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Abstract

Lyapunov Characteristic Exponents are indicators of the nature and of the stability properties of solutions of differential

equations. The estimation of Lyapunov exponents of algebraic multiplicity greater than 1 is troublesome. In this

work, we intuitively derive an interpretation of higher multiplicity Lyapunov exponents in forms that occur in simple

linear time invariant problems of engineering relevance. We propose a method to determine them from the real

Schur decomposition of the state transition matrix of the linear, non-autonomous problem associated with the fiducial

trajectory. So far, no practical way has been found to formulate the method as an algorithm capable of mitigating over-

or underflow in the numerical computation of the state transition matrix. However, this interesting approach in some

practical cases is shown to provide quicker convergence than usual methods like the discrete QR and the continuous

QR and SVD methods when Lyapunov exponents with multiplicity greater than one are present.
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Introduction

Lyapunov Characteristic Exponents (LCE) or, in short,

Lyapunov Exponents are indicators of the nature and of

the stability properties of solutions of differential equations

(see1;2 and references therein). Their definition stems from

the seminal work on stability published in 1892 by Aleksandr

M. Lyapunov3, but only in 1968, thanks to the work by

Oseledec, and specifically by his general Noncommutative

Ergodic Theorem4, their theory was “adapted to the needs

of the theory of dynamical system”2. In 1980, Benettin et

al.2 showed that all LCEs could be estimated under certain

assumptions; before their contribution, only methods capable

of estimating the largest LCE were available. In the same

work, Benettin et al. laid the foundations of modern methods

for LCE estimation. Most of them, noticeably the discrete

QR method and the continuous QR and SVD methods, were

formulated by several authors around 1985 (e.g. Eckmann

and Ruelle5). A robust method for LCE estimation from time

series was proposed by Wolf et al.6. A detailed review of

the topic, including computational methods, can be found

for example in the work of Geist et al.7 and Dieci and Van

Vleck8.

It is known that the estimation of non-simple LCEs, of

algebraic multiplicity greater than 1, is troublesome. All the

literature known to the authors insists on the importance of

LCEs being distinct8. Being distinct may not be enough

of LCEs; only the so-called integral separation property

guarantees the stability of their numerical estimation (see for

example9;10). The topic of multiple LCEs is the subject of

active research efforts11.

In this work, we intuitively derive an interpretation of

higher multiplicity LCEs in forms that occur in simple

linear time invariant problems. We propose a method to

determine them from a robust (with respect to multiplicity)

decomposition of the state transition matrix (STM) of the

linear, non-autonomous problem associated with the fiducial

trajectory, based on unitary similarity transformations.

Unfortunately, so far no practical way has been found to

formulate the method as an algorithm capable of mitigating

over- or underflow in the numerical computation of the STM,

so LCE estimation is not yet robust per se. However, it is the

authors’ opinion that the definition of the method represents

itself an interesting improvement for this type of analysis.

Furthermore, in some practical cases it is shown to

provide quicker convergence than usual methods like the

discrete QR, and definitely overcomes the limitation of

the continuous QR and SVD methods when LCEs with

multiplicity greater than one are present8.

Lyapunov Characteristic Exponents

Consider a Cauchy problem, defined without loss of

generality in terms of a system of ordinary differential

equations in explicit form,

ẋ = f (x, t) , (1)

with f : RN+1 → R
N , which can be nonlinear and non-

autonomous, i.e. explicitly dependent on time, and a set of

initial conditions

x(0) = x0, (2)

where we arbitrarily consider 0 as the origin of the time

t. We assume that the corresponding solution, x(t), called

fiducial trajectory, is known for t ≥ 0, either analytically or

numerically.

