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I. INTRODUCTION

A CCURATE modeling of three-limb three-phase trans-

formers remains a challenge even when studying
low-frequency transients and steady states. One reason for 
this is the influence of the transformer tank, which plays a 
two-fold role under unbalanced conditions. First, the magnet-
ically conducting tank walls provide a path for a part of the 
zero-sequence magnetic flux (flux in Fig. 1) and second,
the electrically conducting walls act as a virtual winding whose 
current encircles all three limbs.
The importance of taking into account the influence of the 

tank was pointed out in several studies [1]–[5], but no quantita-
tive model supported by measurements has yet been developed. 
To investigate the impact of the tank, three major alternatives 
are under consideration. The first is to use simplified equiva-
lent circuits analyzed by the method of symmetrical components 
[3]; the second employs topological transformer models [4],
[5]; and the third involves the finite-element modeling [2], [6], 
which is difficult to use in transient studies. A common feature 
of these approaches is the solution of a linearized problem. Al-
though linearization of the highly nonlinear system transformer
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Fig. 1. Magnetodynamic model of the tank wall.

tank greatly facilitates its simulation, it is preferable to have a
more comprehensive model, which could serve either as a refer-
ence for subsequent simplifications or else be used in its original
form. An interesting idea of modeling the distributed nature of
the core and tank was implemented in [7] where both of these
elements were represented, following R. J. Meredith, by finite
LR–sections (a type of Cauer circuit) [8]. Because of difficul-
ties in modeling hysteresis and excess losses by means of Cauer
circuits [9], we do not employ them to describe the core, prefer-
ring instead the use of a dynamic hysteresis model [9], which is
a convenient tool to reproduce these loss components. However,
the idea of using finite sections to model the tank inspired us to
employ first, for the same purpose, the diffusion equation, which
lies in the basis of constructing Cauer circuits [8]. In Section VI,
we shall return to a Cauer circuit to represent the tank wall in an
EMTP implementation of our model.

II. MODELING PRINCIPLE

A schematic representation of the magnetic circuit of a
three-winding YNynd core-type transformer and surrounding
tank walls is shown in Fig. 2, where the innermost delta-con-
nected unloaded winding ( turns per limb) plays the role
of the tertiary stabilizing winding (TSW). Magnetomotive
forces (MMFs) and , with indices A, B, C, repre-
sent wye-connected high-voltage (HV) and low-voltage (LV)
windings. The shaded elements and represent the
core limbs and yokes, which are described by the dynamic
hysteresis model [9] Flux paths in “air” (oil) are characterized
by linear reluctances shown by unshaded rectangles: for
paths between the limbs and the TSW, for paths in the
equivalent leakage channels between the HV and LV windings,



Fig. 2. Magnetic network of the transformer with tank.

Fig. 3. Field distribution in the tank wall.

and for paths between the LV winding and the TSW. The
way for determining and is discussed in Section IV.
Reluctances take into account the yoke-to-yoke fluxes

, , flowing vertically between the HV wind-
ings and tank. As shown in Section IV, the shunting reluctances

play a role when the yokes approach saturation.
To analyze the influence of the tank wall as a surrounding

winding and to avoid unnecessary complication of the transient
transformer model as a network element, it is sufficient to con-
sider the process in a central belt of the wall [10] (it is shown by
the shaded four pole in Fig. 2 and partly in Figs. 1 and 3). For
definiteness, the height of the belt is assumed to be equal to
that of the core window.
The benchmark regime for modeling the tank wall is the zero-

sequence test where the three-phase terminals of the HV or LV
major windings are joined at a common point and a single-phase
voltage is applied between this point and neutral, with the
opposite winding open-circuited (LV or HV, respectively). The
TSW in these tests may be either short- or open-circuited, giving
the leakage or magnetizing zero-sequence impedance , re-
spectively [1]. For both TSW connections, magnetizations of
all the limbs are equal, so there are no fluxes in the yokes.
For modeling, the most stringent test is that for the open TSW

