertainty by an additional noise in the
measurements equation. Thus, the f eature3D(·) function in Eq. 30 could be:

f eature3D
F I D(�t, yt) = R(qt)

T

(
ω (t − tt) + R(q∗)

[
p∗

π

1

])
, (52)

where

p∗
π = dist−1(

K−1(pimg + ν3,4)
)
, (53)

is the viewing ray, which takes into account the additional zero mean noise ν3,4 on
the initial point (i.e., in this case the standard additive noise ν is enlarged with two
elements that take in account some noise on the measurement at feature creation).

To be precise, the difference between the true and the initially estimated pimg

is a bias and not a zero mean Gaussian noise. This ν3,4 noise performs a sort of
covariance inflation, to reduce the small bias implied by the FID trade-off, which
might be preventing the SLAM algorithm to perform proper data association and
measurements. Since this might be controversial, the experimental evaluation will be
conducted with and without such noise, resulting in two different parametrizations
(FID0, i.e., no extra noise, and FID1, with extra noise).

As for feature initialization, the variance of the ν3,4 Gaussian variable is consid-
ered as a 2 × 2 identity matrix, in order to represent the 1px uncertainty (i.e. the
complete covariance matrix of ν is a 4 × 4 identity matrix). This parametrization
appears very similar to the one presented in [26], which differs in the representation
of the feature orientation part.

3.6 Remarks on 3D Point Parametrizations

The advantages of an anchored parametrization are mainly due to feature initial-
ization. When a new feature is initialized, uncertainty in camera position becomes
correlated to the anchor point, while the uncertainties in feature measurement and
representation are taken into account in the viewing ray description. Consequently,
when an update is performed, these correlations, together with a more detailed



measurement equation, allow to distribute the errors in a more effective way. This
implies that the more details are dropped in the parametrization, the worst are the
results in tracking the feature position.

This is the main reason that explains why inverse scaling parametrization performs
worse than all others parametrization, as shown in [31, 34]. In UID and AHP
parametrizations, the anchor point codes the position of the camera when the feature
is initialized, while the viewing ray carries mixed information about the attitude
of the camera, when the feature was initialized, and the viewing ray in the camera
frame. FHP and FID parametrizations have the advantage of keeping these sources
of information separated.

The previous reasoning is better explained in the following comparison. Let us
consider the initialization of a landmark in the different parametrizations (Eqs. 34,
39, 43, 44 and 48). UID, AHP, and IS parametrizations are initialized by a non linear
function (i.e., the rotation of the viewing ray in the world reference frame implies
a linearization), while FHP and FID parametrizations have a linear initialization.
This implies that when a new feature is initialized, no information on uncertainty
is dropped due to linearization in the first three parametrizations. Moreover, we
believe that the continuous estimation of the viewing ray in world reference frame
(in AHP and UID) or initial image point (in FHP) could have negative effects on the
consistency of the filter, due to the fact that errors in the pose of the camera when the
feature was initialized could be erroneously compensated by changes in the viewing
ray. In FID this cannot happen since the initial image point is not re-estimated not
being in the filter.

When several features are initialized using the same frame they all share the same
anchor point (i.e., UID and AHP) or frame (i.e., FHP and FID). This means that
several rows of the covariance matrix are equal making it rank deficient. Besides be-
ing an issue from the computational point of view, this also introduces singularities in
the covariance matrix, which makes it not invertible. In our experimental activity this
sharing is required by the use of Conditional Independent Submapping [27, 28]). To
solve this issue, when adding more features from the same position they should share
the common anchor, point or frame, depending on the parametrization; this is similar
to what is done in [17], for UID, and in [26] whose proposed solution is very similar
to FID. Sharing the anchor part of the feature gives great advantages in terms of the
dimension of the state vector, and, consequently, on the computational complexity,
especially for FID parametrization. Let us consider to initialize n features in the same
frame; we can notice that, for n > 2, FID representation is more compact than UID,
since 7 + n < 3 + 3n. Obviously, this is not valid for the FHP parametrization that
has the same dimension of UID for the non shared part and a bigger shared part due
to the usage of an anchor frame instead of an anchor vector. On the other hand, FHP
state space requirement is smaller than AHP, for n > 4, since 7 + 3n < 3 + 4n.

