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Reduced order models for CFD-based, nonlinear

aeroelastic problems

Andrea Mannarino∗, Earl H. Dowell†

In this work, a nonlinear, state-space based identification method is proposed to de-

scribe compactly unsteady aerodynamic responses.

Such a reduced order model is trained on a series of signals which implicitly represent the

relationship between the structural motion and the aerodynamic loads. The determination

of the model parameters is obtained through a two-level training procedure, whereas in

the first stage the matrices associated to the linear part of the model are computed by a

robust subspace projection technique, while the remaining nonlinear terms are determined

by an output error minimization procedure in the second stage.

The present approach is tested on two different problems, proving the convergence towards

the reference results obtained by a computational fluid dynamics solver in linear and non-

linear, aerodynamic and aeroelastic applications, whereas the aerodynamic reduced order

models are coupled with the related structural mechanical systems, demonstrating the abil-

ity of capturing the main nonlinear features of the response.

The robustness of the reduced order model is then tested considering a series of inputs with

varying amplitude and frequency outside the range of interest and computing aeroelastic

responses with non-null pre-twist angles.

Nomenclature

xa Aerodynamic state

xs Structural dynamics state

Aa, Ba, Ca, Da Linear sub-part of the reduced order model

Ea, Fa Nonlinear sub-part of the reduced order model

φ (xa) Nonlinear functions of the aerodynamic reduced order model
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fa Aerodynamic loads

q∞ =
1

2
ρ∞U2

∞ Dynamic pressure

h, θ Plunge and pitch degree-of-freedom

βLE, βTE Leading and trailing edge control surfaces deflection

Na Number of aerodynamic states, size of xa

Nout Number of aerodynamic output, size of fa

b Half chord, c/2

ωi Natural frequency of the i-th degree of freedom

V =
U∞

ωθb
√
μ

Reduced velocity

μ =
m

πρ∞b
Mass-to-fluid ratio

t Continuous time

τ = ωθt Non-dimensional time

k =
ω c

U∞
Reduced frequency

Vbif Bifurcation speed

I. Introduction

Recently, reduced order models have been gaining more and more relevance in different branches of

computational physics. The ability of capturing the main features of complex phenomena making use

of a small number of degrees of freedom is particularly appealing in time critical applications. Aerospace

industry may as well benefit from this kind of approach. Within this context, Computational Fluid Dynamics

(CFD) is probably the most reliable tool for evaluating aerodynamic loads in the transonic regime during

preliminary or even conceptual design stages of an aircraft. Even with the impressive improvements of

modern computational methods, these computations are still too slow to be employed in industrial analyses,

where sensitivity calculations and control law designs must be carried out for a large number of configurations.

The situation is even more challenging when the interaction between structural flexibility and aerodynamic

loads is taken into account, leading to aeroelastic models and dynamic response calculations. In this case,

a wide spectrum of phenomena could be of interest, i.e. identification of the flutter point and evaluation of

eventual limit cycle oscillations.

It is therefore of great importance to develop Reduced Order Models (ROM) from high fidelity numerical

schemes to permit the use of nonlinear aerodynamics in a far wider analysis and design spectrum, while

maintaining a reasonable level of accuracy. Reduced order models are not only encountered in aerodynamics,
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in fact they are of great interest also in electromechanics [1, 2]. In structural dynamics such a concept is

relatively old, used for many purposes ranging from the design of a test-analysis model to provide a basis for

comparing computational and experimental results, to the alleviation of the computational burden associated

with large-scale finite element models [3].

In the last decade, a significant effort has been directed toward developing compact models of transonic

aerodynamics and computational aeroelastic problems [4, 5, 6]. Those ROMs must be able to capture

the main features of the nonlinear problem under consideration, while maintaining a limited number of

degrees of freedom. In the aeroelastic community, the most popular approaches include Proper Orthogonal

Decomposition (POD) [5, 7], Harmonic Balance (HB) [6], generalized interpolation methods, e.g. Radial

Basis Function (RBF) or Kriging interpolators [8, 9], Volterra theory [10, 11] and Neural Networks (NN),

both static [12] and dynamic [13, 14].

The above listed methods tackle the problem of model order reduction in different ways. For example,

POD and HB can be considered as subspace projection methods. In particular POD is useful when there is

the need of reconstructing the flow variables in several locations inside the computational domain, while a

huge amount of information would be wasted if only the estimation of the aerodynamic loads is of interest.

On the other hand, HB is particularly efficient in the computation of periodic solutions, but its application

range has not been extended to the evaluation of random or transient responses as yet. RBF and Kriging

interpolators have been mainly employed for evaluating the stability boundary of aeroelastic systems when

CFD-based aerodynamics is considered [8, 9]. They have proved to be quite versatile in unsteady aerodynamic

predictions as well [15]. Concluding this brief review, Volterra and NN can be classified as identification

methods: trained upon simple input-output data sets, they do not require any kind of special integration

with CFD software. Volterra series have shown some difficulties in the identification of higher order kernels

[4, 10, 16], while NN tackle the identification problem in an implicit nonlinear way, without taking into

account any linear contribution. This fact could introduce modeling errors, especially in the estimation of

the system bifurcation point.