when the magnetizing zero-sequence impedance should be re-
produced. For the HV excitation, the zero-sequence magnetic
fluxes leaving each limb are divided into two groups. The fluxes
of the first group (yoke-to-yoke fluxes , , and
in Fig. 2) are closed through the corresponding reluctances
and do not reach the tank (for this reason, these fluxes are not
shown in Figs. 1 and 3).
The fluxes , , and of the second group first pass

across the air gaps between the core and tank, then flow down
vertically in the tank walls, and finally return to the core via

other gaps. The paths of these fluxes are represented in Fig. 2
by three linear reluctances , which take into account both air
gaps. As can be seen in Fig. 2, the model is not intended to detail
the way in which the flux reaches
the tank wall (this study requires finite-element modeling of the
entire tank including its cover and bottom [6]).
It is difficult, if not impossible, to determine reluctances

separately for each limb. We therefore assume them to be all
equal and consider a fitting parameter of the model. The other
fitting parameter is the value of the reluctances , which are
also considered equal for all three limbs despite the tank asym-
metry and so there are different positions of limbs A, B, and C
with respect to the tank.
To join submodels of the core and tankwall, it should be noted

in Fig. 2 that fluxes , , and merge into a common
flux entering the wall.
The quantitative description of the distribution of and

through the wall of thickness is reduced to the integration of
the 1-D Maxwell equations [11] that link the magnetic field ,
the magnetic induction , and the electric field in a material
with conductivity ó and a static hysteresis relation .
Using the coordinate system in Fig. 3 and z-directed vectors

and , the penetration of a plane electromagnetic
wave into the wall depth is described by the partial differential
equation (PDE)

(1)

To combine (1) with ordinary differential equations (ODEs)
describing the lumped elements of the scheme in Fig. 2, it is
convenient to introduce a uniform grid on the segment of
the -axis (see Fig. 3), with nodes at at the inner and
outer wall surfaces, and grid step . The Neumann
boundary conditions at these surfaces ( and

) are determined by the values and of
the electric field at the first and last nodes.
Introducing grid functions and

and using the approach in [11], the PDE (1) is reduced
to simultaneous ODEs

(2)

We make a few clarifying remarks here. First, the cross-sec-
tional area of the tank wall is always several times less than that
of the core limbs. This means that the limbs remain unsaturated
in zero-sequence tests, and explains why the core material has
very little effect on [12]. It also causes the crucial role of the
tank steel in behavior, and, in particular, the peaked depen-
dencies of on the applied voltage or current (see Fig. 9 in
[13]). A suggestive observation made in [1] is that the peaked

curve is similar to a plot of the differential permeability
of the tank steel versusmagnetic field . On the other hand, a

calculated graph of is peaked only if the hysteretic prop-
erties of the steel are taken into account. In this case, the normal



Fig. 4. Major static loops and demagnetization spirals of the GO steel of the
core and the structural Steel 3 of the tank.

Fig. 5. Start-up transient in the wall at a terminal voltage of 40%.

magnetization curve of tank Steel 3 Fig. 4 is flat at small fields,
then gets steeper at moderate fields, and then again becomes flat
at large fields. For this reason, and in (2) are related in this
study through a recently proposed static hysteresis model [14].
The ODEs (2) are interrelated to the ODEs for the magnetic

and electric transformer circuits using Faraday’s law. For any
horizontal contour lying on the inner tank surface, we can write

(3)

where is the tank perimeter, and fluxes , , are
expressed by equations describing the magnetic circuit in Fig. 2.
These equations are written similarly to the usage in [15].
The electric field at the last node (at the outer surface of

the tank wall) is given by

(4)

Fig. 6. Fitting the transformer model to measured values of .

Fig. 7. Predicted curves versus values (dots) measured in [18].