We define a corresponding linear, time variant problem

ẏ = J (x(t), t) y, (3)
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where J(x, t) (or, in short, J(t)) is the partial derivative

of f with respect to x, evaluated on the fiducial trajectory

x(t). The solution of this problem with initial conditions

corresponding to the identity matrix yields the STM Y(t) =
Φ(t, 0) from 0 to an arbitrary time t,

Ẏ = JY Y(0) = I. (4)

According to the Ostrogradskiı̆-Jacobi-Liouville formula1,

the determinant of Y(t) (the Wronskian determinant of the

independent solutions that constitute Y(t)) is

det (Y(t)) = det (Y(0)) e
∫

t

0
tr(J(τ)) dτ , (5)

where tr(·) is the trace operator. Thus, the Wronskian never

vanishes when J(t) is regular in [0, t], since Y(0) ≡ I. The

Wronskian geometrically represents the evolution in time of

the N -dimensional volume of an infinitesimal portion of the

state space.

The LCEs are usually defined as the limit for t → ∞ of

the logarithm of the singular values of the STM, divided by

the time itself (see for example7),

λi = lim
t→∞

1

t
log (svd (Y(t))) . (6)

Geometrically, one may interpret them as the exponents that

determine the rate of either expansion or contraction of

an infinitesimal volume of the state space along principal

directions. Such volume envelopes the evolution of a

perturbation of the fiducial trajectory. If the volume contracts

along all principal directions, the fiducial trajectory is

asymptotically stable; if it expands along at least one

direction, it is unstable or describes a chaotic motion. An n-

dimensional LCO is expected when the largest n LCEs are

exactly zero.

Alternative definitions involve the real part of the

eigenvalues of the STM,

λi = lim
t→∞

1

t
Re (log (eig (Y(t)))) , (7)

or the diagonal coefficients of the upper-triangular matrix R

that results from the QR decomposition of the STM,

λi = lim
t→∞

1

t
log (diag (qr (Y(t)))) . (8)

Notice that all definitions converge to the same LCEs for

t → ∞; in general, the estimates differ for a finite value of t.
The definition based on the QR decomposition of the

STM is at the roots of the so-called discrete and continuous

QR algorithms for the estimation of LCEs7;8, whereas the

definition based on the SVD is at the roots of the continuous

SVD algorithm7;8. The interested reader is directed to those

references for more details on the algorithms themselves.

The definition based on the eigenvalues of the STM has

little practical use; it is worth noticing its resemblance with

the definition of the stability indicators provided by the

Floquet-Lyapunov method for linear, time periodic (LTP)

systems,

λi =
1

T
Re (log (eig (Y(T )))) , (9)

where Y(T ), the STM over one period T , is the so-called

monodromy matrix.

The definition of the LCEs requires the evaluation of a

limit for t → ∞. In practice, their numerical computation

requires one to continue the estimation until convergence.

The algorithms proposed in the literature do not make direct

use of the STM, since it is destined to either over- or

underflow at a pace that depends on the value of the LCEs

themselves (the larger the LCEs in modulus, the sooner

the matrix over- or underflows). The discrete QR method

operates on the incremental STM, i.e. the STM across a

limited time interval. The continuous SVD and QR methods

operate on the time derivative of the decomposition of the

STM, and take measures to mitigate over- and underflow.

The Problem of Multiplicity

LCEs, like eigenvalues, can be algebraically simple, i.e.

occur only once, or multiple. When an eigenvalue χ of matrix

M is algebraically multiple, i.e. it is a multiple root of

the characteristic polynomial of M with multiplicity m, its

geometric multiplicity is the size n of the nullspace of matrix

(χI−M). When n < m, the matrix cannot be diagonalized.

From the previous discussion, when the multiplicity of

an LCE is greater than one, its rate of growth is the same

along multiple principal directions. Some of the previously

mentioned LCE definitions yield slow convergence rates

when the multiplicity of some LCEs is greater than 1. The

algorithms available in the literature either fail or converge

slowly, according to the convergence properties of the above

mentioned definitions.

