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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Overall Equipment Effectiveness (OEE), which is commonly used for production performance monitoring, can mislead decision makers with 
low accuracy when a large amount of losses remains unclassified. This paper is to study the critical factors and potential pitfalls when trying to 
automatically estimate the OEE of a manufacturing system, considering uncertainty. Two methods based on fuzzy arithmetic and interval 
arithmetic respectively are proposed to manage the uncertainty in estimating the production speed, the stoppage duration, and the quality losses. 
Datasets from real-world settings are used to illustrate the concepts and the benefits of the methods in practice. 
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1. Introduction 

Overall Equipment Effectiveness (OEE) has been widely 
used as a quantitative tool essential for the measurement of 
productivity in manufacturing industries. It is designed to 
identify and eliminate the related losses to improve the 
performance and reliability between facilities. 

As the development of industrial digitalization, automatic 
OEE measurement has been a central part in Manufacturing 
Execution Systems (MES). The validity and usefulness of 
OEE estimate are highly dependent on the data collection 
which needs both availability and accuracy of data especially 
the accuracy which determines the OEE values [1-4]. 
However, there can be numerous sources of uncertainties that 
influence the accuracy of data in a real-world manufacturing 
environment. Due to manual or semi-automatic data 
collection, data like some minor stoppage, idling and speed 
losses et al. can be often overlooked. Moreover, the loss 
categories, which are lacked or with poor descriptions, cannot 
be grouped into the classified losses for OEE estimation and 
derive the inaccurate OEE. Furthermore, there is no apparent 
cause and effect relationship between change in either factor 

(availability, performance and quality) and the OEE [5]. 
Hence, conventional formulation of OEE, which is based on 
accurate data and results in a single value, may perform with 
low accuracy to mislead decision makers. Then uncertainties 
should be considered into account. 

Zammori et al. [6] considered OEE as a stochastic random 
variable, and of which the probability density function is 
generated through the aggregation of the probability density 
function of the underlying causes of waste. Furthermore, 
Zammori [7] decomposed the manufacturing losses into 
primary causes and modeled as LR fuzzy numbers. Sousa et al. 
[8] studied the fuzzy performance measures to represent 
uncertainties and proposed a method to calculate an indicator 
of the compliance between a fuzzy PM and its target value. 
Busert and Fay [9] used fuzzy logic to model the uncertainty 
in information under consideration of information quality 
dimensions. Sonmenz et al. [10] studied the existence and 
determination of uncertainties in stoppage duration and 
production speed, which can be handled as fuzzy-type 
uncertainties and interval-type uncertainties. However, 
uncertainties occur not only due to the measurement of 
realized stoppage duration and realized production speed, but 
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also due to misjudgment of production inspection, which is an 
inevitable risk result from human factor, limitation of 
measurement instrument and flaws in data collection 
processes. Chen et al. [11] and Akkerhuis et al. [12] proposed 
the quantitative estimation methods of misjudgment risk of 
product inspection.  

Based on the studies above, this paper focuses on the 
automatic OEE estimation considering the uncertainties of 
stoppage duration, production speed, and quality losses. By 
analyzing the critical factors and potential pitfalls when 
calculating OEE of discrete manufacturing systems, two 
methods based on fuzzy arithmetic and interval arithmetic 
respectively are proposed to manage the uncertainties in 
estimating. Then it is followed by modeling and analysis of 
the datasets from real-world settings to illustrate the concepts 
and the benefits of the methods in practice. 

2. Problem Modeling 

2.1 Components and Uncertainties in OEE Estimate 

OEE is an analysis tool based on a multiplication of three 
components, which are availability (𝐴𝐴), performance (𝑃𝑃) and 
quality (𝑄𝑄) respectively, as Eqs. (1) shows. Moreover, these 
three components aim to capture and eliminate the 6 
significant losses in the production defined by Nakajima [1]. 

OEE = 𝐴𝐴 ⋅ 𝑃𝑃 ⋅ 𝑄𝑄  (1) 

Where: 
 1) 𝐴𝐴  is the ratio of the operating time 𝑇𝑇𝐴𝐴  to the planned 
operating time 𝑇𝑇𝑃𝑃  and indicates the unplanned production 
stoppages losses 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆, as Eqs. (2) shows; 
2) 𝑃𝑃 indicates the performance efficiency of equipment and it 
is the ratio of the planned cycle time 𝐶𝐶𝑇𝑇𝑃𝑃 to the realized 
average cycle time 𝐶𝐶𝐶𝐶𝐴𝐴 which can be obtained by 𝑇𝑇𝐴𝐴over the 
actual number of products produced 𝑃𝑃𝐴𝐴, as Eqs. (3) shows; 
3) 𝑄𝑄 is the ratio of the qualified products number 𝑃𝑃𝑄𝑄 to 𝑃𝑃𝐴𝐴 and 
indicates the quality losses 𝑃𝑃𝐿𝐿𝑄𝑄 , as Eqs. (4) shows. 