Fig. 8. Per-phase positive-sequence equivalent circuit of a three-winding trans-
former with dummy inductance .

where flux leaving the tank depends on the reluctance
of the space beyond the wall: . For



Fig. 9. Inrush current in phase A.

definiteness, is initially set equal to the reluctance of the
saturated wall.
By comparing the solutions of (2) obtained for different grid

spacings, we find that 25 is sufficient to obtain smooth cal-
culated curves. Together with the ODEs of the magnetic net-
work in Fig. 2 and the ODEs of external electrical circuits,
the model as a whole is described by 39 ODEs. Since these
ODEs are both intricate and cumbersome, we omit them in this
paper. Instead, a circuital equivalent of the model is proposed
in Section VI.

III. PRELIMINARY FITTING OF THE MODEL

It is convenient to start the fit of the model to values of
measured from the HV side. In this case, the LV winding and
the TSW are open-circuited, and the only MMFs in Fig. 2 are
sources . This means that shunt reluctances , , and

are shunted by the unsaturated limbs (the elements in
Fig. 2). This eliminates their influence and allows their evalua-
tion to be postponed to Section IV.
It is difficult to find the magnetic properties of tank steel in

any available sources. We were able to locate only the major
hysteresis loop of structural Steel 3 [16]. It is characterized by
a coercive field 400 A/m and resistivity 0.14 m.
(Its conductivity 7.14 is close to that in [6].)
As with any history-dependent representation of hysteresis,

the model [14] used here requires well-defined initial states for
the core and tank. To define these states, the calculation begins
by modeling the demagnetization procedures for both tank and
core steels. Modeled demagnetization spirals of the structural
Steel 3 used for the tank and the grain-oriented (GO) steel of
the core are shown in Fig. 4.
The turning points and reversal curves of the procedures are

copied into the memory for each node of the wall grid and core
branches (limbs and yokes), and then updated independently for
every element during the transient calculation.
If the properly-demagnetized material is magnetized in, say,

the “positive” direction and if the history-dependent hysteresis

model is used, then the curve in the first quadrant will
pass successively through all of the turning points of the demag-
netizing spiral. The normal curves obtained in this way for both
steels are included in Fig. 4.
When modeling the zero-sequence test, a single-phase ter-

minal voltage is applied to the transformer. To short the tran-
sient and obtain symmetrical flux densities in the core and tank,
this sinusoidal voltage should reach its maximum at the time
of application. Then three to five periods are usually sufficient
to reach a steady-state flux in the wall depth. This can be seen in
Fig. 5, which shows flux densities at both surfaces of the mod-
eled wall ( and ) and at its mid-thickness .When the
transient in the wall is complete, the zero-sequence transformer
impedance is calculated in percent in accordance with the
IEEE Standard [17].
The fitting of the model to experimental data is illustrated in

Fig. 6 where points 1 to 4 represent the values of the zero-se-
quence magnetizing impedance measured at different voltages
(in percent to the rated phase voltage) on the HV side of a
25-MVA transformer [18].
The fitting parameters that are employed ( and ) can be

characterized by the ratios and .
It can be seen in Fig. 6 that any number of pairs of and

can guarantee that the calculated -versus-voltage curve
passes through measured point 1. However, only one
pair can ensure that this curve will pass through all four mea-
sured points and thereby adjust the model.
The predictive abilities of the adjusted model can be seen in

Fig. 7 where curves calculated with and without the TSW
agree very closely with values obtained in experiment [18]
for HV and LV excitations.
Although a decrease of in the presence of TSW is a well-

known effect, we see a small variation of even in this case.
It is also interesting and apparently paradoxical that the flux
distribution shown in Fig. 5 takes place during the absence and
presence of the TSW.
It is observed at this stage that the values are insensitive to
. A two-order decrease in has no effect on at

0.6 p.u., and results in less than a 2% decrease in at 1
p.u. at the open TSW.