In order to exemplify the issues related to LCE estimation

in presence of multiplicity greater than one, consider the

simple linear, time invariant problem of a damped oscillator

of mass m, damping characteristic c and stiffness k,

q̈ + 2ξωq̇ + ω2q = 0, (10)

with ω =
√

k/m and ξ = c/(2
√
km). The LCEs correspond

to the real part of the roots χ of the characteristic polynomial,

χ = ω
(

−ξ ±
√

ξ2 − 1
)

= ω
(

−ξ ± i
√

1− ξ2
)

(11)

When the absolute value of the damping factor is below

its critical value, −1 < ξ < 1, the roots are distinct, but

the LCE λ = −ξω, which corresponds to the real part of

the roots, has multiplicity 2. When the damping is critical,

|ξ| = 1, the roots are real coincident, i.e. the root χ = −ω
(respectively χ = ω for ξ = −1) has multiplicity 2 and

directly corresponds to the LCE, which also has multiplicity

2.

In state space form, the damped oscillator problem is

ẋ =

{
q̇
q̈

}

=

[
0 1

−ω2 −2ξω

]{
q
q̇

}

= Ax. (12)

Its STM is

Y(t) = eAt. (13)
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Subcritical Damping

When damping is subcritical, the coefficients of the STM are

y11 =

(

C(t) +
ξ

√

1− ξ2
S(t)

)

e−ξωt (14a)

y12 =
1

√

1− ξ2ω
S(t)e−ξωt (14b)

y21 = − ω
√

1− ξ2
S(t)e−ξωt (14c)

y22 =

(

C(t)− ξ
√

1− ξ2
S(t)

)

e−ξωt, (14d)

with

C(t) = cos
(√

1− ξ2ωt
)

(15a)

S(t) = sin
(√

1− ξ2ωt
)

. (15b)

Eigenvalues The eigenvalues of the STM are the roots of

the characteristic polynomial

χ2 − χ · tr (Y) + det (Y) = 0, (16)

which can be written as

χ1,2 = e±i
√

1−ξ2ωte−ξωt. (17)

Thus, according to Eq. (7),

λ1,2 = lim
t→∞

1

t
Re
(

log
(

e±i
√

1−ξ2ωte−ξωt
))

= −ξω.

(18)

The definition based on the eigenvalues directly yields the

expected value, regardless of the value of t.

SVD The singular values of the STM are

σ1,2 =

√
√
√
√a1(t)

2
±

√
(
a1(t)

2

)2

− a2(t), (19)

with

a1(t) = tr
(

YYT
)

(20a)

a2(t) = det (Y)
2
, (20b)

which can be rewritten as

σ1,2 = σ̂(t)±1e−ξωt, (21)

with σ̂(t) periodic, limited and positive. Thus, according to

Eq. (6),

λ1,2 = lim
t→∞

1

t
log
(
σ̂(t)±1e−ξωt

)

= lim
t→∞

± log (σ̂(t))

t
− ξω

= −ξω. (22)

The definition based on the SVD converges to the expected

value.

QR The QR decomposition of the STM is

Y = QR =

[
cosα − sinα
sinα cosα

] [
r11 r12
0 r22

]

(23)

The diagonal coefficients are

r11 =
√

y211 + y221 (24a)

r22 =
det (Y)

r11
; (24b)

r12 and α are inessential. The diagonal coefficients can be

rewritten as

r11,22 = r̂(t)±1e−ξωt, (25)

with r̂(t) periodic, limited and positive. Thus, according to

Eq. (8),

λ1,2 = lim
t→∞

1

t
log
(
r̂(t)±1e−ξωt

)

= lim
t→∞

± log (r̂(t))

t
− ξω

= −ξω. (26)

The definition based on the QR decomposition converges to

the expected value.

Critical Damping

When damping is critical, the coefficients of the STM are

y11 = (1 + ωt) e−ωt (27a)

y12 = te−ωt (27b)

y21 = −ω2te−ωt (27c)

y22 = (1− ωt) e−ωt, (27d)

where it is understood that a negative value is used for ω in

case ξ = −1.