The method that will be presented in the following sections will follow a NN-based approach [14], though

structuring the aerodynamic model equations as a combination of linear and nonlinear contributions. In this

way, the linear part will be mainly responsible for the estimation of the system bifurcation point, while the

nonlinear terms will shape limit cycle oscillations beyond such a critical point. Instead of using a brute force

identification of the aerodynamic loads, the proposed approach permits an improved physical understanding

of the considered problem, as well as being a generalized reduced order modeling technique, applicable to a

broad range of unsteady problems in computational physics. Also the training phase is different from the one

discussed in Ref. [14], with the present approach that leads to a faster generation of reduced order models
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than the technique detailed in Ref. [14], while maintaining a good level of accuracy.

The present work has multiple goals: present a novel, physics-based ROM technique, evaluate the im-

portance of a correct training signal in the nonlinear domain, and finally perform convergence analyses in

both aerodynamic and aeroelastic applications to determine the ROM sensitivity to parameter changes.

II. Reduced Order Modeling

The proposed identification technique is here directly applied to a generalized aerodynamic problem,

however the same approach can be followed in several branches of physics. Furthermore, the data source on

which the model will be trained may be generated in different ways. In this case only CFD-based results

will be analyzed, but experimental data could also be employed as a training signal. Using the following

identification-like approach, it is possible to structure the dynamic equations of the reduced order model in

any way the analyst would prefer. We here present the following model:

⎧⎪⎪⎨
⎪⎪⎩
ẋa = Aaxa +Baxs +Eaφ (xa)

fa/q∞ = Caxa +Daxs + Faφ (xa)

(1)

where xa and xs are the aerodynamic and structural dynamics state, Aa,Ba,Ca,Da,Ea,Fa are the ROM

parameters, fa are the aerodynamic loads and q∞ is the flight dynamic pressure. The vectors φ (xa) are the

nonlinear contributions to the ROM dynamics, where each component is a hyperbolic tangent function of

the input, i.e. φi (xa,i) = tanh (xa,i). The dimension of the aerodynamic state will be referred as Na. The

problem is formulated in the continuous time domain in order to permit variations in the integration time

step depending on the analysis under consideration. For example, the time discretization can be modified

during the design of a control law where the effect of different sampling times on the closed-loop system

may be of interest. Such a variable-time-step feature could also be exploited in the search for limit cycle

oscillation solutions, as reported in [14]. Equation 1 represents a nonlinear model in state space form, where

the input is the structural dynamics state xs while the output is the generalized aerodynamic load fa. An

aerodynamic state is introduced to represent the intrinsic memory of the dynamic model, and in general it

does not have any particular physical meaning. Nonlinear functions like the one employed in this case have

already proved their potential in system identification [17].

Note also the particular structure of Eq. 1, where the model is nonlinear in the aerodynamic state

only, while it is linear with respect to the structural state. In this way we are not forcing the system to

depend nonlinearly on the input, as a brute force NN approach would have done, instead we are taking into

consideration the physics of the problem. In fact, after running several CFD-based aeroelastic simulations, it
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has been noticed that in the transonic regime large amplitude limit cycle oscillations are induced by the large

motion of the shock wave on the moving body. Therefore nonlinearities are introduced in the model even

when a linear structural system is considered. This means that the basic nonlinear behavior is introduced

by the aerodynamic system only, and this is the reason of the linear dependence on the structural state in

Eq. 1.

Finally, we would also point out the versatility of the present reduced order model. Even if it will be

here used for predicting nonlinear response due to fluid-structure interaction, its parameterization could also

allow to represent other nonlinear aerodynamic phenomena, such as vortex shedding [18].

II.A. Reduced order model training

The matrix entries of Eq. 1 must be determined through an optimization procedure. Because of the dynamic

behavior of the model, and since the problem is formulated in the continuous time domain, simple linear

least square approaches cannot be used here [10, 19].

The training of the reduced order model is tackled in two main stages. The first identifies the linear sub-part,

i.e. matrices Aa, Ba, Ca, Da, with a classical linear subspace projection technique [20]. The second stage

of the training refines the reduced order model response by adding the nonlinear terms to the optimization

procedure, i.e. matrices Ea and Fa. Because of the intrinsic nonlinearity of the model, a generalized

optimization method, such as the Levenberg-Marquardt (LM) [21] method is employed.

We remark that once the linear sub-model is trained, the nonlinear optimization will change only the

terms related to the nonlinear part. Note however that these terms will contribute to the system linearization

around the origin, modifying the eigenvalues between the first and second training stage. Therefore, from

a rigorous mathematical viewpoint, we are not allowed to state that the linear and nonlinear phases are

separated. This could be achieved considering nonlinearities of the type tanh (x) − x, which present a

null contribution at the origin when they are linearized. This approach is currently under the authors’

consideration, but will not be pursued here. Nevertheless, after running several ROM trainings, it has

been noticed that the most critical eigenvalues, i.e. the ones closest to the origin, remain substantially

unchanged between the two training stages. Greater variations are experienced away from the origin, but

without influencing the behavior of the linearized system to any substantial degree between the two phases,

especially in the identification of the bifurcation point, as will be seen in Section III.C.

Thus dynamic linearized analyses can be performed right after the first part of the training, while the

nonlinear contribution will mainly change the higher frequency eigenvalues, i.e. the ones farthest from the

origin, improving the response fidelity.

As a first step, the training signal is generated by means of a CFD code. The type of training signal
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chosen in our simulations will be detailed in the next section, but the proposed procedure would be able to

treat signals generated by experimental data as well. Such a signal is made up by input-output data pairs,

where the input is the structural motion while the output are the aerodynamic loads, and it is given as input

to the following linear model: ⎧⎪⎪⎨
⎪⎪⎩
ẋa = Aaxa +Baxs

fa/q∞ = Caxa +Daxs

(2)

This training phase makes use of a subspace projection technique to determine the matrices. The algorithm

determines state sequences xa through the projection of input and output data, xs and fa/q∞ respectively.

