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Application of SDRE Technique to Orbital and Attitude

Control of Spacecraft Formation Flying

Mauro Massari∗, Mattia Zamaro

Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Italy

Abstract

This paper proposes the application of a nonlinear control technique for cou-

pled orbital and attitude relative motion of formation flying. Recently, mis-

sion concepts based on formations of spacecraft that require an increased

performance level for in-space maneuvers and operations, have been pro-

posed. In order to guarantee the required performance level, those missions

will be characterized by very low inter-satellite distance and demanding rel-

ative pointing requirements. Therefore, an autonomous control with high

accuracy will be required, both for the control of relative distance and rel-

ative attitude. The control system proposed in this work is based on the

solution of the State-Dependent Riccati Equation (SDRE), which is one of

the more promising nonlinear techniques for regulating nonlinear systems in

all the major branches of engineering. The coupling of the relative orbital

and attitude motion is obtained considering the same set of thrusters for

the control of both orbital and attitude relative dynamics. In addition, the

SDRE algorithm is implemented with a timing update strategy both for the
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controller and the proposed nonlinear filter. The proposed control system

approach has been applied to the design of a nonlinear controller for an up-

to-date formation mission, which is ESA Proba-3. Numerical simulations

considering a tracking signal for both orbital and attitude relative maneuver

during an operative orbit of the mission are presented.

Keywords: Formation Flying, Nonlinear Control, State Dependant Riccati

Equation, Attitude Control

1. Introduction

Formation flying has become an area of great interest for both NASA and

ESA since the launch, in 1999, of the latest satellite of NASA Landsat pro-

gram, Landsat 7. Mission analysis and requirements for the first formations

have been very simple and common, as they were constituted by a minimal

set of two satellites. Those satellites were placed in a so-called trailing con-

figuration, where the deputy satellite follows the chief along the same orbit.

The reasons for such a simple and basic configuration can be inferred from

the fact that those formations were designed to increase the performances

of Earth observation missions. As a matter of fact, placing two satellites in

proximity on the same orbit, makes possible to cover the same ground target

area with multiple angles of view and multiple access times. That could allow

the use of recent development in radar-based observation instruments to real-

ize 3D mapping and terrain motion monitoring of Earth surface, just adding

a second satellite flying in formation with an existing one. This application

can highly reduce the response time of synthetic-aperture-radar (SAR) mis-

sion in providing differential-interferometric measures of ground target area.
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The relative distance between the two satellites can be used to tune the mea-

surements of the interferometric SAR. As in the example just reported, the

application of formation flying was firstly devoted to science purposes, with

the aim of realizing a complex observation instrument exploiting the relative

motion of multiple components. However, the main objective and purpose of

a modern formation is the use of multiple spacecraft flying in close proximity

for the fulfillment of a common mission requirement, that can be of any kind.

The design of the orbital control system for the kind of formation pre-

sented above had been performed using linear control theory applied to the

linearized Hill’s equations of relative motion. In that case, good control per-

formances have been obtained using the Linear Quadratic Regulator (LQR)

[1][2]. The use of simplified models of the dynamics was imposed by the use

of linear control theory. However, that was not a great limitation, as the rel-

ative distance (in the order of a few km) was sufficiently small to guarantee

that the Hill’s linearization is accurate.

Nonlinear models and control strategies started to be investigated only in

recent years, by the major work of Alfriend, Schaub and Gim,[3][4][5]. The

nonlinear approach is required to better exploit the potentialities of forma-

tion flying for the design of new mission concept. First of all, the mission

design has become more complicated as in the case of the the ESA Cluster II

mission launched in 2000. Four satellites have been put on a high elliptic or-

bit to realize a tetrahedron Cluster Formation which still provides important

results on high Magnetosphere dynamics. Second of all, the mission require-

ments have started to be more demanding as formations at smaller relative

distances are designed. Small relative distances require a high-performance

3



autonomous control to provide the necessary safety. Coordinated coupled

control of both orbital and attitude relative motions[6][7][8] becomes essen-

tial for other science applications like the case of inertial cluster observation

(natural extension of SAR technique). In addition, tracking of relative ma-

neuvers and non-keplerian formations are now demanded for propellant sav-

ing optimization. The most anticipated mission in the science world will be

the forerunner in a lot of those aspects: LISA (Laser Interferometric Space

Antenna) is an interplanetary formation composed by three satellites that

NASA and ESA are designing in order to prove the existence of gravitational

waves.

Linear control techniques can not provide the high performances required

by those new application of formation flying. The model errors will be instan-

taneously compensated by control actions, increasing the fuel consumption,

or in extreme cases, bringing to conditions in which the mission requirement

are not satisfied. Nonlinear control techniques allow overcoming the limita-

tions imposed by the linearization of the dynamics. New nonlinear design

techniques have been proposed so far: dynamic inversion, sliding mode[9],

recursive backstepping[10] and nonlinear adaptive control[10]. However, non-

linear techniques are very sensitive to the dynamics of the case under study,

leading to a more complex overall control design with respect to linear tech-

niques.