Eigenvalues The eigenvalues of the STM are the roots of its

characteristic polynomial, which in this case yields

χ1,2 = e−ωt. (28)

Thus, according to Eq. (7),

λ1,2 = lim
t→∞

1

t
Re
(

log
(

ei(1±1)π/2e−ωt
))

= −ω. (29)

The definition based on the eigenvalues directly yields the

expected value, regardless of the value of t. It is worth

noticing that in this case the STM is not diagonalizable.

SVD The function σ̂(t) the diagonal coefficients of the SVD

of the STM depend on is now

σ̂(t) =

√

1 +
t2

2
(1 + ω2)

2
+

t (1 + ω2)

2

√

4 + t2 (1 + ω2)
2
,

(30)

which is no longer periodic, but still positive, and

asymptotically growing as (1 + ω2)t. Thus, according to
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Eq. (6), Eq. (22) still holds, namely

λ1,2 = lim
t→∞

1

t
log
(
σ̂(t)±1e−ωt

)

= lim
t→∞

± log (σ̂(t))

t
− ω

= −ω. (31)

As a consequence, the definition based on the SVD again

converges to the expected value.

QR The function r̂(t) the diagonal coefficients of the QR

decomposition of the STM depend on is now

r̂(t) =
√

1 + 2ωt+ ω2(1 + ω2)t2, (32)

which is no longer periodic but still positive, and

asymptotically growing as ω
√
1 + ω2t. Thus, according to

Eq. (8), Eq. (26) still holds, namely

λ1,2 = lim
t→∞

1

t
log
(
r̂(t)±1e−ωt

)

= lim
t→∞

± log (r̂(t))

t
− ω

= −ω. (33)

As a consequence, the definition based on the QR

decomposition again converges to the expected value.

Discussion of Results

It is clear from the example in the previous section that both

the definitions based on the SVD and the QR decomposition

only converge to the exact value for very large values

of t, although the desired exact solution is directly and

immediately contained in the eigenvalues of the STM.

It is worth noticing that the sum of the LCE estimates

always yields the correct value regardless of the value of t.
Unfortunately, one could easily prove that the latter is true

also in case of real, distinct eigenvalues of matrix J. As a

consequence, strategies based on considering the average of

two close enough LCE estimates may not be satisfactory.

The problem of LCE multiplicity is twofold:

a) assuming that we know the multiplicity of an LCE

is greater than 1, we do not know how to tell the

algorithm how to exploit this information; this aspect

is discussed below;

b) in a generic problem, we also need some criterion to

understand that the multiplicity is (going to be) greater

than 1; this is discussed in the subsequent Section.

Let us consider these problems one at a time. The

previously mentioned interpretation of single LCEs given

in2 as the rate of expansion along principal directions of the

state space, and of clusters of LCEs as the rate of expansion

of a sub-volume of the state space, suggests that when the

multiplicity of an LCE is greater than 1, the rate of expansion

along the principal directions related to the cluster of LCEs

should be determined simultaneously for all of them.

Consider, for example, the definition of the LCEs in terms

of the eigenvalues of the STM: the evolution volume is given

by the determinant of the STM, which can be expressed

as the product of its eigenvalues (χ1 · χ2 = e−2ξωt for the

damped oscillator case). The LCEs are the real part of the

logarithm of the volume, divided by t and by the multiplicity

(2 in the case at hand) and taken to the limit, yielding

λ1,2 = lim
t→∞

1

2t
Re (log (χ1 · χ2))

= lim
t→∞

1

2t
log
(
e−2ξωt

)

= −ξω. (34)

Similarly, considering the definition of the LCEs in terms of

the SVD of the STM, the evolution volume is represented by

the product of the singular values,

λ1,2 = lim
t→∞

1

2t
log (σ1 · σ2)

= lim
t→∞

1

2t
log
(
e−2ξωt

)

= −ξω, (35)

whereas in the case of the QR decomposition of the STM,

the evolution volume is represented by the product of the

diagonal elements of matrix R,

λ1,2 = lim
t→∞

1

2t
log (r11 · r22)

= lim
t→∞

1

2t
log
(
e−2ξωt

)

= −ξω. (36)

So, assuming that we can detect when two or more LCEs end

up being identical, i.e. the multiplicity of an LCE is going to

be greater than 1, we can improve the convergence of their

estimation by computing it through the sub-volume of the

related principal directions.