These state sequences are outputs of non-steady state Kalman filter banks applied in parallel to the training

data. From these results it is possible to determine the state space system matrices. Such an algorithm

has proved to be always convergent (non-iterative) and numerically stable since it only makes use of QR

algorithm and Singular Value Decompositions, as reported in Ref. [20].

The second stage of the training introduces the nonlinear terms. Because of the intrinsic nonlinear

formulation of the model, a classical linear identification method cannot be employed. In this case, we

employ the LM method to determine the entries of the matrices multiplying the nonlinear terms, but another

optimization approach could have been used. Collecting the entries of the matrices Ea and Fa in a single,

unknown vector p, the following system of ordinary differential equations must be solved until the output

error e(t) = fCFD
a (t)− fa (t;p) is arbitrarily small:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋa = Aaxa +Baxs +Eaφ (xa)

ẋa/p =
(
Aa +Eaφ (xa)/xa

)
xa/p +Ea/pφ (xa)

fa/q∞ = (Caxa +Daxs + Faφ (xa))

fa/p/q∞ =
(
Ca + Faφ (xa)/xa

)
xa/p + Fa/pφ (xa)

(3)

Analytic expressions for the sensitivity terms xa/p and fa/p are provided in the Appendix. Stacking the
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values of the computed e and fa/p at each simulation time step ti in the two following quantities:

g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e (t1)

e (t2)

...

e (ti)

...

e (tN )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e/p (t1)

e/p (t2)

...

e/p (ti)

...

e/p (tN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fa/p (t1)

fa/p (t2)

...

fa/p (ti)

...

fa/p (tN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

the vector p is updated at each iteration through the solution of the following least-square problem:

(
JTJ+ λI

)
(pnew − pold) = −JTg (5)

being λ a regularization parameter, usually very small, used to keep the left hand side matrix always non-

singular [21]. The same training signal is presented to Eq. 3 at each optimization iteration, the time histories

of xa and fa are computed, and the value of p is updated through Eq. 5. The iterations are stopped when

a sufficiently small euclidean norm of the output error ||e||2 is achieved or when the variation between two

iterations is smaller than a user-defined threshold.

II.B. Training signals

The design of training signals in nonlinear identification problems is not as simple as its linear counterpart.

In fact, it is not sufficient to excite the desired frequency range to obtain physically meaningful ROMs, but it

is also necessary to perturb the system with signals with suitable amplitudes. Furthermore, the superposition

principle cannot be applied in these cases. In order to overcome this obstacle, the problem must be tackled

from a different prospective. From the linearized analysis, often available in preliminary design concepts, we

may take advantage of knowledge of two very important parameters: the flutter frequency and the aeroelastic

eigenmode at the flutter point.

The first parameter helps us to determine the frequency range to be excited by the training signal. As

a matter of fact, at the generalized force level, aerodynamic nonlinearities are substantially smooth, e.g.

they change the system properties in a regular way. The same cannot be said about the so called ’hard’

nonlinearities, e.g. structural friction and free-play [22], which are able to switch the system behavior in a

discontinuous manner. Taking this assumption as valid, the training signal is designed to excite a relatively

broad frequency range, covering the critical frequencies of interest. Even in presence of ’hard’ nonlinearities

this approach would still be valid, taking care of broadening the signal frequency content. Also, signals
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with a wide frequency content would be suitable in analyzing a large spectrum of responses, thus being

particularly useful in control law designs.

The aeroelastic mode at the flutter point leads us to the determination of proper signal amplitudes. Fixing

the amplitude of one degree of freedom, all the others are determined, since the eigenvector is defined. So,

even running a coarse CFD-based simulation, or with a trial-and-error approach, the amplitude range for

the training signal can be easily determined.

Finally, the type of training signal has to be chosen. Since the superposition principle is not valid, the

system has to be simultaneously excited in all of its degrees of freedom. This has been verified through

extensive simulations. Furthermore, in the authors’ experience, step sequences and frequency sweep signals

have not proven to be good excitations in the present applications. This is in contrast with the results

obtained in [16, 23, 11], where Volterra series are used to predict unsteady responses of nonlinear CFD-based

aerodynamic simulations. In the present case, random-like and noisy sweep signals have always produced

physically meaningful ROMs, and this is in accordance with the results reported in [10]. It is the authors’

opinion that to identify large amplitude limit cycle oscillations, a series of step and impulse functions is not

adequate. This kind of signal would be useful in the identification of weak nonlinearities. In the present

case, the moving shock wave undergoes very large displacements, eventually disappearing and reappearing

during a cycle, as shown in Figure 1 in the case of an airfoil experiencing LCO. It is evident that when the

shock on the upper surface reaches its maximum strength the one on the lower surface is absent, and vice

versa. This kind of behavior can be captured better by the training signals used in this work. An example

of this kind of signal is given in Fig. 2.

(a) Maximum aft position of the shock on the airfoil upper
surface.

(b) Maximum aft position of the shock on the airfoil lower
surface.

Figure 1: Oscillation of the shock wave during an LCO at V = 0.775.
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(a) Random-like signal

0 2 4 6 8 10

−0.1

−0.05

0

0.05

0.1

Time [s]

h/
c

(b) Disturbed sweep signal

Figure 2: Sample of training signals able to produce physically meaningful ROMs.