As a final remark, we notice how, by storing the full pose of the camera when the
feature was perceived the first time, the FID and FHP parametrizations implement
some sort of key-framed representation: every time a feature gets updated by the
Kalman filter, past camera poses get refined as well. This seems somehow violating
the EKF assumption of the current pose being a summary of the whole camera
trajectory (i.e., past poses are marginalized out) in favour of an optimization-based
approach. What is happening here is that, by using a framed parametrization,
the EKF-based Monocular SLAM implements a recursive filtering/smoothing of
selected past camera poses (i.e., key-frames) and 3D features.



Because of the use of framed parametrizations, Monocular EKF-SLAM becomes
somehow similar to non-EKF based methods such as FrameSLAM [1] or Graph-
SLAM [37]. Indeed, all of them marginalize out the features into a graph of poses,
which is then optimized by some conventional optimization technique. By using the
FID or FHP parametrizations, this marginalization is not complete, since we keep
the inverse depth of the feature in the filter state, and it is implicitly obtained by the
EKF machinery.

4 Experimental Results

In this section, we present some numerical results showing the behaviour of the
previously presented parametrizations for Visual EKF-SLAM. Our experiments
have been conducted on both simulated and real data using MoonSLAM, a C++
framework for EKF-SLAM. The simulated data have been obtained with the setup
proposed in [31], while real data are taken from the datasets of the RAWSEEDS9

project [6]. Notice that, in our experiments on real data, we run a SLAM system in
world coordinates, and not a Visual Odometry system (fixed-size map) robocentric,
i.e., in the observer reference frame, as done in [31].

4.1 Evaluation on Simulated Data

In the experiments on simulated data, we are interested in evaluating the average
Normalized Estimation Error Squared (NEES) [3] during the entire robot trajectory,
as in [31]. To evaluate the average NEES, we performed a Montecarlo simulation
of N = 25 trials with a nominal robot motion �∗

0:T . For each trial, MoonSLAM
estimates the trajectory �n

0:T by logging at each time t the robot pose �n
t with its

associated covariance �n
t . The average NEES value for each time t is defined by:

ε̄t = 1
N

N=25∑

n=1

(�n
t − �∗

t )
T(�n

t )
−1(�n

t − �∗
t ). (54)

Trials differ from each other because of additional Gaussian noise added both to
the prediction step, performed using nominal motion, and the measurement step,
performed measuring the projection of landmarks in the image plane. Consistency
is evaluated by checking the 95 % confidence interval of ε̄t, which is distributed
as a χ2

25×6 random variable.10 The filter is considered too optimistic (i.e., errors in
camera pose are underestimated) if the NEES value is above the upper bound of the
confidence interval (H), while it is conservative when it is below the lower bound
(L) of the confidence interval.

The implemented algorithm for the experiments performs an active-search-based
SLAM [12] both in the monocular and stereo case. It initializes ten landmarks in
the first frame, and then, for each frame, only a subset of the most innovative

n

9http://www.rawseeds.org
10In the computation of NEES, quaternions are converted in Euler angles and uncertainty is 
propagated through this transformation to compute �t in Eq. 54. This is done to avoid the inversion 
of a rank deficient covariance matrix.

http://www.rawseeds.org


measurements (10 for the monocular case and 15 for the stereo case) is used in
the iterative update step; the update follows the alternative procedure sketched in
Section 2.6. At most one new landmark per step is added (taking them from the left
camera when stereo is used), if less then 36 landmarks are predicted to be visible
in the current frame. Inconsistent (i.e., landmarks with negative inverse depth) and
unstable landmarks (i.e., landmarks not matched for at least 50 % of the times they
have been projected on the image plane) are removed from the map. The cameras
are pointing in the direction of motion and their position with respect to the robot
reference frame is known. Image resolution is 640 × 480 pixels, artificial distortion
with coefficients [0.1, 0.1]T is applied and the field of view is 90◦; in the stereo case
cameras have a distance of 20 cm on the horizontal axis.

4.2 Monocular Simulated Experiments

We performed ten experiments differing in camera motion, environment setup,
initial depth of the feature in the initialization step, and noise acting on the motion.
Parameters for all these experiments are summarized in the first part of Table 1 and
the most significant are reported also in Fig. 4. Table 2 reports the percentage of
time in which the filter operates in the consistent range and in the optimistic range
(the remaining percentage represents the conservative behaviour); Table 3 reports
the value of

∫
ε̄t−H

Tεt>H
, where Tεt>H is the number of frames in which the filter operates

in optimistic range. This value represents the average inconsistency of the filter; the
higher the value the more the average NEES is far from consistency.