We obtain exactly the same result, with ξ = ±1, when

considering the critical damping case.

The Real Schur Decomposition

It is now time to address the second point, about how to

detect whether two or more LCEs are going to converge

to the same value. To this end, the so-called real Schur

decomposition can provide useful insight.

We recall the real Schur decomposition as the real

orthogonal transformation U, with UTU = I, that reduces

a real STM in real, quasi-triangular form,

UTYU = S. (37)

Matrix S is block upper triangular. Since the transformation

operated by U is a similarity, the eigenvalues of the diagonal

blocks and of matrix Y are the same. Further details can be

found in12.

Diagonal 1× 1 blocks (i.e. scalars) correspond to real

eigenvalues of Y with multiplicity equal to 1. Diagonal 2× 2
blocks with equal diagonal values correspond to complex

conjugated eigenvalues of matrix Y. Upper triangular blocks

of size greater than 1 with identical diagonal entries

correspond to eigenvalues of Y with multiplicity greater

than 1. The subspaces spanned by the block columns of U

can be ordered arbitrarily; as a consequence, the eigenvalues

of Y can be sorted at leisure. LCEs are thus estimated
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from the eigenvalues of matrix Y through its real Schur

decomposition, matrix S.

The complex Schur decomposition of the STM could be

used instead; it yields an upper triangular matrix whose

diagonal entries are the complex eigenvalues. LCEs would

then be estimated using Eq. (7). Incidentally, this is a

popular algorithm for the computation of eigenvalues, used

for example by Matlab, Octave, and other widespread

mathematical environments.

Consider now the real Schur decomposition of the STM

in the previous example with subcritical damping; after

defining

U =

[
cosφ − sinφ
sinφ cosφ

]

=

[
Cφ −Sφ

Sφ Cφ

]

, (38)

it yields

s11 = C2
φy11 + CφSφ(y21 + y12) + S2

φy22 (39a)

s12 = C2
φy12 − CφSφ(y11 − y22)− S2

φy21 (39b)

s21 = C2
φy21 − CφSφ(y11 − y22)− S2

φy12 (39c)

s22 = C2
φy22 − CφSφ(y21 + y12) + S2

φy11. (39d)

By imposing s11 = s22, to solve the indetermination in

the orthogonal vectors that constitute the subspace of the

eigenvalues with equal evolution rate, one obtains

φ = −1

2
tan−1

(
y11 − y22
y21 + y12

)

. (40)

In the subcritical damping case, this yields

φ =
1

2
tan−1

(
2ξω

ω2 − 1

)

(41)

and

s11 = s22 = e−ξωt cos
(√

1− ξ2ωt
)

(42a)

s12 = e−ξωt



1−
2ξ2
√

4ω2ξ2 + (ω2 − 1)
2

(ω2 − 1)
2
+ 4ω2ξ2 − (ω2 − 1)

√

4ω2ξ2 + (ω2 − 1)
2




ω

√

1− ξ2
sin
(√

1− ξ2ωt
)

(42b)

s21 = −e−ξωt



1 +
2ω2ξ2

√

4ω2ξ2 + (ω2 − 1)
2

(ω2 − 1)
2
+ 4ω2ξ2 − (ω2 − 1)

√

4ω2ξ2 + (ω2 − 1)
2




1

ω
√

1− ξ2
sin
(√

1− ξ2ωt
)

(42c)

whereas, in the critical damping case,

φ =
1

2
tan−1

(
2ω

ω2 − 1

)

(43)

(namely, Eq. (41) with ξ = 1), and

s11 = s22 = e−ωt (44a)

s12 =
(
1 + ω2

)
te−ωt (44b)

s21 = 0. (44c)

Of course, in both cases

det (S) = det (Y) = e−2ξωt (45)

(with ξ = ±1 in the critical damping case.)