IV. MODELING FLUX LEAKAGE

In any transformer with three concentric windings (1, 2, 3)
and binary short-circuit inductances , , , referred
to as a common number of turns (say ), there is an inequality

because of the finite thicknesses of the
middle winding 2 [19]. To satisfy this inequality, two equivalent
methods can be employed. The first (used in the present model)
is to use additional inductances in the per-phase positive-
sequence circuit in Fig. 8[4], while the second is the introduction
of magnetic coupling between inductances and in its
horizontal branches [19].
The positive-sequence equivalent circuit [4] contains a posi-

tive inductance in both the horizontal branches, and a neg-
ative inductance in the vertical branch. This is shown in
Fig. 8, where the large magnetization inductances of the unsat-
urated core and the small winding resistances are omitted for
clarity.



As can be seen in Fig. 8 and in the circuital (dual) scheme de-
veloped in Section VI, the negative inductance is always
in series with the positive inductance . So the resulting in-
ductance of any path including is positive. This explains
the stability of the model.
It is obvious that the circuit in Fig. 8 matches all terminal

inductances , , if

(5)

After calculating , the leakage reluctances in Fig. 2 are found
as and .
The negative inductances can be represented in Fig. 2 by
the negative reluctances in parallel with the
MMF sources , , and [4]. As an alternative
(employed in the present model), these inductances are
used as elements of the electrical circuit (not shown in Fig. 2)
where they are included in series with themiddle (LV)windings.
The linear reluctance in the network in Fig. 2 charac-

terizes the gap between the innermost winding (TSW) and the
core. It can be noted that (and corresponding inductance)
is not a “leakage” element and cannot be measured directly. For
this reason, we can set it equal to [20]. This means that the
reactance of the innermost channel and the
reactance of the nearest leakage channel are
linked by the factor as was
postulated in [20] and then employed in some other studies.
The only model parameter remaining to be described at this

point is the value of the air (linear) reluctances in parallel
with the yokes. To choose , the aforementioned regime can
be considered. This is the case when the ideal source of the
three-phase voltage is connected to the LV windings with other
windings kept open-circuited (at the open TSW, in all
of the previous formulas).
For definiteness, let the voltage of phase A cross zero at 0.

Then, the inrush current in phase A is the highest, and only this
current is considered in this section. Since no information
about the inrush current properties of this transformer is given in
[18], we can evaluate by using only indirect considerations.
The first numerical experiment was to calculate startup

transients in the absence of . The corresponding current is
shown in Fig. 9 by the dashed curve 1. Fig. 10 shows flux den-
sities in the lateral limb A (bearing the winding A) and in the
yoke AB adjacent to this limb. Although curve 1 in Fig. 10 is
correct in the sense that the flux-density peak in the yoke
is always less than that in the limb, an obviously overestimated

is observed in the model without . Its value
2.134 T) is markedly higher than that 2.025 T) at which
the steel employed reaches technical saturation [15]. So in the
absence of , the following nonphysical situation occurs
when the yoke is heavily saturated: there is a high flux density
in the yoke (characterized by the differential permeability ),
but there is no magnetic flux surrounding the medium with the
same permeability .
This contradiction can be eliminated by introducing reluc-

tances which allow the flux to be divided between the yoke
itself and the space beyond the yoke. It is convenient to relate the
value of to the reluctance of the saturated yoke . It was

Fig. 10. Flux densities in the limb “A” and the adjacent yoke.

found numerically that at 0.08, the first current
peak (solid curve 2 in Fig. 9) is consistent with that calculated
with Schwartz’s formula [15] (it is shown as the dotted hori-
zontal). At such an , the flux density in the saturated yoke
does not exceed 2.041 T (curve 2 in Fig. 10), and the flux in
is about half of that in the yoke. The inset of Fig. 9 shows the
decay of inrush current and illustrates the stability of the model
over the long term.
To complete the theme of inrush currents, we note that the

current calculated in the presence of the TSW (curve 3 in Fig. 9)
has markedly lower peaks than those calculated with the open-
circuited TSW.