All proposed parametrizations, together with the different initialization schemes,
have been evaluated (e.g. AHPS and AHPN). In particular, for the FID parame-
trization we consider two cases: in one case the standard deviation of the additional

Table 1 Experiments setup for the Monocular and Stereo simulated environment

# Motion Noises Initialization

�X �Y �Z �� �� �� �X �� ρ σ

[m] [m] [m] [◦] [◦] [◦] [mm] [◦] [m−1] [m−1]

Monocular 1 0.08 0 0 0 0 0.9 2.5 0.025 1 1
2 0.1 0.5
3 1.25 0.0125 1 1
4 0.1 0.5
5 0.04 0 0 0 0 0.45 2.5 0.025 1 1
6 0.1 0.5
7 5 0.05 1 1
8 0.1 0.5
9 0.08 0.02 −0.02 0.2 −0.45 0.9 1.25 0.0125 1 1

10 0.1 0.5
Stereo 1 0.08 0 0 0 0 0.9 2.5 0.025 0.5 1

2 5.0 0.05
3 0.16 0 0 0 0 1.8 2.5 0.025 0.5 1
4 0.01 0.5
5 5.0 0.05 0.5 1
6 0.01 0.5

Experiments differ in motion, noise added on motion, and feature inverse depth/scale initialization



Table 2 Monocular simulated experimental average NEES results

# ISN ISS UID AHPN AHPS FHP FID0 FID1

1 Cons % 1 0 12 15 17 17 9 86
Opt % 99 100 88 84 83 83 91 10

2 Cons % 0 0 88 89 88 86 93 15
Opt % 100 100 12 11 12 14 0 0

3 Cons % 2 2 24 25 36 40 66 76
Opt % 98 98 76 75 64 60 34 0

4 Cons % 3 3 98 99 99 99 91 63
Opt % 97 97 2 1 1 1 7 0

5 Cons % 2 2 42 46 46 42 14 46
Opt % 98 98 58 54 54 57 86 0

6 Cons % 0 0 82 80 78 78 36 25
Opt % 100 100 17 19 21 21 64 0

7 Cons % 0 0 4 5 5 5 4 38
Opt % 100 100 96 95 95 95 96 61

8 Cons % 0 0 3 3 3 3 6 84
Opt % 100 100 97 97 97 97 94 16

9 Cons % 0 0 3 3 3 3 2 49
Opt % 100 100 97 97 97 97 98 51

10 Cons % 2 1 90 96 94 97 98 19
Opt % 98 99 8 2 6 2 2 0

The percentage of time in which each parametrization operates in consistent (Cons) and optimistic
(Opt) range is reported. Best results (i.e., maximum consistency and minimum optimistic percentage)
are reported in bold. FID1 parametrization, i.e., with non-zero covariance on ν3,4, is reported in the
last column and it is not compared with others

noise ν3,4 equals to a 2 × 2 identity matrix (as hypothesized in Section 3.5), in the
second case this noise is set to zero. The need for this double setup comes from the
fact that NEES evaluation takes advantage from the inflated covariance used in the
first case, and therefore, to obtain a fair comparison between the parametrizations,

Table 3 Monocular simulated experimental results

# ISN ISS UID AHPN AHPS FHP FID0 FID1

1 550.0 595.2 4.4 4.3 4.2 4.1 5.5 0.2
2 90.9 89.2 0.4 0.4 0.3 0.3 0.1 –
3 222.6 238.7 3.5 3.6 2.5 2.4 0.5 –
4 53.1 50.1 0.2 0.2 0.1 0.1 0.3 –
5 301.4 280.8 2.1 1.3 1.2 1.4 2.9 –
6 84.7 86.4 0.3 0.3 0.4 0.4 0.9 –
7 1455.9 1417.4 15.5 15.9 15.1 14.8 14.1 1.3
8 400.1 402.5 9.2 10.2 9.9 9.8 11.8 0.5
9 470.6 504.4 11.5 11.6 13.0 13.3 4.6 0.9
10 43.1 38.2 0.2 0.2 0.3 0.2 0.1 –

We report here
∫

ε̄t−H
Tεt>H

, i.e., the average value of inconsistency for time step when the filter operate

in optimistic range. Lower (i.e., better) values are in bold. FID1 parametrization, i.e, with non-zero
covariance on ν3,4, is reported in the last column and it is not compared with others. The “–” symbol
means that the average values on the inconsistency is not calculable because the parametrization
never operates in optimistic range, i.e., Tεt>H = 0



we have to neglect it. These two cases are referred in Tables 2 and 3 respectively
as F I D1 and F I D0. The latter will be compared, in the following, with the other
parametrizations, while the results of the former will not be considered (although
they are reported in the tables). In all the experiments IS shows poor performance in
NEES, as already shown in [7, 31, 34], i.e., it almost never operates in conservative
range so its results will not be discussed in the following. We recall that the results
for FHP here presented differ from the ones presented in [7] because of a different
initialization schema, as already discussed in Section 3.4.