By giving up the unitarity of the transformation matrices

U, the decomposition can be further improved, bringing

matrix S to take block-diagonal form (i.e. as close as possible

to diagonal form). In this case, the blocks can either be of

unit size (independent real eigenvalues), full 2× 2 (complex

conjugated eigenvalues), upper triangular (eigenvalues

with higher multiplicity), upper block-triangular (complex

conjugated eigenvalues with higher multiplicity)12.

The key point is that only when a pair of complex

conjugated eigenvalues is expected is the s21 element of

matrix S nonzero. When reduced to block diagonal form

and the s21 element is zero, the s12 element is nonzero only

when identical eigenvalues with multiplicity 2 are expected.

Thus, the real Schur decomposition provides an indication

that multiplicity can (and should) be exploited to improve

the convergence of LCE estimates.

To summarize, the real Schur decomposition:

• operates on real numbers;

• is a similarity transformation, thus the resulting matrix

has the same eigenvalues of the STM;

• robustly detects the existence of, and computes, real

eigenvalues with multiplicity greater than 1

• directly provides the square sub-blocks whose

determinant is required for the computation of LCE

estimates with multiplicity equal to 2 because the

related eigenvalues are complex conjugated.

A major drawback, so far, is that no practical manner has

been found to implement it in a form that prevents over- or

underflow of the transformed matrix. However, one should

consider that the proposed method appears to provide a

quicker convergence of LCE estimates than conventional

ones. This is particularly true for problems characterized

by “small” damping and thus potentially subject to higher

multiplicity of the LCEs. As a consequence, it requires
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the integration of the STM for shorter times, which may

contribute to mitigating the risk of over- or underflow.

Numerical Examples

In this Section we present three numerical examples aimed

at showing the convergence properties of the proposed

approach. The first example is the linear time invariant

damped oscillator which was discussed earlier. The second

one is a nonlinear, excited oscillator obtained by adding

a nonlinear spring to the previous problem. The third one

describes the flapping of a helicopter blade in forward flight,

which yields a linear time periodic problem.

These are first integrated in time using the implicit,

second-order accurate, A/L stable multistep integration

scheme recently discussed in13.

Subsequently, the incremental STM across each time step

is computed using a ‘leapfrog’ variant of the second-order

accurate, A-stable Crank-Nicolson scheme: considering

xk+1/2 = xk−1/2 + hẋk, (46)

where h is the time step,

ẋk = J(tk)xk, (47)

and

xk =
xk+1/2 + xk−1/2

2
, (48)

in short, one obtains

xk+1/2 =

(

I− h

2
J(tk)

)−1(

I+
h

2
J(tk)

)

︸ ︷︷ ︸

Ỹ(tk+h/2,tk−h/2)

xk−1/2, (49)

where Ỹ(tk + h/2, tk − h/2) is a second-order accurate

approximation of the STM from tk−1/2 to tk+1/2 of a linear,

time invariant problem, as discussed in14. Of course, other,

more accurate schemes can be used.

The LCEs are first estimated using the discrete

QR algorithm, directly exploiting the incremental STM.

Subsequently, the overall STM is computed and analyzed.

Its QR decomposition is first evaluated, to check whether

it over- or underflows; then, its real Schur decomposition

is computed. In all the problems reported in the following,

the STM rarely approached underflow; it occurs only for the

largest modulus negative LCEs in the time periodic blade

flapping example.