During the last decade, the State-Dependent Riccati Equation (SDRE)[11][12]

innovative nonlinear methodology burst into the automatic control field. This

technique has the great advantage of being a systematic procedure, which

consists in parameterizing the system dynamics in a pseudo-linear form, with
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State-Dependent Coefficients (SDC). Then, the classical optimal control the-

ory and algorithms can be applied to that SDC parametrization, bringing in

that way to a State-Dependent Riccati Equation. Mathematical properties

and operational strategies of this methodology have been deeply analyzed

during that period[11][13][14]. Thanks to the improvement in computational

capability of onboard computers, the SDRE technique has also started to

be proposed for application to aerospace problems. Example of such prob-

lem are the design of autopilots for missile guidance[15] and the control of

spacecraft motion[16]. Following an analogous approach it is also possible to

derive a SDRE filtering (SDREF) for sensors measurements[17].

In this paper the use of the SDRE methodology is applied to the de-

sign of a completely coupled control system (orbital and attitude relative

dynamics) for spacecraft in formation. The orbital and attitude dynamics of

a spacecraft are naturally coupled by the environmental actions such as the

gravitational forces or the atmospheric perturbations. The coupling between

the two dynamics is also naturally provided by the reaction thrusters of the

spacecraft control system. Misalignment of thrust direction produces a net

torque around the center of mass, while directly influencing the orbital dy-

namics. The choice of considering the coupling of the two dynamics allows

the inclusion of the system requirements deriving from the integrated control

system directly in the controller design and optimization.

The proposed approach will be applied to a test case which considers the

requirements of an up-to-date formation mission, the ESA Proba-3 mission.

This mission is constituted by a pair of spacecraft, the Coronagraph (CS) and

the Occulter (OS), flying at small distance on a High Elliptical Orbit (HEO).
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The dynamical model of Proba-3 formation is derived using the available data

provided on the ESA web-site and in the Phase A Summary Report[18]. That

model is used to evaluate the performances of a coupled control system based

on the SDRE methodology, for both the controller and the nonlinear filter.

The paper is organized as follows. The model used to describe the for-

mation flying relative dynamics is formulated in the next section, which is

followed by an overview of the SDRE methodology. Then, the requirements

and details of Proba-3 mission used to carry out the numerical simulation

are described together with the details of the implemented timing update

strategy for the solution of the SDRE. Finally, the results of the numerical

simulations are presented, followed by the conclusions.

2. Formation Flying Relative Dynamics

The relative motion of the members of a formation, called deputies, with

respect to a chief satellite, are described using a nonlinear model for both

the relative position and attitude dynamics. The chief satellite represents the

origin of the reference frame and can be identified with a physical spacecraft

or with a non-physical frame of interest for the mission.

2.1. Relative Orbital Dynamics

The relative orbital kinematics can be easily written in the Earth Centered

Inertial reference frame (ECI) highlighting the apparent terms as follows:

rd = rc + ρ (1)

r̈d = r̈c + ρ̈+ aapp (2)

aapp = [ω̇H ∧ ρ+ ωH ∧ (ωH ∧ ρ)] + 2ωH ∧ ρ̇ (3)
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where rd and rc are the absolute position respectively of the deputy and of

the chief, ρ is the relative position of the deputy in the Hill’s reference frame,

aapp is the apparent acceleration of the deputy and ωH is the angular velocity

of the Hill’s reference frame with respect to ECI reference frame.

Using the classical two-body perturbed (2B-P) assumption to model the

satellite dynamics in the ECI reference frame, it is possible to express the

relative orbital dynamics of the deputy in terms of accelerations as:

ρ̈ = −aapp + µ

(
− rd
rd3

+
rc
rc3

)
+

(
add
md

− adc
mc

)
+

(
ud
md

− uc
mc

)
(4)

where adc and add are the disturbances on chief and deputy, uc and ud are the

control actions on chief and deputy, and mc and md are the masses of chief

and deputy.

The relative orbital dynamics is mainly influenced by the apparent accel-

eration aapp of the Hill’s reference frame and from the differential accelera-

tions due to the gravitational attraction. Moreover, the relative dynamics is

directly influenced by actual differential disturbances and by eventual differ-

ential control actions. If the chief and deputy are orbiting in proximity, it is

possible to made the assumption that the disturbances are similar and erase

each other. The modeling of the perturbed chief dynamics is then used to

express the Hill’s reference frame kinematics required to compute aapp:

ωH =


1
vθ
adh

0

vθ
r

 (5)

7



ω̇H =


1
r
adh +

1
vθ2
adθa

d
h +

1
vθ
ȧdh

0

−2vrvθ
r2

+ 1
r
adθ

 (6)

where vr and vθ are the radial and transverse components of the chief velocity

in the orbital plane, while adθ and adh are the component of the disturbance

accelerations acting on the chief expressed in the Hill’s reference plane along

the transverse and normal directions.

2.2. Relative Attitude Dynamics

The relative attitude kinematics is expressed through the use of a rotation

matrix Γ that describes the relative orientation of the deputy principal axes

of inertia with respect to the chief principal axes of inertia. That matrix is

used to express the relative angular velocity and acceleration of the deputy

with respect to the chief: whereas no apparent terms come out for the angular

velocity, an apparent angular acceleration ω̇app must be considered.

Ad = ΓAc (7)

ωr = ωd − Γωc (8)

ω̇r = ω̇d − Γω̇c + ω̇app (9)

ω̇app = ωr ∧ Γωc (10)

where ωc and ωd are the angular velocity of the chief and deputy expressed

in their principal axes of inertia, while ωr is the relative angular velocity

expressed in the deputy principal axes of inertia.