A detailed definition of these signals is provided here. The so called random-like signal is generated by

first reproducing a white noise sequence with assigned root mean square and then a second order filter,

of the type G(s) =
ω2
0

s2 + 2ξω0s+ ω2
0

is applied to it, with ξ = 1 and ω0 dependent on the problem under

consideration. The resulting signal is a smooth function of time which persistently excites the amplitude

and frequency range of interest.

The noisy sweep signal is a classical frequency sweep signal disturbed in both amplitude and phase by a

white noise with a small root mean square, defined by:

u(t) = (A+wgnA) · sin
(
ωi +

ωf − ωi

T
t+ φ+wgnφ

)
, t ≤ T (6)

Here A is the signal amplitude and wgnA is the related disturbance, ωi and ωf are the initial and final

frequency of the signal, T is the simulation time, φ is the signal phase and wgnφ is the related disturbance.

It might be thought that a signal similar to a limit cycle oscillation would help the ROM to identify this

kind of behavior once coupled with a mechanical system. According to the results of this work, this is

indeed the case, but only when such a signal contains a sufficient level of noise in amplitude and phase. In

fact, it is found that a training signal which considers an input of harmonic oscillations from the aeroelastic

LCOs leads to an erroneous identification of the system nonlinear behavior, always resulting in unbounded,

unstable aeroelastic responses, as if the identified system is linear. Thus a random-like signal is selected in

the following analyses. The excited frequencies and amplitudes can be chosen a priori, selecting the lower

and upper values of the frequency range and the root mean square of the signal. Furthermore, using a white

noise based signal we are assured that the time history of the various input channels will not be correlated,

as shown in Figure 3, increasing the chances of obtaining meaningful identification results.
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Figure 3: Cross correlation between plunge and pitch training signals in the two degree-of-freedom case.

III. Sample Applications

III.A. Aerodynamic solver

The aerodynamic sub-system is modeled by a cell centered finite volume scheme, using the aerodynamic

code AeroFoam, developed at Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano [24].

AeroFoam is a density-based compressible Unsteady Euler/Reynolds-Averaged-Navier-Stokes solver, the Eu-

ler option being selected in this work. Among its features there is an aeroelastic interfacing scheme, based on

a moving least square interpolation strategy, providing all the needed functionalities to set the appropriate

aerodynamic boundary conditions imposed by a deforming structure, while driving a connected hierarchi-

cal mesh deformation within an Arbitrary Lagrangian Eulerian formulation. An extended discussion of its

aeroelastic capabilities can be found in [25].

III.B. Test case

The previously presented technique is here applied to a plunging and pitching NACA 0012 airfoil, flying at

M∞ = 0.8 in air. The airfoil is equipped with two movable control surfaces, at the leading and trailing edge,

with the two hinges placed at 15% and 75% chord respectively. A schematic representation of the system

is depicted in Fig. 4. The same structural model is employed in the following two examples, where at first

the control surfaces are held fixed, reducing the number of structural degrees of freedom to two, while in the

second case all of the airfoil parts are left free to move.

The computational meshes used in CFD calculations are depicted in Fig. 5. After a convergence analysis

based on static aerodynamic data, the C-type topology mesh around the airfoil is discretized with 30000

elements in the case of the two degree-of-freedom model, as shown in Fig. 5a. Regarding the four degree-

of-freedom case instead, the mesh around the airfoil is discretized with 32000 elements, increasing the cell
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Figure 4: Typical section.

density near the control surfaces hinges, in order to track the local surface motion with higher accuracy, as

shown in Fig. 5b. The system of ordinary differential equations governing the dynamics of the aeroelastic

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5

x/c

z/
c

(a) Two degree-of-freedom model - mesh close-up.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5

x/c

z/
c

(b) Four degree-of-freedom model - mesh close-up.

Figure 5: Different meshes used in CFD calculations.

system is given in Eq. 7, while the structural parameters are reported in Table 1.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 xθ xβLE
xβTE

xθ r2θ j2βLE
j2βTE

xβLE j2βLE
r2βLE

0

xβTE j2βTE
0 r2βTE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

hττ/b

θττ

βLE,ττ

βTE,ττ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ωh/ωθ)
2

0 0 0

0 r2θ 0 0

0 0 (ωβ/ωθ)
2

0

0 0 0 (ωβ/ωθ)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h/b

θ

βLE

βTE

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
V 2

π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−CL(τ)

2CM (τ)

2CMβLE
(τ)

2CMβTE
(τ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

r2θ

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
θ0

(7)

The variable θ0 in Eq. 7 represents the static pre-twist in the torsional spring and it will be used to test

xθ r2θ ωh/ωθ μ xβLE
xβTE

jβLE
jβTE

r2βLE
r2βTE

ωβ/ωθ

0.25 0.75 0.5 75 0.0375 0.05 0 0 0.1125 0.15 3

Table 1: Structural parameters of the typical section.

the robustness of the computed ROM in conditions not considered during its training. The reduced velocity

V = U∞/(ωθb
√
μ) is the bifurcation parameter of the model: beyond a critical value, the linearized system
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becomes unstable around the origin. Then, thanks to the nonlinearities introduced by the aerodynamics,

the response will eventually converge on stable limit cycle oscillation trajectories.