Linear, Time Invariant Problem:

Mass-Spring-Damper

The problem presented in Section is analyzed numerically,

using ω = 2π rad/s and ξ = 0.1 in Eq. (10). Figure 1

shows the LCEs estimated using the QR and the real

Schur decomposition. It is clear from Fig. 1(d) that the

LCEs estimated by the QR decomposition slowly converge

to the exact value, which could be easily obtained by

considering their average value. Conversely, the real Schur

decomposition always produces the exact value, right from

the first estimate, as illustrated in Fig. 1(c).
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Figure 1. Linear mass-spring-damper problem

It is clear from the plots in Fig. 1 that the mean

of the estimates computed with the QR decomposition

also provides the exact value directly from the beginning,

regardless of the value of t, according to Eq. (36).
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The LCEs estimated using the QR decomposition,

Eq. (26), are identical to those computed numerically and

shown in the plots of Fig. 1. The estimates obtained using

the SVD, Eq. (22), differ from those obtained using the QR

decomposition only in the first 0.1 s (not shown in the plots).

Nonlinear, Time Invariant Problem:

Mass-Nonlinear Spring-Damper

The problem of the previous section is modified by

introducing a cubic spring and a harmonic forcing term that

turns Eq. (10) into

q̈ + 2ξωq̇ + ω2
(
1 + αq2

)
q = A cos(Ωt), (50)

with Ω = 1. The results are identical to those of the previous

case when A = 0 and q(t) = 0 is considered as fiducial

trajectory, as one would expect, since matrix J is constant

and the same of that case. When non-zero initial conditions

are considered (Fig. 2), also the real Schur decomposition

yields a sequence of ‘bubbles’ (i.e. distinct LCE estimates)

alternating with coincident values, as shown in Fig. 2. It is

worth noticing that coincident estimates are still obtained

right from the beginning, although intermittently.

When forcing is introduced (Fig. 3), producing a periodic

motion of maximum amplitude of the order of 0.7, the

‘bubbles’ in the LCEs estimated using the real Schur

decomposition nearly vanish, producing very accurate

estimates right from the beginning (Fig. 3(c)). A markedly

oscillatory trend about the exact value persists in the

estimates obtained with the QR method (Fig. 3(d)).

Linear, Time Periodic Problem: Flapping of

Helicopter Blade

The problem of the flapping of a helicopter blade is analyzed.

This classical problem has been recently discussed in15

to exemplify stability analysis of LTP problems based on

Floquet-Lyapunov theory. The equation

β̈ + c(t)β̇ + k(t)β = 0, (51)

with

c(t) =
γ

8

(

1 +
4

3
µ sin(t)

)

(52a)

k(t) =

(

ν2β +
γ

8

(
4

3
µ cos(t) + µ2 sin(2t)

))

(52b)

represents the flapping of a helicopter blade; β is the blade

flap angle, γ is the Lock number (the non-dimensional

ratio between aerodynamic and inertial flapping loads),

µ is the advance ratio (the ratio between the helicopter

forward velocity and the blade tip velocity), νβ is the

non-dimensional flapping frequency, and t is the azimuth

angle; the dots represent derivation with respect to t.
Periodicity in the aerodynamic loads originates from the

interaction between the rotation of the blades and the

uniform flow caused by forward motion of the helicopter.

The dynamics of the blade have been oversimplified by

linearizing the kinematics, considering two-dimensional

steady aerodynamics, and neglecting reverse flow conditions;

at values of µ larger than 0.3 it merely represents an example

of LTP problem.
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Figure 2. Nonlinear mass-spring-damper problem with non-null

initial conditions and without excitation (α = 1, q(0) = 1, A = 0)

Clearly, a fiducial trajectory is β(t) = 0, which is obtained

for β(0) = 0 and β̇(0) = 0. Other trajectories can be

obtained starting from arbitrary initial conditions; when
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Figure 3. Nonlinear mass-spring-damper problem with null

initial conditions and with excitation (α = 1, q(0) = 0, A = w2)