In order to describe the relative attitude of the deputy a parameteriza-

tion of the rotation matrix Γ is required. In this work the Modified Ro-

drigues Parameters (MRP), which are an evolution of the quaternions, are
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considered[19]. They are a minimal set of three parameters (which does not

compromise system controllability) that are described with two different sets

which have the same norm but components with opposite sign. That allows

not only to overcome singularities of minimal parameterization, but also to

intrinsically describe every rotation with the minor angle definition (which is

given by the norm-limited MRP set). The MRP are defined by the following

relations:

σ =
q̃

1 + q0
(11)

Γ (σ) = I3 − αA
1 [σ∧] + αA

2 [σ∧]
2 (12) αA

1 = 4 1−σT σ

(1+σT σ)2

αA
2 = 8 1

(1+σT σ)2

(13)

where σ are the MRP, q̃ are the quaternions and I3 is an identity matrix.

The kinematics relationship which bind the MRP to the angular velocity

is the following:

σ̇ = 1
4
Σ (σ)ω (14)

Σ (σ) =
(
1− σTσ

)
I3 + 2σσT + 2 [σ∧] (15)

The relative attitude dynamics can be obtained substituting kinematics

relationships in the Euler absolute equation for the deputy spacecraft:

Jdω̇r + ωr ∧ Jdωr = −Mg −Mci +Mapp +Md + Td (16)

where Jd is the matrix of inertia of the deputy, Md are disturbance torques

and Td are control torques. The relative attitude dynamics is influenced by

gyroscopic torquesMg, chief-inertial torquesMci and apparent torquesMapp:

Mg =Mgc +Mgcoup (17)
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Mgc = Γωc ∧ JdΓωc

Mgcoup = (ωr ∧ JdΓωc + Γωc ∧ Jdωr)

Mci = JdΓω̇c (18)

Mapp = Jdωr ∧ Γωc (19)

2.3. Coupled Relative Dynamics

The dynamics equations shown above can be used to simulate forma-

tion dynamics with proper initial conditions, applied control actions and

appropriate disturbance modeling. The modeling of the space environment

is extremely important in designing every space mission. The magnitude of

force and torque perturbations is highly dependent on the operative orbit and

size of the spacecraft. However, the most relevant perturbations are always

present for Earth orbiting satellites and can be summarized in: gravitational

forces from Earth not homogeneous gravity field; Sun-Moon attraction; grav-

ity gradient torques; torques induced by the interaction with Earth magnetic

field; forces and torques deriving from electromagnetic radiation pressure

and atmospheric drag. The orbital and attitude dynamics of a spacecraft are

naturally coupled by these environmental perturbations.

The non-gravitational perturbations are orientation-dependent forces and

torques, which are relevant, if compared to basic gravitational term, only for

very low orbit trajectories (drag) and in the case of very big solar panels

(solar radiation). Position-dependent torques are instead very relevant for

attitude control of Earth satellites: basic Earth gravity gradient torque has

indeed been used as a passive stabilizing strategy. Other perturbation torques
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are relevant only in specific cases. The only coupling terms of the dynamics

considered in the controller design is the gravity gradient torques on deputy,

for which the analytic expression is reported here:

MGG = 3
µ

r5d
rd ∧ Jdrd (20)

The coupling between the two dynamics is also naturally provided by

the reaction thrusters of the spacecraft control system. Misalignment of the

thrust direction produces a net torque around the center of mass. There-

fore, the control actions required to influence the orbital dynamics directly

influence also the attitude dynamics.

3. The SDRE Methodology

Consider the general control-affine nonlinear system of first-order differ-

ential equations:

ẋ = f (x) + g (x)u (21)

where x(t) are the states and u(t) are the control actions. A systematic pro-

cedure to derive a controller for the dynamics has been proposed by Cloutier,

D’Souza and Mracek[11][12]. In this procedure a point-wise linear-like de-

scription of the differential equations is considered. Every nonlinear equation

which satisfies the following analytical requirements,

x ∈ Rn, u ∈ Rm (22)

f(x) ∈ Ck, g(x) ∈ Ck, k ≥ 1 (23) f(0) = 0

g(x) ̸= 0,∀x
(24)
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can be written in a pseudo-linear form where all coefficients are state-dependent

(State Dependent Coefficient or SDC parametrization):

ẋ = A(x)x+Bu(x)u+Bd(x)d (25)

where d(t) are the disturbances.

Even in the case that the analytical requirements are not fully satisfied,

Cloutier presented a technique to derive a correct SDC form of the system

dynamics[13]. In addition, the presence of different pseudo-linear forms for

the nonlinear systems, which is often considered an issue of the approach, is

turned into an advantage. In fact, it is possible to consider a proper linear

combination of the different SDC forms, implicitly adding degrees of freedom

(the weighting parameters) to the controller design[20].

3.1. SDRE-based Controller

With the dynamics expressed in SDC form, it is possible to apply the

classical optimal control theory. Making the assumption of infinite-horizon

(IH) control and following the same approach as in the Linear Quadratic Reg-

ulator (LQR). Let define a state-dependent quadratic cost functional ℑ(x, u)

of the state and control vectors:

ℑ(x, u) = 1

2

∫ ∞

0

xTQ(x)x+ uTR(x)udt (26)

where Q(x) and R(x) are weighting matrices respectively on states and con-

trols. Those state-dependent weighting matrices should satisfy the same

requirements deriving from the classical linear optimal control theory. In

particular, Q and R should be symmetrical, with the first one positive-

semidefinite and the second one strictly positive-definite. Moreover, the
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controllability of [A,Bu] pair, and the observability of [A, q] pair (where q

is a proper factorization of Q) should be guaranteed. The minimization of

the cost functional subject to the system dynamics constraint, requires the

satisfaction of two necessary conditions. The first one, as in the LQR for-

mulation, allows to derive the control gain matrix, that will be used in the

nonlinear optimal control law:

K(x) = R−1(x)Bu
T (x)P (x) (27)

u(x) = K(x)x (28)

The second one is the Hamilton-Jacobi-Bellman equation (HJB), that is used

to derive the sensitivity matrix P :

Ṗ x+
[
xTA/xi

T + uTBu/xi
T
]T
Px+ 1

2

[
xTQ/xi

x+ uTR/xi
u
]
+

+
[
ATP + PA− PBuR

−1Bu
TP +Q

]
x = 0

(29)

This condition can be divided in two parts: the first one is called neces-

sary condition for optimality, and collects all the derivatives of the state-

dependent matrices; the second one represents the State-Dependent Riccati

Equation (SDRE):

ATP + PA− PBuR
−1Bu

TP +Q = 0 (30)

It has been proved that the terms of the first part of the HJB equation tend

to zero as the state vector reaches the equilibrium. Therefore, the solution

is obtained solving only the SDRE, which gives the point-wise stabilizing

control law along the state trajectory[11]. The SDRE technique can be con-

sidered as a linear-like parametrization of the Optimal Control for nonlinear

systems, where the additional terms are related to the existence of multiple
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SDC forms. In these cases, the solution obtained is sub-optimal. The control

performances should always be tested with computer simulations, since the

original nonlinear system stability, controllability and observability cannot

be matched tout-court to the SDC system properties.

3.2. SDREF

The SDC parametrization of the system is also suitable to be observed

with the dual SDRE algorithm, that allows the derivation of a Kalman-like

nonlinear filter. Consider the dual dynamical system:

˙̂x = A(x̂)x̂+Bu(x̂)u+Bd(x̂)d+ L(x̂) [y − C(x̂)x̂] (31)

where y is the measured state:

y = C(x)x+D(x)u (32)

The estimator control law, expressed by the SDC gain matrix L, is derived

via a dual optimization algorithm[17], whose weighting matrices on states and

controls can be summarized as: N(x̂) = Bd(x̂)Wdd(x̂)Bd
T (x̂)

V (x̂) = Dyr(x̂)Wrr(x̂)D
T (x̂)

(33)

The estimator control law is then:

L(x̂) = Λ(x̂)CT (x̂)V −1(x̂) (34)

where the classic assumption of no correlation of the process disturbances

with the measurements and relative noises is considered.
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The sensitivity matrix Λ is derived from HJB equation, resulting from

the point-wise solution of the dual SDRE optimization, approximating the

related necessary condition for optimality:

Λ̇x̂+
[
x̂TA/x̂i

+ yTC/x̂i

]
Λx̂+ 1

2

[
x̂TN/x̂i

o+ yTV/x̂i
y
]
+

+
[
AΛ + ΛAT − ΛCTV −1CΛ +N

]
x̂ = 0

(35)

Again, the first part of the HJB equation tends to zero as the state vector

reaches the equilibrium. Therefore, the solution is obtained solving only the

dual SDRE:

AΛ + ΛAT − ΛCTV −1CΛ +N = 0 (36)

4. SDRE Control System Design for PROBA-3

Proba-3 is ESA’s first close formation flying mission. Its technological

objective is the demonstration of new in-space technologies, to assure close

relative maintenance and operations. The mission is constituted by a pair

of spacecraft, the Coronagraph (CS) and the Occulter (OS), flying at small

distances in High Elliptic Orbit (HEO). The operative orbit is divided in

two phases: across the slow apogee passage, the operative configuration is

maintained, while the configuration is untied during the remaining part of

the orbit. The operative configuration is obtained letting the OS fly in front

of the Sun to cast a shadow across the CS, eclipsing the Sun and allowing the

observation of the Corona. The scientific objective of the mission is actually

the study of the inner solar corona, so the orbit of the CS is not fixed but it is

designed to have its apogee aligned with the daily Sun direction. During the

untied configuration phase other manoeuvres and technologies are tested.
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Scientific data are downloaded to ground stations during the fast perigee

passage.

The proposed control system approach has been applied to the design of

the relative orbital and attitude control of the OS. Therefore, the CS dynam-

ics is used as a reference signal (using quaternions as attitude parametriza-

tion) for the deputy relative motion and its control system. The chief orbital

motion is considered uncontrolled, while the assumption of a chief attitude

control system working ideally has been made. Figure 1 shows the architec-

ture of the simulation used to test the designed control system.

Figure 1: Formation Flying control system block diagram.

The deputy control system makes use of a Kalman-like nonlinear filter

designed with the dual SDRE procedure (which is the SDREF) for the re-

construction of the state vector from sensors measurements. That state is

compared with a tracking signal to compute the error that the designed

SDRE-based controller uses to command the coupled Orbital and Attitude
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Control System (OACS) of the deputy (the OS).

4.1. Mission Analysis and Requirements

The control system performances are investigated using an adequate mod-

eling of Proba-3 mission specifications. The Chief HEO is derived from avail-

able data presented on the ESA website of the mission, and is characterized

by apogee and perigee heights of 60524km × 800km. The orbit is assumed

to be J2-free, for propellant saving, and placed in the ecliptic plane. Finally,

the remaining argument of perigee is derived orienting the apogee to be Sun-

pointing at the current day of orbit simulation. The CS is assumed to have

nadir pointing attitude during all the orbit.