𝐴𝐴 = 𝑇𝑇𝐴𝐴
𝑇𝑇𝑃𝑃

= 𝑇𝑇𝑃𝑃−𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆
𝑇𝑇𝑃𝑃

  (2) 

𝑃𝑃 = 𝐶𝐶𝑇𝑇𝑃𝑃
𝐶𝐶𝐶𝐶𝐴𝐴

= 𝐶𝐶𝑇𝑇𝑃𝑃
(𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴)

  (3) 

𝑄𝑄 = 𝑃𝑃𝑄𝑄
𝑃𝑃𝐴𝐴

= 𝑃𝑃𝐴𝐴−𝑃𝑃𝐿𝐿𝑄𝑄
𝑃𝑃𝐴𝐴

  (4) 

Fig. 1 shows the classification and relationships of 
production and production losses of equipment. 

Define the corresponding production losses obtained by the 
three types of the losses as 𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆 , 𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆  and 𝑃𝑃𝐿𝐿𝑄𝑄 . Then the 
relationship between planned production 𝑃𝑃𝑃𝑃 , 𝑃𝑃𝑄𝑄 , and the 
production losses 𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆, 𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆  and 𝑃𝑃𝐿𝐿𝑄𝑄 is shown as Eqs. (5). 

 

Fig. 1. The classification and relationships of production and production 
losses of equipment. 

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑄𝑄 + 𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆 + 𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆 + 𝑃𝑃𝐿𝐿𝑄𝑄 (5) 

However, by analyzing the data of a tightening station of a 
powertrain assembly line from MES, which covers 30 days of 
production, it is found that the sum of 𝑃𝑃𝑄𝑄 , 𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆 , 𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆  and 
𝑃𝑃𝐿𝐿𝑄𝑄 is not equal to 𝑃𝑃𝑃𝑃, as Eqs. (6) shows. There are 750 parts 
of unexplained losses. 
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Where, the planned cycle time is 75 s/part, and the planned 
production 𝑃𝑃𝑃𝑃 is 28080 parts with the production scheduling 
of 3 shift/day, 7.5 h/shift, then 𝑇𝑇𝑃𝑃 = 28080 × 75 =
2.106 × 106𝑠𝑠 . Moreover, in the MES, the recorded actual 
average cycle time counted is 81.9167 s, there is no stoppage 
record, the number of actual products is 24959 parts, and the 
number of the qualified is 24667 parts. 

There are various uncertain factors during the operating of 
manufacturing systems, which lead to data inaccurate and 
cause deviation of data analysis subsequently to influence the 
decision. Sousa et al. [9] point out the main uncertainties in 
performance measurements, as Fig. 2 shows. Meanwhile, it 
demands a considerable investment of time and effort to filter 
erroneous data from the massive amount of data. Moreover, in 
fact, it is difficult to find out all abnormal data.  

 

Fig. 2. The classification and causes of uncertainties in OEE estimate. 
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In this study, we not only consider the uncertainties of 
unplanned production stoppage and production speed losses 
but also focus on the uncertainties of quality losses which 
results from random misjudgment of quality inspection 
equipment. Affected by zero shift of sensors, some qualified 
products may be misjudged as the defective as well as some 
defective may be falsely accepted as the qualified. Therefore, 
there is also a particular error in quality statistics. 

2.2 OEE Estimate with Fuzzy Type Measurements 

Distinguished from the determined mathematical model 
and random mathematical model, the fuzzy mathematic model 
can more precisely reflect the uncertainties of the relevant 
data for OEE estimate [8,10,13]. In this section, fuzzy 
triangular numbers are used for the expression of stoppage 
duration, production speed and quality losses with 
uncertainties. 

Considering the fuzzy stoppage duration losses 𝑇𝑇𝑇̃𝑇𝑆𝑆𝑆𝑆  as a 
triangular fuzzy number. The left spread 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿  of 𝑇𝑇𝑇̃𝑇𝑆𝑆𝑆𝑆 is zero 
as there may be no stoppage. The right spread 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆𝑅𝑅  is 
(𝑇𝑇𝑃𝑃 − 𝑃𝑃𝐴𝐴𝐶𝐶𝑇𝑇𝑃𝑃) with the considering of an assumption that if 
the production speed is as planned during the production of 
the actual production amount 𝑃𝑃𝐴𝐴 and there are no production 
speed losses. Therefore, 𝑇𝑇𝑇̃𝑇𝑆𝑆𝑆𝑆  can be expressed as Eqs. (7) 
shows. Moreover, Eqs. (8) is the corresponding membership 
function. 