III.C. Two degree-of-freedom typical section

Before generating the signals used to train the ROM, several CFD-based aeroelastic analyses have been

carried out to better understand the physics behind the nonlinear behavior of this test case. It has been

determined that LCOs are brought into the system due to the large motion of strong shock waves over the

oscillating airfoil. The resulting oscillations increase in amplitude as the reduced velocity is increased, as

shown in Fig. 6. This growth in amplitude can be explained by analyzing the length swept by the shock

wave in one cycle, as reported in Fig. 7. As it can be seen, the chord length swept by the shock is always

larger than 13%c, indicating that the aerodynamics are introducing strong nonlinear effects in the system.

It is also clearly visible how the growth of the LCO amplitude depends almost linearly on the length swept

by the shock wave. However even though these two variables are in linear proportion to each other, the

aerodynamic loads are nonlinear functions of the LCO amplitude as is expected for a nonlinear system.
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Figure 6: LCO trends computed by CFD-based simulations.
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Figure 7: Dependence of the LCO amplitude on the length swept by the shock wave.

Computing Fast Fourier Transforms of the obtained LCOs, it is then possible to analyze the variation of

frequency with the reduced velocity, as depicted in Fig. 8. As it can be noticed, the LCO frequency remains

confined in a narrow range, e.g. k = 0.2 − 0.23, so it may be assumed that a training signal designed to

excite the aerodynamic system within such a frequency range will probably lead to a correct identification

of this peculiar nonlinear behavior.

0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

k

F
F

T
 a

m
pl

itu
de

 

 

V = 0.70
V = 0.725
V = 0.75
V = 0.775
V = 0.80

(a) Plunge frequency trend.

0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

k

F
F

T
 a

m
pl

itu
de

 [d
eg

]

 

 

V = 0.70
V = 0.725
V = 0.75
V = 0.775
V = 0.80

(b) Pitch frequency trend.

Figure 8: LCO frequency trends computed by CFD-based simulations.

The time required to fully develop an LCO using standard CFD time marching methods is about 8 hours

on 4 Intel� Core
TM

i5-3470 CPU units running at 3.2 GHz on a desktop workstation. All the simulations

are run with a physical time step ΔtCFD = 10−3 seconds, using a 5th order accurate Runge-Kutta scheme.

The convergence between time steps is accelerated by multigrid and dual time stepping methods.

A training signal can now be designed based on the information collected through the preliminary analyses.

The input-output pair used in the training stage is shown in Fig. 9. A zoom of the same signal near its end

is presented in Figure 10 to show its smooth behavior. It covers a broad frequency spectrum, as reported
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in Fig. 11a. The structural motion used as training input has a ratio h/(cθ) = 3.5, and, as shown in Fig.

11b, this ratio remains almost constant in a wide range of flight speeds. The training signal is generated by
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Figure 9: Training signal.
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Figure 10: Close-up near the training signal end.

the structural motion depicted in Fig. 9a prescribed to the CFD solver, which computes the load history of

Fig. 9b. The root mean square of the plunge and pitch degrees of freedom is set to 0.15 and 0.045 radians

respectively, while the parameter ω0 of the smoothing filter is set to obtain a cut-off reduced frequency

of k = 0.4. The resulting signal is quite long in length (20 seconds) and it is used to perform a ROM

convergence analysis. Several training periods are carried out considering different time intervals of the same

signal, requiring only one reference signal, and obtaining the required results in about 10 hours. Series of

ROMs are then computed considering an increasing number of aerodynamic states Na, from 5 to 12, and

various training signal time intervals: 5, 10, 15 and 20 seconds. Such a convergence analysis is carried out

assuming as a target value the bifurcation velocity of the system, usually available from linearized analyses.

In this case instead such a value has been extrapolated from CFD analyses, resulting in Vbif = 0.64. In
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Figure 11: Frequency and amplitude characteristics of the training signal.

Fig. 12a is presented the convergence analysis performed on this test case. It is evident that as the length

of the training signal is increased, the convergence towards the reference value becomes smoother. For

signals longer than 5 seconds the results are very similar for a number of aerodynamic states greater than

10. In Fig. 12b instead it is shown the time required to train a ROM on the different training signals.

Notice that the ROM training is performed on a single CPU of the previously mentioned workstation. The

maximum number of iterations allowed to the LM algorithm is limited to 50, with a converged cost function

threshold value set at 10−3. Both the input and the output have been normalized by their maximum value,

to appropriately weigh the fitting errors. A reasonably good trade-off between accuracy and computational

time required is achieved by ROMs trained on the 10 second long signal. The comparison between the CFD

and these ROM-based results is depicted in Fig. 13. It can be seen that a reasonable match between the

two methods is obtained for a number of states Na > 10. The best bifurcation point estimation is obtained

by the ROM with Na = 12, which predicts Vbif = 0.635. Considering only the linear part of the same

model, the computed bifurcation speed is Vbif = 0.629, therefore proving that the assumptions of Section

II.A are valid in this case. After a convergence analysis, a number of states equal to nx = 4 and a number

of hidden neurons equal to nh = 8 have proven to be adequate in LCO predictions. For the details please

see [14]. As can be seen, this ROM produces accurate LCO amplitude trends. Finally, in Fig. 14 is shown

the comparison between the LCO frequency trends. Once again the ROM proves to be quite accurate in the

prediction of the LCO main features. The results obtained by the ROM of ref. [14] are almost identical.