Two different environments are provided: in the first setup, used for experiments 1
to 8, 72 points are distributed in a cloister-like environment, as in the setup originally
introduced in [31]; the cloister is a square 12 × 12 m, and the points are in two
different planes, respectively at the height z = 0 and z = 1 m (a screenshot of the
MoonSLAM framework at work in the simulated cloister is shown in Fig. 3). In the
second setup, used for experiment 9 and 10, 216 points are distributed in a similar
environment, still covering a 12 × 12 m area, but in 6 different planes equally spaced
at heights from z = −5 to z = 5, and the motion is in 6DoF. The feature depth is
initialized at two different values. In the first, we use 1 m−1 for the mean of the
inverse distance (or scale) and 1 m−1 for its standard deviation. In the second case
0.01 m−1 is used for the mean (i.e., feature very far from the observer) and 0.5 m−1 for
its standard deviation.

In Experiments 1 and 2 the camera moves for 800 steps on a plane with increments
of 8 cm on the X axis and a rotation of 0.9◦ around the Z axis per step, performing
two loops in the cloister. Experiment 1 feature initialization is 1 m, while experiment
2 feature initialization is 100m. The noise added to the motion is the same for both
experiments: standard deviation of 2.5 mm on the three axis for translation and of
0.025◦ around the three axis for rotation. Experiment 1 shows that all the considered
parametrizations perform poorly, since they work in consistent range for a very small
amount of time. Here AHPS and FHP obtain the best result (i.e., the maximum

Fig. 3 A screenshot of MoonSLAM framework working in the simulated cloister



consistency and the minimum optimistic rate). The mean value of inconsistency
confirms this result. Table 3 confirms that, apart from IS, all the parametrizations
perform substantially equal in this case. In Experiment 2, FID0 is the most consistent
(it is never optimistic) and the mean of inconsistency is the lowest, although others
parametrizations performs quite well, too. The results of Experiments 1 and 2 are
shown in Fig. 4a and b. In Experiments 3 (Fig. 4c) and 4 we run the two previous
experiments halving all noises. In Experiment 3 FID0 parametrization performs
definitely better than others: it operates in a consistent way for the 66 % of time while
others stop at 40 % for FHP and less for the others. The mean value of inconsistency
in FID0 for Experiment 3 is about 5 time smaller than for the others. In Experiment
4 all the parametrization perform consistently, but in this case FID0 performs a little
bit worse than the others.

Experiments 5 and 6 replicate Experiments 1 and 2, but slowing down the camera
speed; in this case, a complete loop takes 800 frames. In both experiments, all
parametrizations, except FID0, perform consistently for about, respectively, 45 %
and 80 % of time; FID0 performs worse with respect to other parametrizations in
these cases, but the average value of its inconsistency is comparable. In Experiments
7 and 8 the noise standard deviation is doubled; in this cases no parametrization is
able to maintain the consistency for a significant amount of time.

Experiments 9 and 10 use the second environment; the camera translates by 8 cm
on the X axis, 2 cm on the Y axis, and 2 cm on the Z axis at each step while rotating
by 0.2◦, −0.45◦, 0.9◦ respectively around X, Y , Z . The additive noise on the motion

(a) Experiment 1 - Monocular (b) Experiment 2 - Monocular

(c) Experiment 3 - Monocular (d) Experiment 9 - Monocular

Fig. 4 Average NEES values in four selected experiments for the Monocular setup (simulation steps
in the abscissa). Dashed red lines are the limits of the 95 % confidence interval



Fig. 5 Estimation errors (continuous lines) and estimated standard deviation (dashed lines) of a
single run of Experiment 1. FID1 is in cyan, while others parametrizations use the colors used in the
previous figures

is the same of Experiments 3 and 4, while the initial depth value reflect the scheme
used for the other experiments. In Experiment 9 (see Fig. 4d) no parametrization
performs consistently, but the average inconsistency is about three time less for FID0.
In Experiment 10 all parametrizations are consistent for the most of time with very
low values of average inconsistency.