The deputy trajectory is divided in two parts. During the central part

of the orbit, crossing the apogee, the OS is maintained in operative config-

uration, which is approximated as it is placed in front of the chief in the

radial direction, at a distance of 150m. During the first and last third of the

orbit, crossing the perigee, the formation is relaxed in a trailing configura-

tion, maintaining the same relative distance. Therefore, two specular relative

reconfiguration manoeuvres are required to switch between those configura-

tions. Each manoeuvre is obtained imposing a tracking signal that describes

a one-quarter circular path, with uniform acceleration motion, along the

transversal relative coordinate (the first half with positive acceleration, the

second one with negative acceleration). The total time of the manoeuvre

(Tm) is fixed in 2 hours. Figure 2 shows the CS absolute orbit in ECI and

the OS relative orbit in the chief Hill’s reference frame.

In addition, the orbital reconfiguration manoeuvre is accompanied by

a relative attitude reconfiguration, assuming that the OS communication

17



Figure 2: Coronagraph spacecraft absolute orbit and Occulter spacecraft relative orbit.

side is always oriented to point in the direction of the CS. The CS and OS

inertial properties are derived considering a parallelepiped architecture with

dimensions and mass based on the available mission data.

4.2. SDC Parametrization of formation flying relative dynamics

The control system design is performed considering a state vector which

encloses the states of both the orbital and attitude dynamics. In particular

the state vector includes the relative position and velocity, the relative at-

titude described used the MRP and the angular velocity. In the following

the chosen SDC form of the relative position and attitude dynamics will be

presented.

Considering the relative orbital dynamics, the nonlinearity is present in

the differential gravitational action, and the equations are easily taken to the

unique pseudo-linear form:
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−
(
µ

rd3
rd −

µ

rc3
rc

)
Hc

=

− µ

rd3
I3 + µξr


2rc + ρr ρθ ρh

0 0 0

0 0 0


 ρ (37)

ξr =
1

rc2rd3
(rc + rd)

2 − rcrd
(rc + rd)

(38)

where ρr, ρθ and ρh are the components of the relative position vector in the

Hill’s reference frame of the chief.

The MRP kinematics relationship does not allow a single SDC parametriza-

tion but it is the typical case in which multiple SDC forms must be combined

to obtain a suitable SDC formulation. This is done adding parameters to

weight the different formulations. In this work two SDC parametrization for

the MRP kinematics are used. In the first SDC form considered the state

matrix components related to the MRP and angular velocity are present,

while in the second one mixed quadratic terms between MRP components

are contained. The two SDC form are combined using a single weighting

parameter αωσ:

σ̇ = αωσ
1

4
Σ(σ)ω + (1− αωσ)

(
1

4
Σω(σ, ω, ασ)σ +

1

4
I3ω

)
(39)

The integral states of relative position and MRP are adjoined to the state

vector in order to allow a proper tracking of the orbital and attitude reference

signal. In addition, the system is augmented with a three-components stable

state s, whose values are fixed to unity, in order to consider the bias terms in

the attitude dynamics. The relative bias eigenvalue is chosen in a way that

makes its dynamics consistently slower than the attitude dynamics response
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time: the value used is 0.001 rad/s.

ṡ = −λsI3s (40)

The above mentioned bias terms come out in writing the chief states

(angular velocity and acceleration) in the deputy principal axes of inertia

reference frame. An example of the suggested procedure to treat the bias

terms is reported here for a generic vector v (other three additional parame-

ters are present in the resulting matrix Ψ):

Γ(σ)v = Diag

{
vi
si

}
s+

(
αA
1 [v∧] + αA

2 Ψ(σ, v, ασ)
)
σ (41)

where Γ(σ), αA
1 and αA

2 are defined in Eq. (12) and (13).

Besides, considering the coupling effect of the gravity gradient torque on

the attitude dynamics, a bias term results from the SDC parametrization of

its definition in Eq. (20), and is treated with two matrices M54 and M56:

MG = 3 µ
rd5

[Γ(σ)∆(qc)rd∧] JdΓ(σ)∆(qc)ρ+

+rc3
µ
rd5

[Γ(σ)∆(qc)rd∧] JdΓ(σ)∆(qc)


1

0

0

 (42)

Γ(σ)∆(qc)


1

0

0

 = (Γ(σ)∆(qc))1stcol =M54(qc, σ)σ +M56(qc, σ)s (43)

where ∆ is the rotation matrix describing the orientation of the Hill’s refer-

ence frame with respect to the chief principal axes of inertia, expressed using

the quaternions qc.
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In conclusion, after the definition of a 21-components state vector:

x =
[
ρI ρ ρ̇ σ ω s σI

]T
(44)

where ρI and σI are the integral states, the resulting state matrix and dis-

turbance matrix, which introduces perturbing accelerations in the dynamics,

can be outlined as:

A(x) =



03 I3 03 03 03 03 03

03 03 I3 03 03 03 03

03 A32(x) A33 03 03 03 03

03 03 03 A44(x) A45(x) 03 03

03 A52(x) 03 A54(x) A55(x) A56(x) 03

03 03 03 03 03 A66 03

03 03 03 I3 03 03 03


(45)

Bd =

 03 03 I3 03 03 03 03

03 03 03 03 I3 03 03

T

(46)