V. PROCESSES IN THE CENTRAL BELT OF THE TANK WALL

The measurements and calculations in Fig. 7, carried out for
the open TSW, illustrate a strong dependence of on the ap-
plied voltage. This raises a question about the reliability of re-
sults obtained with linearized tank models.
The first peculiarity to be investigated is the skin effect in the

magnetically nonlinear tank material. It is worthwhile to note
in Fig. 5 that peak flux densities at the mid-thickness of the
wall and its inner surface are not too different (at 40%),
contradicting the behavior predicted by the linear theory. The
reason is the saturable character of the dependence of
the tank steel. As the surface layers approach saturation, their
reluctances increase resulting in the displacement of the mag-
netic flux into the depth of the wall. This leads to a leveling of
the peak flux densities over the wall cross section. Fig. 11 de-
picts themaximum induction values over the tankwall thickness
calculated for a wide range of the terminal voltages during the
zero-sequence tests. At voltages below several percent, a typ-
ical skin effect is observed, that is, there is no magnetic flux in
the middle of the wall. As the voltage increases, the flux distri-
bution becomes more uniform, as described before.
Regarding the similarity between the peaked curves in Fig. 7

and the graph of the differential permeability of the tank steel
versus magnetic field [1], we see this resemblance to be qualita-
tive rather than quantitative. Since the curves in Fig. 7 are func-
tions of voltage (not of the field), the terminal voltage is used as
the variable parameter in the subsequent analysis. Fig. 12 shows



Fig. 11. Flux-density profiles over the tank wall thickness.

Fig. 12. Hysteresis loops at the inner surface of the tank wall.

steady-state hysteresis loops at the inner surface of the wall cal-
culated at the per-unit voltages of 0.5, 1.3, and 3%. Since the
differential permeability changes by orders of magnitude during
the cycle, its average value was used to characterize a loop. It is
determined by the tangent of the slope of the straight line con-
necting the loop tips. The line A-B in Fig. 12 is drawn for the
loop obtained at 1.3%, which has the highest slope among
all loops of the surface node 1, that is., the highest average rel-
ative permeability 937.
The plots of calculated for the first five nodes of the

25-node wall grid are shown in Fig. 13. For comparison, the
highest -curve of Fig. 7 is also shown in Fig. 13. It is properly
rescaled (multiplied by 10) for comparison with the
profiles.
It is seen in Fig. 13 that the curve reaches its maximum

when the average permeabilities in the first three nodes are also
near their maxima. In this context, it is instructive to analyze
the distribution of the zero-sequence flux between the tank
(flux in Fig. 2) and the direct air paths from yoke to yoke

Fig. 13. Average permeabilities in the first five nodes versus terminal voltage.

Fig. 14. Zero-sequence flux and its components and .

(flux ). The maximum values
of flux and its components and , calculated at the
HV excitation, are shown in Fig. 14. Because of the phase shift
between and and owing to the nonsinusoidal waveform
of , the maximum of is not equal to the sum of maxima
of and . Also, a small flux appears beyond the tank
at large voltages.
It is remarkable in Fig. 14 that, at voltages less than 7%, flux
in the tank is somewhat higher than that from yoke to

yoke. So the role of the tank as a magnetically conducting ele-
ment dominates at low voltages. As the voltage increases, more
deep “layers” of the tank reach saturation and its reluctance in-
creases. At the same time, the penetration of the flux into the
wall induces eddy currents in its deeper layers requiring addi-
tional current from the voltage source to overcome their demag-
netizing effect. The rise of the source current manifests itself in
decreasing .
The conventional boundary between the tank permeance and

the tank conductor (virtual winding) is seen as the peaks in
curves in Fig. 7 calculated without the TSW. The calculations



Fig. 15. Influence of the resistivity and hysteresis of the tank material on the
zero-sequence impedance.