We perform here also a different comparison between parametrizations; we take
a single run of the first experiment and we analyze the estimation error for each
coordinate and angle around axis with respect to the ground truth considering the
±3σ confidence interval of the filter standard deviation. The aim of this comparison
is to evaluate the impact of the additional noise ν3,4 in FID1 parametrization. Results
are shown in Fig. 5. As expected, IS underestimates the covariances and makes large
errors. FHP, AHP and UID show a very similar behaviour while FID0 tends to
underestimate covariances with respect to them. FID1 shows very similar covariances
to others parametrizations (except IS), confirming that the choice of 1px as standard
deviation of additional noise ν1,2 is appropriate and it does not favour FID1 too much.

4.3 Stereo Simulated Experiments

We performed six experiments in Stereo SLAM differing in camera motion, initial
depth of the feature for the initialization step and noise in motion. The parameters
of these experiments are summarized in the second part of Table 1, the results of
the consistency analysis are reported in Tables 4 and 5, and the most significant
experiments are reported also in Fig. 6. Alike in the Monocular case, FID with
covariance inflation in measurement, i.e., FID1, is not compared and we focus on
FID0; IS shows poor performances also in the stereo case.

All the experiments are conducted in the first environment described for the
Monocular case (i.e., simple cloister and planar motion); feature depth is initialized at
two different values: for the first we use 0.5 m−1 for the mean of the inverse distance



Table 4 Stereo simulated experimental average NEES results

# ISN ISS UID AHPN AHPS FHP FID0 FID1

1 Cons % 2 2 74 76 75 75 83 30
Opt % 98 98 20 17 22 21 17 0

2 Cons % 0 0 84 84 86 87 98 14
Opt % 100 100 15 14 9 9 1 0

3 Cons % 0 0 10 11 10 11 50 76
Opt % 100 100 90 89 90 89 50 5

4 Cons % 0 0 28 37 13 12 8 62
Opt % 100 100 72 63 87 88 92 30

5 Cons % 0 0 8 6 8 12 57 72
Opt % 100 100 92 94 92 88 43 8

6 Cons % 0 0 0 6 2 2 0 47
Opt % 100 100 100 94 98 98 100 52

The percentage of time in which each parametrization operates in consistent (Cons) and optimistic
(Opt) range is reported. Best results (i.e., maximum consistency and minimum optimistic percentage)
are reported in bold. FID1 parametrization, i.e., with non-zero covariance on ν3,4, is reported in the
last column and it is not compared with others

(or scale) and 1 m−1 for its standard deviation, in the second case 0.01 m−1 for the
mean and 0.5 m−1 for its standard deviation (i.e, very far from the observer).

In Experiments 1 and 2, the camera moves for 800 steps on a plane with increments
of 8 cm on the X axis and a rotation of 0.9◦ around the Z axis per step, performing
two loops in the cloister. Both experiments initialize feature depth at 2 m with initial
uncertainty on the inverse depth of 1 m−1, whereas the standard deviation of the
noise added to the motion is 2.5 mm on the three axis for translation and 0.025◦
around the three axis for rotation in the first experiment and it is doubled in the
second. Results of the first experiment show that all parametrizations operate for
about 75 % time in consistent range, for FID0 this is larger than 80 %. Likewise in
the second experiment, FID0 is consistent for the 98 % of the execution, whereas
other parametrizations do not exceed the 87 %, although in Fig. 6a we can notice
that other parametrizations are quite close to the consistency limit.

In Experiments 3 and 4 we double the robot motion speed (increments are of
16 cm and 1.8◦) performing 400 steps and covering two loops of the cloister. The

Table 5 Stereo simulated experimental results

# ISN ISS UID AHPN AHPS FHP FID0 FID1

1 114.2 106.8 0.9 0.7 0.9 0.9 0.5 –
2 134.4 124.8 0.6 0.7 0.4 0.4 0.2 –
3 324.1 341.7 3.1 2.8 3.3 3.1 1.6 0.4
4 243.2 270.1 1.7 1.9 1.8 1.7 2.6 1.2
5 360.6 379.1 3.4 3.0 3.1 2.9 2.3 0.6
6 465.8 463.7 4.6 3.7 3.6 3.7 5.2 1.9