All the ROM-based simulations are performed using an implicit, L-stable time integration method, with

tunable numerical dissipation [27], run with a time step ΔtROM = 10 ·ΔtCFD, demonstrating the robustness

of the proposed approach considering variations of the time discretization. In conclusion to this analysis,

in Table 2 is reported a comparison of the time required to compute the LCO trends depicted in Fig. 13.

According to the obtained results, the time savings is substantial. What would take a CFD model an hour
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to calculate, the ROM can do in 0.7 seconds, maintaining a reasonable accuracy. As can be noticed, the

ROM of ref. [14] requires a longer training time, and this is due to the training approach used in that case,

composed always by two stages but made up by a genetic algorithm and the LM method, because of the

implicit nonlinear parameterization of the system [14]. Therefore, in comparison with the one of ref. [14],

the ROM here presented is computed in a shorter time and permits the analyst to parameterize the system

in a much simpler way.
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Figure 12: Convergence analysis for the two degree-of-freedom airfoil.
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(b) Pitch trend.

Figure 13: Comparison of LCO amplitude trends. The training signal considered is 10 seconds long.

In order to test the ROM robustness in aeroelastic applications, a non-null pre-twist pitch angle θ0 is now

considered. The computation of LCO trends is performed at θ0 = 1 deg and θ0 = 2 deg. Given that the

maximum LCO pitch angle experienced in the null pre-twist case was equal to 4 degrees, the computation of

aeroelastic responses with these new pre-twist values means that we are considering new perturbed conditions,

with perturbations of 25% and 50% respectively, with respect to the nominal condition for which the ROM

was originally computed. The results relative to θ0 = 1 deg are shown in Figure 15, while the ones obtained

with θ0 = 2 deg are presented in Figure 16. Notice that the variables are now Δh/c and Δθ, computed as
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Figure 14: Comparison of LCO frequency trend. The training signal considered is 10 seconds long.

CFD ROM ROM, ref. [14]

Training signal generation, hours - 10 10

Training stage, hours - 2.5 4

Trend calculation, hours 8 × 8 points 0.0015 × 22 points 0.0012 × 22 points

64 0.033 0.0264

Total, hours 64 12.533 14.0264

Table 2: Computational time required for computing the LCO trends, 2 degree-of-freedom typical section.

[max (LCO)−min (LCO)] /2, because the LCOs are no longer symmetric in this case.
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Figure 15: Comparison of LCO amplitude trends. Pre-twist angle of 1 deg.

Good results, comparable with the θ0 = 0 deg case are obtained for θ0 = 1 deg. The amplitude trend is

tracked with a good accuracy by the ROM with Na = 12. Similar results are obtained with the ROM of

ref. [14]. Unfortunately, the same cannot be said for the case θ0 = 2 deg where the amplitude trend changes

dramatically in shape, resulting in an unstable LCO behavior [26], probably because of the strong influence

of the pre-twist angle. The ROM produces an LCO trend similar to the previous cases, being not able to
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Figure 16: Comparison of LCO amplitude trends. Pre-twist angle of 2 deg.

change its behavior. Qualitatively, the same results are obtained by the ROM of ref. [14]. A possible solution

to this problem could be a new training which takes into account a non-null mean pitch angle, but this is

beyond the scope of the present analysis, and will not be pursued here. In conclusion, it can be stated that

the ROM presents good robustness features around the nominal condition for which it has been trained,

producing accurate results at least up to a 25% perturbation in the pre-twist angle.

In addition to these analyses, it is worth noting that as a reduced order aeroelastic model has been tested

so far, a reduced order aerodynamic model is available as well. So, if the analyst is not only interested

in evaluating nonlinear aeroelastic responses, but also in computing unsteady aerodynamic loads given a

prescribed motion, the proposed ROM is able to perform this task.

First of all, in Section II.A, the behavior of the system eigenstructure between the two training stages has

been discussed, stating that the eigenvalues of the aerodynamic system do not change dramatically during the

training. Even if this fact cannot be predicted analytically, the results of this work confirm this assumption,

as witnessed by Figure 17 in the case Na = 12 and Ts = 10 s. As can be noticed, the eigenvalues are indeed

modified during the two phases, but the ones near the imaginary axis remain almost unchanged, as shown

by Figure 17b. Therefore, the stability properties of the system are conserved. This result supports the

conclusion that the linear sub-part of the aerodynamic ROM, composed by the matrices Aa, Ba, Ca and

Da resulting from the first stage of the training, is a good approximation of the aerodynamic system for

small input, as the structural modes will interact predominantly with the aerodynamic modes closest to the

origin.

It is shown here that the ROM presents a good performance in the identification of unsteady aerodynamic

loads over a broad range of input frequencies and amplitude ratios. Several analyses have been carried out,

and the most interesting findings of this campaign are here presented. At first, the aerodynamic ROM is

excited by an harmonic input with small amplitude in both plunge and pitch degrees of freedom. The motion
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Figure 17: Eigenvalues of the aerodynamic system between the two training phases.

amplitude is set to h̄/c = 0.01 for the plunge and θ̄ = 0.1 deg for the pitch. The excitation reduced frequency

is set to k = 0.6, which is not well excited by the training signal used before, as shown in Figure 11a. The

computational time required for simulating 1.5 seconds of physical time by the present CFD solver is in this

case equal to 20 minutes. The ROM is able to compute the same response in a few seconds. This test is

performed to assess the ROM performance for small input perturbations only, comparing the variation of the

predicted results between the two training stages. The results in terms of lift and moment coefficients are

presented in Figure 18, showing a close-up near the FFT peak. As it can be noticed from Figure 18a, very

good results, almost identical, are obtained by both linear (one training stage only) and nonlinear ROMs in

the prediction of the lift coefficient. The same accuracy is obtained for the moment coefficient, as shown in

Figure 18b. In this case however, some differences can be distinguished between the different ROMs. Even

though they all present almost the same accuracy, the nonlinear ROM with Na = 12 is the one closest to

the reference response, while the others present a convergent behavior toward the reference CFD solution as

the number of aerodynamic states is increased.