𝑇𝑇𝑇̃𝑇𝑆𝑆𝑆𝑆 = (𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿 , 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆𝑀𝑀 , 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆𝑅𝑅 ) = (0, 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆, 𝑇𝑇𝑃𝑃 − 𝑃𝑃𝐴𝐴𝐶𝐶𝑇𝑇𝑃𝑃) (7) 

𝜇𝜇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆(𝑥𝑥) =

{
 
 
 
 0, 𝑥𝑥 < 0

𝑥𝑥−0
𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆−0

, 0 ≤ 𝑥𝑥 < 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆
(𝑇𝑇𝑃𝑃−𝑃𝑃𝐴𝐴𝐶𝐶𝑇𝑇𝑃𝑃)−𝑥𝑥

(𝑇𝑇𝑃𝑃−𝑃𝑃𝐴𝐴𝐶𝐶𝑇𝑇𝑃𝑃)−𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆
, 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆 ≤ 𝑥𝑥 < (𝑇𝑇𝑃𝑃 − 𝑃𝑃𝐴𝐴𝐶𝐶𝑇𝑇𝑃𝑃)

0, (𝑇𝑇𝑃𝑃 − 𝑃𝑃𝐴𝐴𝐶𝐶𝑇𝑇𝑃𝑃) ≤ 𝑥𝑥

 (8) 

𝐶𝐶𝐶̃𝐶𝐴𝐴 = (𝐶𝐶𝐶𝐶𝐴𝐴
𝐿𝐿, 𝐶𝐶𝐶𝐶𝐴𝐴

𝑀𝑀, 𝐶𝐶𝐶𝐶𝐴𝐴
𝑅𝑅) = (𝐶𝐶𝑇𝑇𝑃𝑃, 𝐶𝐶𝐶𝐶𝐴𝐴,

𝑇𝑇𝑃𝑃
𝑃𝑃𝐴𝐴
) (9) 

𝜇𝜇𝐶𝐶𝐶̃𝐶𝐴𝐴(𝑥𝑥) =

{
  
 

  
 0, 𝑥𝑥 < 𝐶𝐶𝑇𝑇𝑃𝑃

𝑥𝑥−𝐶𝐶𝑇𝑇𝑃𝑃
𝐶𝐶𝐶𝐶𝐴𝐴−𝐶𝐶𝑇𝑇𝑃𝑃

, 𝐶𝐶𝑇𝑇𝑃𝑃 ≤ 𝑥𝑥 < 𝐶𝐶𝐶𝐶𝐴𝐴
𝑇𝑇𝑃𝑃
𝑃𝑃𝐴𝐴
−𝑥𝑥

𝑇𝑇𝑃𝑃
𝑃𝑃𝐴𝐴
−𝐶𝐶𝐶𝐶𝐴𝐴

, 𝐶𝐶𝐶𝐶𝐴𝐴 ≤ 𝑥𝑥 < 𝑇𝑇𝑃𝑃
𝑃𝑃𝐴𝐴

0, 𝑇𝑇𝑃𝑃
𝑃𝑃𝐴𝐴
≤ 𝑥𝑥

 (10) 

Meanwhile, the fuzzy actual average cycle time 𝐶𝐶𝐶̃𝐶𝐴𝐴 can be 
expressed as Eqs. (9) shows. The left spread 𝐶𝐶𝐶𝐶𝐴𝐴

𝐿𝐿
 is 𝑇𝑇𝑃𝑃𝑃𝑃𝐴𝐴 under 

the situation of 𝑃𝑃𝐴𝐴  is produced without any stoppage. 
Moreover, the right spread 𝐶𝐶𝐶𝐶𝐴𝐴

𝑅𝑅
 is the planned cycle time 

which also is the minimum cycle time of the equipment. Then 
the membership function of 𝐶𝐶𝐶̃𝐶𝐴𝐴 is shown as Eqs. (10). 

For the quality losses, consider the false acceptance of 
defective products and the false rejection of qualified products 
due to sensor error. Define the probability of false rejection as 
𝑄𝑄1  and the probability of false acceptance as 𝑄𝑄2 , which are 
shown as Eqs. (10) and Eqs. (11) respectively. In reality, the 
misjudgment can be found out and corrected by the inspection 
downstream or the rework offline. Nevertheless, the data of 
the station recorded will not be updated. 