We report here
∫

ε̄t−H
Tεt>H

, i.e., the average value of inconsistency for time step when the filter operate

in optimistic range. Lower (i.e., better) values are in bold. FID1 parametrization, i.e, with non-zero
covariance on ν3,4, is reported in the last column and it is not compared with others. The “–” symbol
means that the average values on the inconsistency is not calculable because the parametrization
never operates in optimistic range, i.e., Tεt>H = 0



(a) Experiment 2 - Stereo (b) Experiment 3 - Stereo

(c) Experiment 4 - Stereo (d) Experiment 5 - Stereo

Fig. 6 Average NEES values in four selected experiments for the stereo setup (simulation steps in
the abscissa). Dashed red lines are the limits of the 95 % confidence interval

noise is set as in Experiment 1 to 2.5 mm and 0.025◦. In Experiment 3 features are
initialized at 2 meter with initial uncertainty on the inverse depth of 1 m−1. Only
FID0 perform consistently for 50 % of the time, this is due to the fact that it remains
consistent after the loop closure at frame 200, as showed in Fig. 6b, while other
parametrizations stop at about 10 %. In Experiment 4 the initial depth was changed
to 100m with uncertainty of 0.5m−1 and in this case the most consistent is the AHP
parametrization with the initialization performed through normalization of viewing
ray (AHPN, refer to Eq. 43), although the performance is just the 37 % of time in the
consistent range. From the analysis of the average value of inconsistency, and from
Fig. 6c, we can notice in this experiment that other parametrizations are quite close
to AHPN performance.

Experiments 5 and 6 replicate Experiments 3 and 4, but doubling the noise on the
motion (5 mm and 0.05◦). In Experiment 5 (Fig. 6d) FID0 performs definitely better
than others: all parametrizations lose consistency for a certain amount of time, but
FID0 is able to recover consistency after a complete loop of the cloister and it remains
consistent hereafter. Experiment 6 is the hardest for all the parametrizations: they all
lose consistency early and they are not able to recover from that.

4.4 Evaluation on Real Data

We tested the proposed parametrizations also in a real setup, using the MoonSLAM
framework. As for the simulated experiments, we use the odometry of the robot as



input in the motion model of the system. We have tested both the monocular and the
stereo setup using almost the entire indoor dataset Bicocca_2009-02-27a from the
RAWSEEDS project [6], covering a path of about one kilometer. The monocular
camera has a resolution of 320 × 240 pixels with a focal length of about 200 pixels
and it captures images at 30 Hz. We used about 57000 frames (32 min). Each camera
of the stereo dataset has a resolution of 640 × 480 pixels, with a focal length of about
660 px and a frame rate of 15 fps, the baseline of the rig is about 18 cm; we consider
the same path as for the monocular case, which totals about 28500 frames. Figure 7
shows a screenshot during the execution of a monocular run.

The algorithms perform active-search-based SLAM as for the simulated experi-
ments. For the monocular case we initialize at most 16 landmarks in the first frame
and search for new landmarks when less than 50 landmarks are predicted in the
current image, with a limit of two landmarks added at once. For the stereo case
we initialize at most 25 landmarks in the first frame and search for new landmarks
when less than 25 landmarks are predicted in the current image, without limits of
addition. The difference in the initialization policy are due to an empirical tuning
of the system. In the stereo case, landmarks are always initialized in the left camera
reference frame, while measurements are obviously performed on both cameras.

Each landmark is described by a patch of 11 × 11 pixel area around the salient
points, which are detected by FAST [29], whereas matching is done by normalized
cross-correlation. Initial depth is set to 10 m (0.1 m−1) with uncertainty of 0.5 m−1

both for monocular and stereo case. The update step is performed using the 1-Point
RANSAC technique [10], which was briefly introduced in Section 2.6.

We also apply the Conditional Independent Submapping [27, 28] technique, that
allows to treat large problems through subdivision in sub maps without information

Fig. 7 Screenshot of MoonSLAM framework performing monocular SLAM on a real dataset



loss and keeping the computational complexity bounded by a constant, i.e., O(1)
EKF-Slam. The use of this technique implies the reformulation of the parametriza-
tions in terms of shared features (discussed in Section 3.6) to avoid singularities in the
back propagation step. We choose a maximum map size of 70 features and, when this
limit is reached, a new map is started.