represented in Fig. 15 show that when the tank is made of al-
loyed steel m), this boundary is shifted to higher
voltages, and the values of are increased.
Finally, considering the average permeabilities of the various

minor loops in Fig. 12, it is expected that the peaks of the
curves in Fig. 7 can only be reproduced if the hysteretic prop-
erties of the tank material are taken into account. If the anhys-
teretic curve of the tank steel is employed instead of the hys-
teresis model (this curve can be constructed by a “horizontal”
averaging of the major loop branches), the model predicts a
monotonically falling curve, as shown by the dashed line
in Fig. 15. On the other hand, Fig. 15 shows that curves cal-
culated using both the hysteretic and anhysteretic tank models
practically coincide at voltages exceeding 5%.

VI. MODELING IN EMTP–ATP

By means of the widely used duality transformation and the
approach proposed in [21], the circuital equivalent of the mag-
netic model in Fig. 2 can be shown as depicted in Fig. 16, where
the linear inductances are determined by the cor-
responding reluctances in Fig. 2. Nine ideal transformers (IT)
serve to relate the model parameters to the number of turns
of the LV (intermediate) winding.
The five dynamic-hysteresis-model (DHM) elements are

EMTP-ATP implementations of the DHM [9], which consists
of a static hysteresis model [14] and dynamic components
that describe classical and excess losses in the core limbs and
yokes [9]. (Details of the DHM implementation in ATP will be
published elsewhere.)
When the switch S is open, resistor makes

the TSW nonconducting, and the transformer becomes two
winding. The three grounding resistors provide a
means to eliminate the effect of the floating subnetwork of the
TSW. Resistors , , and are winding resistances. The tank
wall is represented in Fig. 16 by a ladder circuit (LC) consisting
of 24 T-sections, corresponding to 25 (see Section II). The
LC resistors are calculated from .
Since a nonhysteresis tank representation can be used to

model this transformer at 5%, the anhysteretic curve
of the tank steel is used in this section. This curve is

transformed into the flux linkage versus current curve
of the nonlinear inductances of the LC using the relationships

and . The latter formula can also

Fig. 16. (a) Equivalent electric circuit of a three-limb transformer. (b) Tank
wall model connected through terminals P1-P2.

Fig. 17. Currents (fields) in sections 1, 3, 5, 7, 9, 11, and 13 of the ladder circuit.

be used to recalculate the LC currents to give the magnetic-field
values for corresponding “layers” of the tank wall.
The currents in the first few odd-order cells of the LC are

shown in Fig. 17. Similar to the induction profiles in Fig. 5,
these currents were calculated for 40%. This was done to
show the different manifestations of the skin effect with respect
to the induction and field in the tank wall. Although the field
amplitudes decrease rapidly with depth (Fig. 17), they remain
large enough to maintain saturation in the inner layers of the
wall (Fig. 5). The results obtained with the circuital model of
Fig. 16 were verified by calculations for the magnetic network
that is employed here as a reference model. If the transformer



capacitances are significant, they can be included in the afore-
mentioned inductive models, as in [5].

VII. CONCLUSION

This paper proposes a new conceptual model of a three-phase
three-limb core-type transformer. It shows that the electrically
and magnetically conducting tank walls play the roles of a
magnetic shunt and a virtual winding. It is shown that peaked
-versus-voltage curves can be reproduced only when the

hysteretic properties of the tank steel are taken into account.
The fitting of the model is achieved by properly dividing the
zero-sequence magnetic flux between the flux in the tank walls
and the yoke-to-yoke flux in air.
Postponing technical applications of the model to future

publications, we note that it provides reliable explanations of
the transformer behavior under transient and steady-state con-
ditions. The model allows one to observe phenomena that are
difficult to predict using simple linear approaches and theories.
Among its other attributes, this makes the model an appropriate
tool for evaluating the role of the tertiary stabilizing winding in
three-phase Y-Y-connected power transformers.
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