𝑄𝑄1 = 2 (1 − ∫ 𝜑𝜑𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑|𝑥𝑥−𝑎𝑎|≤𝑇𝑇2
) ∫ 𝜑𝜑𝑧𝑧1(𝑧𝑧)𝑑𝑑𝑑𝑑

𝑇𝑇
2
0  (11) 

𝑄𝑄2 = 2 (1 − ∫ 𝜑𝜑𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑|𝑥𝑥−𝑎𝑎|≤𝑇𝑇2
) ∫ 𝜑𝜑𝑧𝑧2(𝑧𝑧)

𝑇𝑇
2
0 𝑑𝑑𝑑𝑑 (12) 

Where 𝑥𝑥 is the realized value, 𝑧𝑧 is the measurement, 𝑎𝑎 is the 
standard reference value and 𝑇𝑇 is the process capability index. 

Then the left spread is the quality losses (𝑃𝑃𝐿𝐿𝑄𝑄 − 𝑃𝑃𝐴𝐴𝑄𝑄1) 
considering false acceptance, as well as the right spread is 
(𝑃𝑃𝐿𝐿𝑄𝑄 + 𝑃𝑃𝐴𝐴𝑄𝑄2)  with the consideration of a false rejection. 
Then the fuzzy production losses 𝑃𝑃𝑃̃𝑃𝑄𝑄  and the membership 
function are as Eqs. (13) and Eqs. (14) show respectively. 

𝑃𝑃𝑃̃𝑃𝑄𝑄 = (𝑃𝑃𝐿𝐿𝑄𝑄𝐿𝐿 , 𝑃𝑃𝐿𝐿𝑄𝑄𝑀𝑀, 𝑃𝑃𝐿𝐿𝑄𝑄𝑅𝑅 ) = (𝑃𝑃𝐿𝐿𝑄𝑄 − 𝑃𝑃𝐴𝐴𝑄𝑄1, 𝑃𝑃𝐿𝐿𝑄𝑄, 𝑃𝑃𝐿𝐿𝑄𝑄 + 𝑃𝑃𝐴𝐴𝑄𝑄2)
 (13) 

𝜇𝜇𝑃𝑃𝑃̃𝑃𝑄𝑄 =

{
 
 

 
 0, 𝑥𝑥 < 𝑃𝑃𝐿𝐿𝑄𝑄 − 𝑃𝑃𝐴𝐴𝑄𝑄1

𝑥𝑥−(𝑃𝑃𝐿𝐿𝑄𝑄−𝑃𝑃𝐴𝐴𝑄𝑄1)
𝑃𝑃𝐿𝐿𝑄𝑄−(𝑃𝑃𝐿𝐿𝑄𝑄−𝑃𝑃𝐴𝐴𝑄𝑄1)

, 𝑃𝑃𝐿𝐿𝑄𝑄 − 𝑃𝑃𝐴𝐴𝑄𝑄1 ≤ 𝑥𝑥 < 𝑃𝑃𝐿𝐿𝑄𝑄
𝑃𝑃𝐿𝐿𝑄𝑄+𝑃𝑃𝐴𝐴𝑄𝑄2−𝑥𝑥
𝑃𝑃𝐿𝐿𝑄𝑄+𝑃𝑃𝐴𝐴𝑄𝑄2−𝑃𝑃𝐿𝐿𝑄𝑄

, 𝑃𝑃𝐿𝐿𝑄𝑄 ≤ 𝑥𝑥 < 𝑃𝑃𝐿𝐿𝑄𝑄 + 𝑃𝑃𝐴𝐴𝑄𝑄2
0, 𝑃𝑃𝐿𝐿𝑄𝑄 + 𝑃𝑃𝐴𝐴𝑄𝑄2 ≤ 𝑥𝑥

 (14) 

Consequently, the components of OEE can be reformulated 
by using the fuzzy values above. Eqs. (15), Eqs. (16) and Eqs. 
(17) show the fuzzy availability 𝐴̃𝐴, fuzzy performance 𝑃̃𝑃 , and 
fuzzy quality 𝑄̃𝑄 respectively. Finally, the fuzzy OEE can be 
expressed as a triangular fuzzy number as Eqs. (18) shows. 