Two conclusions may be drawn from these results. First, both linear and nonlinear ROMs present good

accuracy when the input amplitude is small enough to assume the aerodynamic system as linear. Second,

the nonlinear ROM is always performing better than the linear ROM.

The nonlinear performance of the ROM is evaluated considering large amplitude structural input, always at

the same frequency of the previous case. The motion amplitude is set to h̄/c = 0.3 for the plunge and θ̄ = 5

deg for the pitch degree of freedom, both much greater than the maximum amplitude excited by the training

signal shown in Figure 9. In this case the attention is focused on the moment coefficient, because it is the

one characterized by the strongest nonlinear behavior. The computational time required for simulating 1.5

seconds of physical time by the present CFD solver is about 3 hours. Thus, in this case the computational

savings introduced by the ROM is substantial. The results are presented in Figure 19, with a close-up near
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Figure 18: Aerodynamic loads FFT for small structural motion.

the FFT peaks. It can be noticed that, as the number of states is increased, the ROM response gets closer

to the reference solution, even if small differences are still present. This is due to an insufficient excitation of

these input amplitudes during the training phase. Notice however that the refined ROM is able to replicate

accurately the different harmonics in the response.

The robustness of the proposed ROM in both linear and nonlinear regimes demonstrates that reasonably

accurate results can be obtained by the linear ROM also, taking care of operating with small structural

input.
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(a) Close-up near the first harmonic response peak.
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(b) Close-up near the third harmonic response peak.

Figure 19: Moment coefficient FFT for large structural motion, two degree-of-freedom case.

III.D. Four degree-of-freedom typical section

Even though very similar to the previous test case, this problem is presented to show the ability of the

proposed ROM to deal with systems with a larger number of degrees of freedom, and to set the basis for

a nonlinear aeroservoelastic benchmark. In fact, the control surfaces may be used to suppress the LCOs
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[28, 29].

Assuming this case will present a nonlinear behavior similar to the previous one, the training signal shown

in Figure 20 is given as input to the ROM training algorithm. Its frequency content is similar to the one

presented in Figure 11a. The signals root mean square is set to 0.125 for the plunge, 0.0625 radians for the

pitch, 0.0125 radians for the leading edge control surface and 0.0250 radians for the trailing edge control

surface degrees of freedom. The parameter ω0 of the smoothing filter is set to obtain a cut-off reduced

frequency of k = 0.4. As can be noticed from Figure 20b, the aerodynamic loads acting on the control

surfaces are negligible compared to the lift and moment coefficients of the airfoil.

As for the previous case, the ROM nonlinear performance is evaluated considering large amplitude structural

input. The motion amplitude is set to h̄/c = 0.3 for the plunge, θ̄ = 5 deg for the pitch, β̄LE = β̄TE = 8 deg

for the leading and trailing edge degrees of freedom, all much greater than the maximum amplitude excited

by the training signal shown in Figure 20. The excitation frequency is set to k = 0.7. Attention is focused

again on the moment coefficient, because it is the one characterized by the strongest nonlinear behavior.

Figure 21 depicts a close-up near the FFT peaks of the computed response. It can be noticed that as the

number of states is increased, the ROM response gets closer to the reference solution. Therefore, also in this

case the ROM shows good accuracy in predicting nonlinear unsteady aerodynamic loads, even when both

amplitude and frequency of the input signal are beyond the limits considered during the training.

Coupling then the aerodynamic reduced order model with the structural model it is possible to reproduce
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Figure 20: Training signal for the four degree-of-freedom typical section.

nonlinear aeroelastic responses. A convergence analysis is again performed considering the value of the

bifurcation point computed by the CFD code as a target. Such a value results in Vbif = 0.635, being slightly

different with respect to the previous test case. In Fig. 22a such a convergence test is presented graphically.

In this case, the training signal is 10 seconds long, which proved to be sufficient in the previous section.

The average training time is 6 hours, considerably longer than the 2 degree-of-freedom case, because of the
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Figure 21: Moment coefficient FFT for large structural motion, four degree-of-freedom case.

increased size of the input-output data pair vectors. Also, note the smoothness of the present convergence

analysis, much more evident than for the previous test case. A sample of ROM-based aeroelastic V-g

diagram is shown in Fig. 22b, where it is clear that the two control surfaces are only lightly influenced by

the aerodynamic forces compared to the pitch and plunge degrees of freedom. A zoom near the flutter point

is provided to make clearer the instability mechanism, which resembles the classical plunge-pitch flutter [30].
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Figure 22: Stability properties of the linearized system.

A comparison between the CFD and a 12 states ROM-based simulation at V = 0.74 is presented in Fig.

23. As it can be seen, the difference between the two results is quite small, showing that the reduced order

model is able to capture the basic nonlinear features of the response. It is also possible to perform trend

analyses to understand how the variations in flight speed influence the limit cycle oscillation amplitude and

frequency. The results are shown in Fig. 24 and 25, where the outcomes of the ROM of ref. [14] are also

presented. It is evident from Fig. 24 that increasing the number of states lead to a better correlation between
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Figure 23: Comparison between CFD and ROM-based aeroelastic simulations, V = 0.74, Na = 12.