β(t) = 0 is asymptotically stable, the solution converges on

it.
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Figure 4. Blade flapping, γ = 12

   -1

 -0.8

 -0.6

 -0.4

 -0.2

    0

  0.2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

LC
E

, r
ad

/s

µ

Floquet
QR

Schur

Figure 5. Blade flapping, γ = 6

Consider νβ = 1 and γ = 12, as in15. The LCE estimates

as functions of µ are reported in Fig. 4, compared with the

corresponding results obtained using the Floquet-Lyapunov

method for LTP problems (Eq. (9), see16–20 for a detailed

discussion). Results obtained using the discrete QR method

are equivalent to those obtained using Floquet-Lyapunov.

The corresponding results obtained using the real Schur

decomposition differ slightly, mostly because with γ = 12
(indeed an unusually large value for a helicopter rotor; γ is

about 16 times the damping factor of a damped oscillator) the

most negative LCE is very large in modulus. Thus, the STM

quickly underflows, and the estimation had to be stopped

relatively early.

Figure 5 instead refers to γ = 6, with LCEs correspond-

ingly closer to zero. In that case, the estimate using the real

Schur decomposition is fairly accurate.

In all cases, time integration has been performed for about

200 cycles, with an angular azimuth increment h = 0.04π
rad, corresponding to 50 steps per period. In many cases,

the complete STM underflew; consequently, LCE estimation

using the real Schur decomposition was performed on a

small data set. LCE estimation converges slowly, owing

to the periodicity of the problem. The results presented in

Figs. 4 and 5 are averaged over the final 4 periods for

estimates computed using both the QR and the real Schur

decomposition.
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Conclusions

This work showed how the real Schur decomposition can

be used to estimate the Lyapunov Characteristic Exponents

associated with a given fiducial trajectory of a nonlinear,

non-autonomous problem, when their multiplicity is greater

than one. Multiplicity either makes the convergence of

usual Lyapunov exponents estimation algorithms very slow,

or causes their failure. Multiplicity characterizes problems

with complex conjugated eigenvalues of the state transition

matrix, which are often characteristic of lightly damped

mechanical systems. The proposed approach based on

the real Schur decomposition can detect such occurrences

of multiplicity, and correctly estimates those Lyapunov

exponents. The properties of the proposed decomposition

have been illustrated analytically with reference to a simple

linear, time invariant problem, and numerically for nonlinear,

time invariant problems with respect to arbitrary fiducial

trajectories. Linear, time periodic problems have been

considered as well, comparing the results with equivalent

ones obtained using the Floquet-Lyapunov approach, namely

the real part of the logarithm of the eigenvalues of the

monodromy matrix. A major limitation of the proposed

decomposition is that no feasible way has been found yet

to formulate it in either incremental or differential manner.

Consequently, it requires the accumulation of the state

transition matrix, which can easily under- or overflow in

case of large modulus exponents. Attempts to overcome this

limitation are the object of actively ongoing research.

Nomenclature

f differential problem vector

m geometric multiplicity of a root

n algebraic multiplicity of a root

q generic coordinate

rij element ij of matrix R

sij element ij of matrix S

t the time

x state vector

x0 initial state vector

y state vector of auxiliary problem

yij element ij of matrix Y

A state matrix of linear, time invariant problem

I identity matrix

J derivative matrix of problem f with respect to state x

M generic matrix

N number of states

Q orthogonal matrix of QR decomposition

R upper-triangular matrix of QR decomposition

S block upper-triangular matrix of Schur decomposition

T period of time-periodic problems

U orthogonal matrix of Schur decomposition

Y state transition matrix

λi ith Lyapunov Characteristic Exponent

ξ damping coefficient

σi ith singular value

χ characteristic polynomial roots

ω characteristic frequency

Symbols that are specific of examples are defined in place.
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