4.3. OACS Implementation

The relative orbital and attitude dynamics are controlled using the same

set of thrusters, coupling in this way the two dynamics. This coupling effect

is not necessary desirable from the point of view of the control system de-

sign and performances. However, it is usually required by consideration at

system level. A coupled control can indeed reduce the overall complexity of

the spacecraft. Moreover, in the case of low-thrust solar electric propulsion

used for both orbital and attitude control this would probably be the only

reasonable solution.
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The minimum number of thrusters required to completely control both

the orbital and attitude dynamics is twelve, since two thrusters are required

for each direction. This redundancy is only required at system level, so

six control actions corresponding to the working thrust magnitudes reported

below, are considered in the control vector.

u =



u1

u2

u3

u4

u5

u6


⇒



T+1
X =

 u1 u1 ≥ 0

0 u1 < 0

T+1
Y =

 u2 u2 ≥ 0

0 u2 < 0

T+1
Z =

 u3 u3 ≥ 0

0 u3 < 0

T+2
X =

 u4 u4 ≥ 0

0 u4 < 0

T+2
Y =

 u5 u5 ≥ 0

0 u5 < 0

T+2
Z =

 u6 u6 ≥ 0

0 u6 < 0



T−1
X =

 0 u1 ≥ 0

−u1 u1 < 0

T−1
Y =

 0 u2 ≥ 0

−u2 u2 < 0

T−1
Z =

 0 u3 ≥ 0

−u3 u3 < 0

T−2
X =

 0 u4 ≥ 0

−u4 u4 < 0

T−2
Y =

 0 u5 ≥ 0

−u5 u5 < 0

T−2
Z =

 0 u6 ≥ 0

−u6 u6 < 0

(47)

In order to define the thrusters configuration it is necessary to fix the

geometry of the spacecraft. In this work a simple box shaped spacecraft with

two solar array panels is considered. In figure 3 the thrusters configuration

on the spacecraft is reported.

The chosen OACS thrusters configuration allows to decouple the control

torques, as each pair of thrusters controls the rotation around a principal axis

of inertia. This can be easily seen in the attitude control sub-matrices B51 and
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Figure 3: Spacecraft architecture and OACS configuration.

B52 where a, b and c represent the three spacecraft dimensions. The orbital

control sub-matrices B31 and B32 depends on the spacecraft orientation, thus

realizing the second coupling effect between the two dynamics.

Bu(x) =



03 03

03 03

B31(x) B32(x)

03 03

B51 B52

03 03

03 03


(48)

B31(x) = B32(x) =
1

md

(Γ(x)∆)T (49)

B51 = −B52 = Jd
−1 1

2


0 0 b

c 0 0

0 a 0

 (50)
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In order to evaluate the performances of the proposed nonlinear control

system it is necessary to identify a detailed model of the thrusters system

which allows the identification of saturation levels or other performances

degradation factor that should be included in the simulation. Every kind of

actuator has its working thrust range and the maximum thrust value is the

most important parameter that influences the orbital control performances.

The attitude control action is usually obtained firing thruster in opposite

direction to generate a net torque . When both the orbital and attitude

control are obtained with the same set of thrusters, the attitude control

torque is obtained as a difference in the thrust of the pair of thruster used

for translational control. Therefore, the most influencing parameter on the

attitude control is the thrust level resolution. This is strictly related to

the thrust range (max-min values) and to the actuators electronic driver

resolution, typically of 8 bits. All those aspect have been considered in the

simulator implementation.

The coupled actuators system has an intrinsic limitation: the attitude

control torque cannot be applied correctly if at least one of the thruster

necessary is in saturation regime. In order to overcome this limitation, thus

guaranteeing a certain level of control torque in each condition, a differential

saturation solution has been applied. This solution consists in devoting a

minimum thrust interval to the attitude control torque, thus limiting the

maximum available thrust for translational dynamics control to a level lower

then the physical saturation of the thruster. The amplitude of that interval

is computed considering the attitude station-keeping minimal requirements.

Nowadays, different kinds of in-space propulsion thrusters are available.
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Low thrust electric propulsion is the best choice for a continuous high-

performance application of coupled control. For this reason low-thrust elec-

tric propulsion has been chosen and the thrust level has been defined con-

sidering the available data for the mission, which indicate the use of eight 40

mN Hall thrusters.

State of the art space sensors can be very accurate for every kind of space-

craft state measure. Therefore, the Kalman-like nonlinear filter proposed in

this work is used only for better rejection of the measurement noise.

The SDC system used for the controller design is characterized by a 21-

states model which comprises also fictitious stable states used to treat bias

terms and integral states. The value of those fictitious stable states is fixed to

unity, thus the corresponding terms in the noise weight matrix should be kept

sufficiently low. The two integral states of the relative position and MRP

are not a physical measure, and so can be neglected by the nonlinear filter.

The error on integral states is related to the drift due to the propagation.

This drift can be treated erasing the non-physical initial condition at apogee

passage, just down-streaming the 15-order Kalman-like nonlinear filter.

4.4. SDRE Timing

Although the computational capability of the recent on board computers

would have made possible real and continuous time solution of Riccati equa-

tion, it has been decided to implement a timing strategy for the solution of

the Riccati equation. In this way the GNC processor computational load can

be reduced as the solution of SDRE for both the controller and the nonlinear

filter is performed discretely at a certain time step. A linear-like propor-

tional control law is maintained along a time interval with the gain matrix
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computed at the beginning of it. This strategy can sensibly reduce the com-

putational load required by the solution of the SDRE in case of high-order

SDC systems. Moreover, if the SDC gains are actually slowly varying during

the time interval, a continuous solution of the SDRE does not effectively

increase the performances of the control system.