𝐴̃𝐴 = 𝑇𝑇𝑃𝑃−𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆
𝑇𝑇𝑃𝑃

= (𝑃𝑃𝐴𝐴⋅𝐶𝐶𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃
, 𝑇𝑇𝑃𝑃−𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆𝑇𝑇𝑃𝑃

, 1) (15) 

𝑃̃𝑃 = 𝐶𝐶𝑇𝑇𝑃𝑃
𝐶𝐶𝐶̃𝐶𝐴𝐴

= (𝐶𝐶𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃
𝑃𝑃𝐴𝐴

, 𝐶𝐶𝑇𝑇𝑃𝑃𝐶𝐶𝐶𝐶𝐴𝐴
, 1) = (𝐶𝐶𝑇𝑇𝑃𝑃𝑃𝑃𝐴𝐴𝑇𝑇𝑃𝑃

, 𝐶𝐶𝑇𝑇𝑃𝑃𝐶𝐶𝐶𝐶𝐴𝐴
, 1) (16) 

𝑄̃𝑄 = 𝑃𝑃𝐴𝐴−𝑃𝑃𝑃̃𝑃𝑄𝑄
𝑃𝑃𝐴𝐴

= (𝑃𝑃𝐴𝐴(1−𝑄𝑄2)−𝑃𝑃𝐿𝐿𝑄𝑄𝑃𝑃𝐴𝐴
, 𝑃𝑃𝐴𝐴−𝑃𝑃𝐿𝐿𝑄𝑄𝑃𝑃𝐴𝐴

, 𝑃𝑃𝐴𝐴(1+𝑄𝑄1)−𝑃𝑃𝐿𝐿𝑄𝑄𝑃𝑃𝐴𝐴
) (17) 

OEẼ = ((𝑃𝑃𝐴𝐴⋅𝐶𝐶𝑇𝑇𝑃𝑃)
2⋅(𝑃𝑃𝐴𝐴(1−𝑄𝑄2)−𝑃𝑃𝐿𝐿𝑄𝑄)
𝑇𝑇𝑃𝑃2⋅𝑃𝑃𝐴𝐴

, (𝑇𝑇𝑃𝑃−𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆)⋅𝐶𝐶𝑇𝑇𝑃𝑃⋅(𝑃𝑃𝐴𝐴−𝑃𝑃𝐿𝐿𝑄𝑄)𝑇𝑇𝑃𝑃⋅𝐶𝐶𝐶𝐶𝐴𝐴⋅𝑃𝑃𝐴𝐴
, 𝑃𝑃𝐴𝐴(1+𝑄𝑄1)−𝑃𝑃𝐿𝐿𝑄𝑄𝑃𝑃𝐴𝐴

) (18)

𝑇𝑇𝑇̃𝑇𝑆𝑆𝑆𝑆 = [𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿 , 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆𝑈𝑈 ]  (19) 

𝐶𝐶𝐶̃𝐶𝐴𝐴 = [𝐶𝐶𝑇𝑇𝐴𝐴𝐿𝐿, 𝐶𝐶𝑇𝑇𝐴𝐴𝑈𝑈]  (20) 

𝑃𝑃𝑃̃𝑃𝑄𝑄 = [𝑃𝑃𝐿𝐿𝑄𝑄𝐿𝐿 , 𝑃𝑃𝐿𝐿𝑄𝑄𝑈𝑈]  (21) 

𝐴̃𝐴 = [𝑇𝑇𝐴𝐴−𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆
𝑈𝑈

𝑇𝑇𝑃𝑃
, 𝑇𝑇𝐴𝐴−𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆

𝐿𝐿

𝑇𝑇𝑃𝑃
]  (22) 

𝑃̃𝑃 = [𝐶𝐶𝑇𝑇𝑃𝑃𝐶𝐶𝑇𝑇𝐴𝐴𝑈𝑈
, 𝐶𝐶𝑇𝑇𝑃𝑃𝐶𝐶𝑇𝑇𝐴𝐴𝐿𝐿

]  (23) 
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𝑄̃𝑄 = [𝑃𝑃𝐴𝐴−𝑃𝑃𝐿𝐿𝑄𝑄
𝑈𝑈

𝑃𝑃𝐴𝐴
, 𝑃𝑃𝐴𝐴−𝑃𝑃𝐿𝐿𝑄𝑄

𝐿𝐿

𝑃𝑃𝐴𝐴
]  (24)  

2.3 OEE Estimate with Interval Type Measurement 

In this section, stoppage duration, production speed, and 
quality losses are reformulated by interval numbers with the 
consideration of uncertainties due to lower accuracy of data 
collections, given by the physical values or the empirical data. 
The interval number can be defined as 𝑋𝑋 = [𝑎𝑎, 𝑏𝑏] which is a 

set of all real number between and including endpoints. The 
interval numbers of the losses can be expressed as Eqs. (19), 
Eqs. (20), Eqs. (21) show. Then the interval components in 
OEE estimate are shown as Eqs. (22), Eqs. (23), Eqs. (24). 
And the interval OEE can be obtained as Eqs. (25) shows.  