CFD and ROM-based results. However, it is interesting to note that the results with Na = 6 present the

same trend of the CFD, slightly shifted to the left. Instead, the results with Na = 12, even if showing a

smaller overall error, exhibit a local trend slope quite different from the reference data. From a design point

of view, the results obtained with Na = 6 would be preferred, because they are conservative (they exhibit

a lower bifurcation speed) and depict the same shape of the reference curve as well. Such differences may

be considered as irrelevant, since all the reduced order models capture the essential features of the system

behavior. However, the ROM with Na = 12 produces the best estimation of the bifurcation point, predicted

to be Vbif = 0.64, and also a more accurate prediction of the LCO frequency. Considering only the linear part

of the same model, the computed bifurcation speed is Vbif = 0.647, therefore proving that the assumptions

of Section II.A are valid in this case also. The ROM of ref. [14] presents qualitatively the same behavior

of the ROM with Na = 12, always overestimating both LCO amplitude and frequency. Such a ROM is

characterized by the following parameters: nx = 8 and nh = 10, for the details please see [14].

As a final result, in Table 3 is reported a comparison in terms of the time required to compute the previous
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(b) Pitch trend.
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(c) Leading edge deflection trend.
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(d) Trailing edge deflection trend.

Figure 24: LCO amplitude trends comparison.
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Figure 25: LCO frequency trends comparison between CFD and 12 states ROM-based simulations.

LCO trends. The time savings is still substantial, confirming again the convenience of developing ROMs

from the more expensive simulations, especially in the case when optimization analyses or control law designs

have to be performed. Note that even if in this case the ratio between the two total times is about 3.5, such
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a result would greatly improve as the number of analyses to be carried out is increased. As before, the ROM

of ref. [14] requires a longer training time, and the same conclusions drawn in the previous case are still

valid.

CFD ROM ROM, ref. [14]

Training signal generation, hours - 12 12

Training stage, hours - 6 9

Trend calculation, hours 10 × 7 points 0.0028 × 15 points 0.0023 × 15 points

70 0.042 0.0345

Total, hours 70 18.042 21.0345

Table 3: Computational time required for computing the LCO trends, 4 degree-of-freedom typical section.

IV. Concluding Remarks

This effort has detailed the development of nonlinear aerodynamic reduced order models, built upon

input-output data generated by Euler based CFD simulations. The problem is formulated in the continuous

time domain, making it possible to vary the integration time step. This has led to a speed-up in the

reduced order model simulations, while demonstrating good robustness given large variations of the time

step. This feature could also be exploited in the design of control laws, where the determination of an

appropriate sampling time is often of great importance. Two test cases were considered, showing the ability

of the proposed approach to deal with an increasing number of degrees of freedom, in both aerodynamic and

aeroelastic applications. Furthermore, several high fidelity CFD analyses were performed to fully understand

the mechanism behind aerodynamically induced limit cycle oscillations. The efficiency of the presented ROM

procedure has the potential of making possible a more extensive adoption of nonlinear aeroelastic analyses

in the early stages of aircraft design, while maintaining adequate accuracy in comparison to the costlier

traditional CFD calculations.

A. Computation of the sensitivities terms xa/p
and fa/p

As reported in Sec. II.A, the system of differential equations represented by Eq. 3 has to be solved at

each LM iteration. Here we provide the analytical definition of all the terms governing the dynamics of xa/p .

Calling vec (·) the operator which stacks the column of a matrix in a vector, we can define the optimization

25 of 28

American Institute of Aeronautics and Astronautics



unknown as p =
{
vec (Ea)

T
, vec (Fa)

T
}T

. The sensitivity term ẋa/p is then computed as:

ẋa/Eij
= (Aa +EaΦ (xa))xa/Eij

+ Iijφ (xa) i, j = 1, ... , Na (8a)

ẋa/Fij
= (Aa +EaΦ (xa))xa/Fij

i = 1, ... , Nout, j = 1, ... , Na (8b)

ẋa/p = (Aa +EaΦ (xa))xa/p +Ux (8c)

where Φ (xa) = Diag (φ′ (xa,1) , φ
′ (xa,2) , ... , φ

′ (xa,Na
)), being φ′ (·) the first derivative of φ (·) with respect

to its argument, while matrix Ux is so defined:

Ux = [φ (xa,1) INa
, φ (xa,2) INa

, · · · |φ (xa,Na
) INa

, 0 , · · · , 0] (9)

being INa
the identity matrix of size Na.

In order to assemble the Jacobian matrix of Eq. 4, the sensitivity term fa/p has to be computed as well.

This can be performed similarly to Eqs. 8:

fa/Eij
/q∞ = (Ca + FaΦ (xa))xa/Eij

i, j = 1, ... , Na (10a)

fa/Fij
/q∞ = (Ca + FaΦ (xa))xa/Fij

+ Iijφ (xa) i = 1, ... , Nout, j = 1, ... , Na (10b)

fa/p/q∞ = (Ca + FaΦ (xa))xa/p +Ufa (10c)

where matrix Ufa is so defined:

Ufa = [0 , · · · , 0 , φ (xa,1) INout , φ (xa,2) INout , · · · , φ (xa,Na) INout ] (11)
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