The choice of the time step for the SDRE solution of the controller is the

next step. Clearly, it is not possible to derive an absolute law for the identifi-

cation of the SDRE solution time step applied to formation flying. However, a

sensitivity analysis has been conducted on formation flying typical scenarios,

highlighting some basic guidelines that are applied in this work. Due to HEO

characteristics, the evolution of the gains associated with the orbital motion

is approximately sinusoidal along the true anomaly. Therefore, assuming a

1% RMS allowable error on gain approximation, it’s possible to derive the

demanded number of updates per orbit. In the case of Proba-3 orbit, it

comes out that 100 updates are sufficient to guarantee the RMS error with

respect to the continuous solution. This update frequency is translated into

a true anomaly step and then into time step along the orbit using Kepler’s

equation. The resulting time steps are very fitted during perigee passage,

but are more coarse during the central part of the orbit across the apogee.

These time steps would be acceptable if the objective of the controller

is related only to station-keeping operation. However, two reconfiguration

maneuvers are performed before and after the apogee passage, each one for a

duration of 2 hours. During this maneuvering intervals, the SDRE solution

time steps previously derived are too coarse to guarantee good performances.

For this reason, during the maneuvers the SDRE solution time step is con-
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siderably reduced, adding equally spaced time steps. For each maneuver 120

update steps are imposed, neglecting the gain characteristics but verifying

that they are sufficient for a 90◦ relative orbital and attitude maneuver. The

SDRE time step for the reconfiguration maneuver is so fixed to 60 s, which

provides a maximum angular relative step equal to 1.5◦. Figure 4 highlights

the resulting time step evolution.

Figure 4: SDRE Timing.

The SDREF solution update time steps choice have been investigated

with a corresponding sensitivity analysis. Estimation entails not only appli-

cation of estimator control law, but also filtering of system dynamics using a

numerical integration of the estimated state vector. Moreover, filtering is an

action far more sensitive to the time steps duration than the optimal SDRE

control, since also the filter matrices A and B should be discretely computed.

Due to the HEO characteristics, which have brought to a relatively small time

step during the perigee passage, the SDREF update time has been fixed to

be the double of the SDRE one, along the entire orbit.
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5. Simulation Results

The proposed SDRE coupled control system has been designed and tested

considering as scenario the above mentioned Proba-3 mission. The simula-

tions have been carried out using Adams-Bashforth-Moulton numerical prop-

agator, which is a classical Predictor-Corrector variable step method. The

choice of the minimum relative tolerance is imposed by the attitude dynamics,

since its response time is decisively faster than the orbital one. The numer-

ical propagation is carried out using Cowell’s method, in order to maintain

the coherence with the state-space algorithm on which the control system is

based. Table 1 shows the data used in the numerical simulations for both

the chief and deputy satellite. The I.C. column reports the initial condition

of the trailing configuration, where ϕ, θ and ψ are the angle representing a

321 Euler angle rotation.

In order to acquire the operative configuration and to go back to the

trailing configuration two reconfiguration manoeuvres have been considered

with a starting time and angle reported in the following equations:

∆t =

 t− 6.25h

t− (13.45h− Tm)
(51)

θrif =

 −90◦

0◦
(52)

where Tm is the single manoeuvre duration and t is the time measured from

the perigee passage. The tracking signal for the two orbital reconfiguration
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SC Orbital I.C. Attitude I.C. Inertial Prop.

Chief a (RU) 5.8074 θ (◦) -90 m (kg) 475

e 0.8062 ϕ (◦) 0

i (◦) 23.439 ψ (◦) 0 Jx (kg m2) 79

Ω (◦) 0 ωx (rad/s) 0 Jy (kg m2) 272

ω (◦) 160.46 ωy (rad/s) 0 Jz (kg m2) 276

ν (◦) 0 ωz (rad/s) 0

Deputy ρr (m) 0 θ (◦) -90 m (kg) 245

ρθ (m) -150 ϕ (◦) 0

ρh (m) 0 ψ (◦) 0 Jx (kg m2) 33

ρ̇r (m/s) 0 ωx (rad/s) 0 Jy (kg m2) 41

ρ̇θ (m/s) 0 ωy (rad/s) 0 Jz (kg m2) 41

ρ̇h (m/s) 0 ωz (rad/s) 0

Table 1: Inputs of control system numerical simulations based on Proba-3.

manoeuvres is provided by the following relations:

ρ = r


cos (θ(∆t) + θrif )

sin (θ(∆t) + θrif )

0

 (53)

ρ̇ = rθ̇(∆t)


− sin (θ(∆t) + θrif )

cos (θ(∆t) + θrif )

0

 (54)

θ̈(∆t) = ±

 θ̈m,∆t ≤ Tm/2

−θ̈m,∆t > Tm/2
(55)
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θ̇(∆t) = ±

 θ̈m∆t,∆t ≤ Tm/2

θ̇m,max − θ̈m(∆t− Tm/2),∆t > Tm/2
(56)

θ(∆t) = ±

 1
2
θ̈m∆t

2,∆t ≤ Tm/2

1
2
θ̈m(

Tm

2
)
2
+ θ̇m,max(∆t− Tm/2)− 1

2
θ̈m(∆t− Tm/2)

2,∆t > Tm/2

(57)

where r is the actual trailing relative distance between the deputy and the

chief at the beginning of the manoeuvre and θ̇m and θ̈m,max are the angular

acceleration and the maximum angular velocity of the manoeuvre. Each

manoeuvre is divided in two parts with opposite angular acceleration as

indicated in Eq. (55-57). Moreover, the orbital angular velocity of Eq. (56)

is also used as relative angular velocity to rotate the OS along the out-of-

relative-plane direction.