If one considers the situation where the physical limits 
considered in Section 2.2, the interval OEE can be estimated 
as Eqs. (26) shows. 

𝑂𝑂𝑂𝑂𝑂̃𝑂 = [𝑇𝑇𝐴𝐴−𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆
𝑈𝑈

𝑇𝑇𝑃𝑃
, 𝑇𝑇𝐴𝐴−𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆

𝐿𝐿

𝑇𝑇𝑃𝑃
] ⋅ [𝐶𝐶𝑇𝑇𝑃𝑃

𝐶𝐶𝑇𝑇𝐴𝐴
𝑈𝑈 , 𝐶𝐶𝑇𝑇𝑃𝑃

𝐶𝐶𝑇𝑇𝐴𝐴
𝐿𝐿] ⋅ [𝑃𝑃𝐴𝐴−𝑃𝑃𝐿𝐿𝑄𝑄

𝑈𝑈

𝑃𝑃𝐴𝐴
, 𝑃𝑃𝐴𝐴−𝑃𝑃𝐿𝐿𝑄𝑄

𝐿𝐿

𝑃𝑃𝐴𝐴
] =

[𝑇𝑇𝐴𝐴−𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆
𝑈𝑈 ,𝑇𝑇𝐴𝐴−𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆

𝐿𝐿 ]⋅[ 1
𝐶𝐶𝑇𝑇𝐴𝐴

𝑈𝑈, 1
𝐶𝐶𝑇𝑇𝐴𝐴

𝐿𝐿 ]⋅[𝑃𝑃𝐴𝐴−𝑃𝑃𝐿𝐿𝑄𝑄
𝑈𝑈,𝑃𝑃𝐴𝐴−𝑃𝑃𝐿𝐿𝑄𝑄

𝐿𝐿 ]

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴
 (25) 

𝑂𝑂𝑂𝑂𝑂̃𝑂 = [𝑃𝑃𝐴𝐴⋅𝐶𝐶𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃

, 1] ⋅ [𝐶𝐶𝑇𝑇𝑃𝑃⋅𝑃𝑃𝐴𝐴
𝑇𝑇𝑃𝑃

, 1] ⋅ [𝑃𝑃𝐴𝐴(1−𝑄𝑄2)−𝑃𝑃𝐿𝐿𝑄𝑄
𝑃𝑃𝐴𝐴

, 𝑃𝑃𝐴𝐴(1+𝑄𝑄1)−𝑃𝑃𝐿𝐿𝑄𝑄
𝑃𝑃𝐴𝐴

] = [𝑃𝑃𝐴𝐴⋅(𝑃𝑃𝐴𝐴(1−𝑄𝑄2)−𝑃𝑃𝐿𝐿𝑄𝑄)
(𝑃𝑃𝑃𝑃)2 , 𝑃𝑃𝐴𝐴(1+𝑄𝑄1)−𝑃𝑃𝐿𝐿𝑄𝑄

𝑃𝑃𝐴𝐴
] (26) 

Table 1. The component data for OEE estimate of a manual tightening 
station. 

Name Value 

𝑇𝑇𝑃𝑃 2025000 s 

𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆 600 s 

𝐶𝐶𝑇𝑇𝑃𝑃 75 s 

𝐶𝐶𝐶𝐶𝐴𝐴 78.7765 s 

𝑃𝑃𝐴𝐴 24431 parts 

𝑃𝑃𝑄𝑄 23799 parts 

𝑄𝑄1 0.019 % 

𝑄𝑄2 0.374 % 

𝑃𝑃𝐿𝐿𝑄𝑄 632 parts 

𝑃𝑃𝐿𝐿𝑄𝑄
′ full consideration with misjudgment of inspection. 546 parts 

𝑃𝑃𝐿𝐿𝑄𝑄
″ combined with the statistics from the inspection 

downstream and rework offline. 
542 parts 

𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆 1294 parts 

𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆 7 parts 

Actual Losses recorded by MES. 3201 parts 

Calculated Losses 1933 parts 

Unexplained Losses 1268 parts 

3. Case Study and Application 

3.1 Case Study 

The proposed methods have been applied in analyzation of 
a manual tightening station of a powertrain assembly line. The 
data of the planned, measured and calculated is as shown in 
Table 1. As the value of unexplained losses shows, there are 
some uncertainties in the measurement system. 