We have to underline that the presented implementation does not perform the so
called loop detection and loop closure procedures, which are a very important part
of SLAM systems. While it has to be noticed that loop closure could reset the errors
cumulated along the path before the loop closure point, our choice was not to include
this functionality so to increase the effect of the parametrization, continuing the
cumulation of all errors beyond the path point where a loop could have been closed.

Figures 8 and 9 summarizes the results respectively of the Monocular and Stereo
SLAM for the parametrizations UID, AHP, FHP, and FID0 while IS is not treated in
these runs, due to its poor performance. The extended ground truth, i.e., a reference
on the real trajectory available for the RAWSEEDS datasets, is plotted to allow
comparison together with the robot odometry. Figures 8a and 9a show the top view
smoothed trajectory, i.e., reconstructed by the sequence of anchor vectors or frames
stored in the shared part of the features.11 Figures 8b and 9b show the top view of
the map points (with cross) on top of the smoothed trajectory.

From these experiments we see how all parametrizations show quite good perfor-
mance in the reconstruction of both the trajectory and the corresponding map. As
expected the stereo system is able to reconstruct the map with a higher accuracy.
Since we used the odometry in the motion model for the monocular case we do not
observe any significant scale drift phenomenon as observed in [10].

It is difficult from these results to state which parametrization is the best, if any;
when using real data, there are several sources of errors, which are not properly
modelled in the state of the art approaches, so it might be difficult, to discriminate
whether the performance gain (or loss) to be fully due to the parametrization or
other sources of error. Different setups (e.g., changes in standard deviation of the
noise considered in the model, different depth initialization, etc.) could also affect
the results. On the other hand, a perhaps un-expected qualitative conclusion that can
be safely drawn, is that the FID0 parametrization shows a good performance also in
a real setup, although it can not re-estimate the direction of the initial viewing ray.

4.5 Time Performances Evaluation

The performance, in terms of execution time, of the EKF SLAM have been evaluated
in both simulated and real experiments in order to validate the real-time figures. The
experiments were conducted on a laptop equipped with an Intel Core2 Duo T9300
CPU running at 2.50 GHz per core with 3.4 GB of DDR2 RAM.

Figure 10 shows the running frequency in a simulated experiment, in particular
Fig. 10b shows the frequency for each parametrization at each iteration and Fig. 10a

11This trajectory is very similar to the one computed on-line but takes advantages of the back-
propagation step of the Conditional Indipendent Submapping [27, 28].



Fig. 8 Robot trajectory and
map estimates on the real data
in the Monocular setup

(a) Smoothed trajectory, top view

(b) Reconstructed map and smoothed trajectory, top view

shows the number of landmarks in the filter at each iteration. We have to point
out that in this experiment we configured the landmark addition policy so as to
allow the addition of more than one landmark for frame, resulting in an advantage
for parameterizations that have a small non common part, e.g. FID shares the



Fig. 9 Robot trajectory and
map estimates on the real data
in the Stereo setup

(a) Smoothed trajectory, top view

(b) Reconstructed map and smoothed trajectory, top view

common anchor frame of seven elements and it adds only one element for each
new landmark initialized at the same frame. At iteration 400 the first turn of the
cloister is completed; this implies that all the landmarks are already in the filter and



(a) Number of landmarks in the filter (b) Operative frequency

Fig. 10 Performance of EKF SLAM in simulated experiments. In a the number of landmarks in the
filter at each iterations; in b the operative frequency at each iteration; a cyan dashed line at 30 Hz is
provided as reference real-time performances

the computation time becomes constant hereafter. Assuming a nominal frequency
of 30 Hz for the camera, results show that all the parameterizations operate at real-
time rate. In particular FID is the fastest and it reaches the 150 Hz, UID reaches the
operative frequency of about 100 Hz, while FHP, IS and AHP perform a little worse,
reaching about 60 Hz. We should notice that in simulated experiments the update
step is performed with an iterative procedure (following the procedure sketched in
Section 2.6). This negatively affects performance, since Jacobians are recomputed
several times per iteration. Moreover, the iteration time is the cumulation of all the
operations that are involved in the simulation, including accessory operations such
as the simulation of the motion and the projection of the map points.