5.1. SDRE Control

The controller design is related to the SDRE update time step and to

the control weight matrices. Considering the results of simulations with

continuous SDRE solution, the angular step along an orbit has been imposed

to 3.6◦, resulting in a 1% gain error. The resulting 100 update angular

steps are transformed in the corresponding update times along the orbit. In

addition, during the two relative manoeuvres, the update time step has been

fixed to 60 s.

The weights which compose the weighting matrices have been obtained

through a trade-off analysis. The final weight used both in the SDRE and

in the SDREF are summarized in table 2. In the SDRE controller design,

it has been chosen to fix a common weight Qorb for the nine orbital states

and a common weight Qatt for the nine attitude states, while R is obviously
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unique for the six control actions. Additional state s is not controllable, but

stabilizable, so its weight is zero, and the Q matrix is positive-semidefinite.

Qorb = 105 Qatt = 106 R = 1012 (58)

5.2. SDREF Estimation

The Kalman-like nonlinear filter design is related to the SDREF update

time step choice and to the measurement matrices trade-off. The SDREF

update time step has been chosen almost doubling the controller frequency

(in fact, with an angular step of 2◦), in order to obtain a minimum time step

of 25 s during perigee passage, and a time step of 30 s during the manoeuvres.

The measurement matrices weights, presented in table 2, have been cho-

sen with a proper modeling of the sensor static performances. The integral

states are neglected by the filter algorithm, while erasing the initial condi-

tions during the apogee passage downstream the filter.

5.3. Control System Performances

The performances of the designed nonlinear coupled control system have

been evaluated running simulations based on the Proba-3 scenario outlined

above. The obtained results for both the orbital and attitude relative states

are reported in figure 5 where the errors on the tracking of the relative posi-

tion and attitude are shown. In the case of the relative position the error on

modulus of the relative distance is reported, while the error on the angle of

the Euler axis (as in the Euler axis and angle formalism) is reported for the

relative attitude.

The relative position error is maintained below the value of 1 m during

both the trailing, the operative and the reconfiguration phases. In particular,
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State SDRE SDREF

Relative Position Integral 105 102

Relative Position 105 10−4

Relative Velocity 105 10−4

Relative MRP 106 10−10

Relative Angular Velocity 106 10−10

Stable State 0 10−6

Relative MRP Integral 106 10−6

Orbital Disturbances - 10−10

Attitude Control - 10−16

Table 2: Controller and estimator weights.

error peaks show up during the perigee passage (maximum of the disturbance

action level), in the middle of the reconfiguration manoeuvres, where the

tracking signal presents a step variation of relative acceleration, and at the

apogee passage, due to erasing condition of integral states.

The same considerations can be done observing the relative attitude error,

which is maintained under the level of 1◦. The performances of the designed

Kalman-like nonlinear filter are presented in figure 6 where the error in the

reconstruction of the relative distance and on the Euler angle are shown.

The measurement noises have been simulated with reasonable static er-

ror performances of the sensors. Both the orbital and the attitude states are

reconstructed with adequate rejection of the high frequency noise. The per-

formances of the SDREF are not affected by the reconfiguration manoeuvres;

the error in reconstructing the relative position is always one order of magni-
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Figure 5: Orbital and attitude control performances.

Figure 6: Orbital and attitude states reconstruction.

tude lower than the tracking error, while the reconstructed relative attitude

is mostly affected by the perigee passage.

Figure 7 shows the control actions required by the coupled OACS, while

figure 8 shows the electrical power required during the entire orbit. The levels

of thrust required by the six control actions is compatible with the specifica-

tion of the Proba-3 thrusters, while the overall electrical power consumption

is feasible considering the Proba-3 EPS sizing.
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Figure 7: OACS control actions.

6. Conclusion

In this paper, the control of coupled relative position and attitude of a

spacecraft in formation flying is solved using the SDRE methodology. The

designed control has been tested considering as application scenario the ESA

formation mission Proba-3. First of all, a complete dynamical model has been

derived for the numerical simulation of the mission scenario. The selected

mission is very interesting from the point of view of control system design

for Earth formations, since it is specifically designed to qualify and enhance

new state-of-the art technologies whcih allow better performances.

The main results that come out from this work are related to the necessity

of using a nonlinear model of the dynamics to obtain the high performances

and safety levels required by future formation mission. Those formations will

require very close coordinated relative manoeuvres on non-circular orbits,
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Figure 8: OACS electrical power consumption.

thus requiring very accurate control but retaining the need of the reduction

of fuel consumption. Therefore, the SDRE methodology is perfect as it al-

lows to apply systematically the optimal control theory to a nonlinear model

which is more representative of the dynamics. Moreover, the use of a timed

update strategy for the solution of the State-Dependent Riccati Equation

has been proved to be feasible in the limit case of HEO, thus reducing the

computational requirement associated. Finally, the results obtained with the

designed coupled control system prove that the SDRE technique can be ef-

fective even in the case of completely coupled orbital and attitude relative

manoeuvres, allowing the simplification of the spacecraft design at system

level.
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