By implementing the proposed fuzzy method, the fuzzy 
stoppage duration losses are 𝑇𝑇𝑇̃𝑇𝑆𝑆𝑆𝑆 = (0,600,192675) , the 
fuzzy average cycle time is 𝐶𝐶𝐶̃𝐶𝐴𝐴 = (75,78.7765,82.8865)  , 
and the fuzzy quality losses is 𝑃𝑃𝑃̃𝑃𝑄𝑄 = (541,632,637). Then 
the fuzzy availability component of OEE estimate is 
calculated as 𝐴̃𝐴 = (0.9049,0.9997,1), the fuzzy performance 
component is 𝑃̃𝑃 = (0.9048,0.9520,1)  and the fuzzy quality 
component is 𝑄̃𝑄 = (0.9778,0.9852,0.9889) . Furthermore, 
The fuzzy OEE is 𝑂𝑂𝑂𝑂𝑂̃𝑂 = (0.8006,0.9376,0.9889) , where 
the modal value is equal to the conventional OEE. 

Defuzzy the fuzzy OEE by Eqs. (27). Moreover, take 𝜆𝜆 =
0.5 as the risk is neutral, then 𝐸𝐸(𝑂𝑂𝑂𝑂𝑂̃𝑂) is 0.9162. 

𝐸𝐸(𝑂𝑂𝑂𝑂𝑂̃𝑂) = (1−𝜆𝜆)𝑂𝑂𝑂𝑂𝐸𝐸𝐿𝐿+𝑂𝑂𝑂𝑂𝐸𝐸𝑀𝑀+𝑂𝑂𝑂𝑂𝐸𝐸𝑈𝑈

2  (27) 

Where 𝜆𝜆 is the risk index and the value depends on the risk 
attitude of the decision makers. 

To contrast, use interval arithmetic to estimate the OEE of 
the station. The lower and upper physical limits of interval 
stoppage losses 𝑇𝑇𝑇̃𝑇𝑆𝑆𝑆𝑆  are 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆

𝐿𝐿 = 300 s as being reduced by 
using the standby device, and 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆

𝑈𝑈 = 47400 s by adding the 
data of the minor stoppage which may be overlooked 
according to the industrial engineering supervisor. Moreover, 
the interval realized average cycle time can be given as 𝐶𝐶𝐶̃𝐶𝐴𝐴 =
[78.7765,80]. With the full consideration of the misjudgment 
of torque sensors, the interval quality losses are 𝑃𝑃𝑃̃𝑃𝑄𝑄 =
[𝑃𝑃𝐿𝐿𝑄𝑄 − 𝑃𝑃𝐴𝐴𝑄𝑄1, 𝑃𝑃𝐿𝐿𝑄𝑄 + 𝑃𝑃𝐴𝐴𝑄𝑄2] = [541,637] . Then the interval 
components are calculated as 𝐴̃𝐴 = [0.9766,0.9998] , 𝑃̃𝑃 =
[0.9375,0.9520]  and 𝑄̃𝑄 = [0.9778,0.9889]  respectively. 
Therefore, the interval OEE is 𝑂𝑂𝑂𝑂𝑂̃𝑂 = [0.8952,0.9412] with 
the closer interval compared to the fuzzy type OEE. 

As Fig. 3 shows, with the full consideration of uncertainties 
in estimating the stoppage duration, production speed and 
quality losses, the left and right spread value of the fuzzy 
OEE estimate can be more explicit to show the worst and best 
possible value to decision makers. To contrast, the interval of 
the interval OEE can be tighter, and the estimate can be more 
convenient on the premise of good experience and data 
accumulation of engineers. 
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Fig. 3. The different OEE results of a manual tightening station. 

3.2 Fuzzy OEE Automatic Estimate in Plant Simulation 

The fuzzy OEE estimate method has been programmed and 
built as an automatic OEE calculation module in Plant 
Simulation. The components of conventional OEE can be 
calculated in Plant Simulation by the equations as Table 2 
shows. Then 𝐴𝐴,𝑃𝑃 , 𝑄𝑄  and 𝑂𝑂𝑂𝑂𝑂𝑂  can be obtained by Eqs. (2), 
Eqs. (3), Eqs. (4) and Eqs. (1) respectively. 