Figures 11 and 12 show the performance of all parametrizations in the initial 21000
frames of monocular and in the initial 11000 frames of stereo real experiments.12 We
have to point out that in this case the update step is conducted with the standard
procedure sketched in Section 2.6, thus performances are not directly comparable to
the simulated ones. Moreover, the use of the Conditional Independent Submapping
framework of [27, 28] allows a complexity of O(1) for each submap. This could be
observed in Figs. 11a and 12a, where the cumulated execution time is roughly linear
in the number of iterations. From Fig. 11b we notice that all parametrizations, with a
maximum number of 70 landmarks per map, allow the EKF based SLAM algorithm,
to perform at a higher frequency than the camera frame rate in the monocular case
(30 fps). UID results to be the fastest parametrization (75 Hz), followed by AHP
(68 Hz), FID (60 Hz) and FHP (42 Hz). The stereo experiment (Fig. 12a and b)
shows again a real-time performance considering we had a 15 fps camera frame rate;
the performance of UID, AHP and FID, in this case, is very similar: all of them run at
around 28 Hz. Notice that the slowdown, with respect to the monocular case, is due
to the use of a stereo system, that implies to double the patch matching operations,
and to perform an update step with a higher dimension of the measurement vector.

12The Rawseeds datasets are provided as a sequence of images (one image per file). This greatly
slows down performance due to the high number of OS requests to open and close files. We choose to
evaluate time performance on uncompressed videos generated only on the initial part of the dataset.



(a) Cumulated time (b) Operative frequency

Fig. 11 Performance of EKF SLAM in the Monocular real experiments

The similarity in performance for UID, AHP and FID could be due to the different
policies in feature addition used in this stereo setup (see Section 4.4), which does not
put an upper bound to the number of features added in each frame. This allows to
exploit the benefits of the shared parametrizations introduced in Section 3.6.

As observed previously in Section 3.6, FID has a lower impact on the state vector
size with respect to other parametrizations when more than two features are added at
the same time. We then tried to run the monocular real experiment with a different
policy for feature addition: add landmarks only when at least three are available,
but with a maximum addition of four landmarks per frame. We noticed that the
accuracy in the reconstruction of the trajectory and the map has not been affected
by this choice, while all (shared) parametrizations took great advantage in time
performance by this new policy. UID reaches the 101 Hz frequency, followed by
FID (98 Hz), AHP (75 Hz) and FHP (70 Hz). As expected FID takes the greater
advantage from this new feature initialization policy with respect to the results of
Fig. 11a, whereas AHP performance grows only slightly due to the higher dimension
of the non shared part. We expected FID to perform better than UID, but this did not
happen; we assume this is mainly due to the presence of unstable landmarks which,
when deleted from the filter, reduce the advantages of FID. A more detailed analysis
of the execution time of each operation should be done to prove this hypothesis.

(a) Cumulated time (b) Operative frequency

Fig. 12 Performances of EKF SLAM in the Stereo real experiments



5 Conclusions

In this paper we introduced the problem of SLAM and then its variant known as
Visual SLAM, which is the case of basing on input from cameras. The approach
presented is based on Extended Kalman Filtering, whose usage for Visual SLAM
is also reviewed in the paper. We then presented the state of the art in the field of
parametrization of 3D point features, which is quite an important issue in order to
tackle the Visual SLAM problem with EKF. We also introduced a new parametriza-
tion, Framed Inverse Depth (FID), which allows a similar filter consistency (in terms
of average NEES) with respect to state-of-the-art parametrizations, at a frequently
lower computational cost. We presented an extensive experimental activity, both in
a simulated settings, which allows to compute the performance with respect to the
Ground Truth, and on real data. The experimental activity has been performed both
for the case of monocular and stereo SLAM, with odometry.

The good consistency with lower computational complexity is just one of the
interesting features of the FID parametrization. By storing the full pose (a complete
anchor frame) of the camera when the feature was perceived the first time, the
FID parametrization, as well as the FHP parameterization, implements a sort of
keyframed representation: every time a feature gets updated by the Kalman filter,
past camera poses get refined as well. This seems somehow violating the EKF
assumption of the current pose being a summary of the whole camera trajectory (i.e.,
past poses being marginalized out). Thanks to the presence of fully framed selected
past poses, the EKF-based SLAM implements a recursive filtering/smoothing of
the past camera poses (i.e., keyframes) and 3D features. In a sense parametriza-
tions based on a complete anchor, stay in between pure filtering approaches and
optimization-based ones. A possible application of these considerations is the in-
tegration of batch optimization method (e.g., Bundle Adjustment) within the EKF
machinery and the Conditional Independent Submapping framework, in order to
provide a system that could deal with Large Scale Visual SLAM in real time with an
accuracy comparable to off-line structure from motion methods.
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