However, it is hard to count the minor stoppages which 
cannot be described as availability and MTTR in Plant 
Simulation as well as the planned downtime used for 
production due to the different user definitions. Meanwhile, it 
is also difficult to count out the number of misjudgments of 
quality sensors which need to be shown in the simulation as in 
the beginning and the end of a period the misjudgments will 
break out. 

Hence, the fuzzy method is applied for OEE estimate 
considering the uncertainties. The improved approach of OEE 
components is shown in Table 3. Then the fuzzy components 
𝐴̃𝐴, 𝑃̃𝑃, 𝑄̃𝑄 and the fuzzy OEE can be reformulated as Eqs. (7), 
Eqs. (9) Eqs. (13) and Eqs. (18). Fig. 4 shows the dialog 
window of the OEE automatic estimate module and the chart 
of the fuzzy OEE result of a station in Plant Simulation. 

Table 2. OEE components calculated in Plant Simulation. 

Name Equation 

𝑇𝑇𝑃𝑃 Eventcontorller.SimTime Eventcontroller.StartStat
path .statUnplannedTime path .statPausingTime

PT = −

− −
 

𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆 path .PlannedDownTimeUsedforProduction

path .statBlockingTime path .statWaitingTime

path .statFailTime

STTL =

+ +

+

 

𝐶𝐶𝑇𝑇𝑃𝑃 𝐶𝐶𝑇𝑇𝑃𝑃 = ⟨path⟩.DefaultProcTime 

𝑃𝑃𝐴𝐴 𝑃𝑃𝐴𝐴 = ⟨path⟩.statNumOut 
𝑃𝑃𝐿𝐿𝑄𝑄  𝑃𝑃𝐿𝐿𝑄𝑄 = ⟨path⟩.statNumUnqualified 

Note:<path>.PlannedDownTimeUsedforProduction, <path>.DefaultProcTime 
and <path>.statNumUnqualified are user-defined attributes. 

Table 3. Fuzzy OEE components calculated in Plant Simulation. 

Name Equation 

𝑇𝑇𝑃𝑃 Eventcontorller.SimTime Eventcontroller.StartStat
path .statUnplannedTime path .statPausingTime

PT = −

− −
 

𝑇𝑇𝑇̃𝑇𝑆𝑆𝑆𝑆 𝑇𝑇𝑇̃𝑇𝑆𝑆𝑆𝑆 = (0, 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆, ⟨path⟩.statNumOut
⋅ ⟨path⟩.DefaultProcTime) 

𝐶𝐶𝑇𝑇𝑃𝑃 𝐶𝐶𝑇𝑇𝑃𝑃 = ⟨path⟩.DefaultProcTime 

𝑃𝑃𝐴𝐴 𝑃𝑃𝐴𝐴 = ⟨path⟩.statNumOut 
𝑃𝑃𝑃̃𝑃𝑄𝑄  𝑃𝑃𝑃̃𝑃𝑄𝑄 = (𝑃𝑃𝐿𝐿𝑄𝑄 − 𝑃𝑃𝐴𝐴𝑄𝑄1, 𝑃𝑃𝐿𝐿𝑄𝑄, 𝑃𝑃𝐿𝐿𝑄𝑄 + 𝑃𝑃𝐴𝐴𝑄𝑄2) 
Note: 𝑇𝑇𝐿𝐿𝑆𝑆𝑆𝑆 and 𝑃𝑃𝐿𝐿𝑄𝑄 are shown in Table 2. 

 

Fig. 4. The dialog window of OEE automatic estimate module and the chart 
of the fuzzy OEE result of a station in Plant Simulation. 

4. Conclusions 

This paper studies the automatic OEE estimation with the 
consideration of uncertainties of stoppage duration, 
production speed and quality losses compared to the 
conventional OEE calculation which is based on accurate data. 
Due to various uncertain factors which can not be avoided 
during the operating of manufacturing systems, the data 
collected may be inaccurate and lead to deviation of system 
control. By analyzing the critical factors and potential pitfalls 
when calculating OEE of systems, two methods based on 
fuzzy arithmetic and interval arithmetic respectively are 
proposed to manage the uncertainties in estimating. Moreover, 
a dataset from real-world is used to illustrate the concepts and 
the benefits of the methods in practice. Moreover, the fuzzy 
method proposed has been applied to modify the OEE 
automatic estimate module in Plant Simulation. 

The future work is to extend the methods to estimate 
Overall Line Effectiveness (OLE) and Overall Plant 
Effectiveness (OPE) which are used to measure the line-level 
and plant-level effectiveness respectively. Moreover, different 
statistical distribution will be considered for the development 
of the approach. 
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