
 

Permanent link to this version 

http://hdl.handle.net/11311/1007777 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
G. Pin, A. Assalone, M. Lovera, T. Parisini 
Non-Asymptotic Kernel-Based Parametric Estimation of Continuous-Time Linear Systems 
IEEE Transactions On Automatic Control, Vol. 61, N. 2, 2016, p. 360-373 
doi:10.1109/TAC.2015.2434075 
 
 
 
 
 
The final publication is available at https://doi.org/10.1109/TAC.2015.2434075 
 
Access to the published version may require subscription. 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work 
in other works. 



1

Non-Asymptotic Kernel-based Parametric
Estimation of Continuous-time Linear Systems

Gilberto Pin, Andrea Assalone, Marco Lovera, and Thomas Parisini

Abstract— In this paper, a novel framework to address the
problem of parametric estimation for continuous-time linear
time-invariant dynamic systems is dealt with. The proposed
methodology entails the design of suitable kernels of non-
anticipative linear integral operators thus obtaining estimators
showing, in the ideal case, “non-asymptotic" (i.e., “finite-time")
convergence. The analysis of the properties of the kernels guar-
anteeing such a convergence behaviour is addressed and a novel
class of admissible kernel functions is introduced. The operators
induced by the proposed kernels admit implementable (i.e.,
finite-dimensional and internally stable) state-space realizations.
Extensive numerical results are reported to show the effectiveness
of the proposed methodology. Comparisons with some existing
continuous-time estimators are addressed as well and insights on
the possible bias affecting the estimates are provided.

I. I NTRODUCTION

In many engineering applications the direct estimation of the
parameters of a Continuous-Time (CT) model from sampled
input-output data is an important problem for which several
methods and tools have been developed so far.

Among the various techniques proposed in the literature for
CT parameter identification of linear dynamical systems (see,
for example, [1], [2], [3], [4], [5], [6], the contributed volume
[7] and the recent special issue [8]), two main families of
methods can be identified depending on the approach used
to overcome the unavailability of the time-derivatives of the
input-output signals:i) State Variable Filtering (SVF) andii)
integral methods (IMs).

The SVF approach - not dealt with in this paper - consists
in filtering the system’s inputs and outputs in order to obtain
prefiltered time-derivatives in the bandwidth of interest that
may be exploited, in place of the unavailable derivatives of
the signals, to estimate the model parameters. Instead, IMs
are closely related to the proposed methodology and they
have quite a long history in the field of continuous-time
systems identification. Among integral techniques, we recall
i) the Modulating Function (MF) method, which relies on the
repeated integration of input-output signals over finite-length
intervals to minimize the effect of unknown initial conditions
on the estimates;ii) the linear integral filter method, in
which the initial conditions must be considered explicitly,
by augmenting the dimension of the decision space with the
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unknown initialization variables;iii) the re-initialized partial
moments method, that consists in the input-output signals
over finite-length time windows, in sampling the integrals,and
finally in performing the regression over a discrete time-series,
making the overall estimator an inherently hybrid dynamical
system.

In the context of CT identification, asymptotic convergence
properties can be proved and several algorithms have been
devised to provide good performance in terms of transient
behaviour of the estimates (see, for example, the important
work [3] and the references cited therein). However, in or-
der to achieve estimates characterized by fast convergence
properties, it is usually necessary to augment the vector of
decision variables with the unknown initial conditions of the
unmeasured states. The main drawback of this technique is
related to numerical issues in estimating the initial hidden
states as time goes on.

In the present paper, it is shown that the design of an
internally stabledynamic estimator – characterized by very
fast convergence properties – can be carried out by suitably
shaping the kernel of a non-anticipative linear integral oper-
ator, thus yielding a stable linear dynamic system implemen-
tation. Namely, by transforming the measurable input-output
signals of an unknown linear system through appropriately-
designed Volterra integral operators, it is possible to obtain
auxiliary signals that can be used in place of the unmeasurable
derivatives to obtain the rapid convergence in terms of the data
samples of the estimates of the system’s parameters. Such “sur-
rogate" signal derivatives can be made independent from initial
conditions by exploiting the so-called Non-asymptotic Kernel
(NK) functions. The use of Volterra operators induced by NKs,
together with a suitable augmentation strategy, allows to form
a linear algebraic system that can be solved for the unknown
parameters under suitable excitation conditions on the input-
output signals. In this connection, a significant contribution of
the paper consists in the definition and the characterization of
the class ofBivariate Causal Non-Asymptotic Kernels(BC-
NKs). The operators induced by the BC-NKs yield a "non-
asymptotic" estimator that admits a finite-dimensional time-
varying linear state-space realization with guaranteed internal
stability.

The paper is organized as follows. In the next section
the CT identification problem dealt with is stated and some
preliminary concepts and tools on integral operators are given.
In Section III, the main properties of non-anticipative andnon-
asymptotic Volterra operators are illustrated, whereas inSec-
tion IV, the use of these operators is specialized to the systems
identification scenario. Section V provides the characterization
of the BC-NK mentioned above, and Section VI addresses
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the asymptotic analysis of the identification technique. Finally,
Section VII reports extensive simulation results and compar-
isons showing the effectiveness of the proposed technique.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following SISO CT systemSu→y :

y(n)(t) =

n−1
∑

i=0

aiy
(i)(t) +

m−1
∑

k=0

bku
(k)(t), ∀t ∈ R≥0 (1)

where y(i)(0) = y
(i)
0 , i ∈ {0, . . . , n − 1} and u(k)(0) =

u
(k)
0 , k ∈ {0, . . . ,m − 1}, with m ∈ Z>0, n ∈ Z>0,

m ≤ n. The values of the constant parametersai ∈ R, i ∈
{0, . . . , n− 1} andbk ∈ R, k ∈ {0, . . . ,m− 1} are unknown.
The only measurable signals arey(t) and u(t), while their
time-derivatives are not assumed to be available. Our objective
consists in estimating the system’s parametersai and bk by
suitably processing the input and output signalsu(t) andy(t).

In the following, for the reader’s convenience, some basic
concepts of linear integral operators’ algebra (see [9] andthe
references therein) and realization theory (for example, refer
to [10] and [11]) are recalled. More specifically, we consider
transformations acting on the Hilbert spaceL2

loc(R≥0) of
locally square-integrable functions with domainR≥0 and
range R (i.e., x(·) ∈ L2

loc(R≥0) ⇔ (x(·) : R≥0 → R) ∧
(
∫

B |x(t)|2dt < ∞, ∀ compactB ⊂ R≥0). The notation
B(L2

loc(R≥0),L
2
loc(R≥0)) will be used to denote the set

of all the bounded linear operatorsT : L2
loc(R≥0) →

L2
loc(R≥0). Given a function u(·) : R≥0 → R, with

u ∈ L2
loc(R≥0), the image function through a linear operator

T ∈ B(L2
loc(R≥0),L

2
loc(R≥0)) is denoted asTu, and its

value at timet ∈ R≥0 is denoted as[Tu](t).
In the paper, we resort to Volterra linear integral operators

VK ∈ B(L2
loc(R≥0),L

2
loc(R≥0)), defined as

[VKu] (t) ,

∫ t

0

K(t, τ)u(τ)dτ , t ∈ R≥0 ,

where u(·) ∈ L2
loc(R≥0) and the function

K(·, ·) : R× R → R is a Hilbert-Schmidt (HS) Kernel
Function. Volterra operators are a special case of the more
general Fredholm operators, defined as

[FK̃v] (t) ,

∫ b

a

K̃(t, τ)v(τ)dτ , t ∈ R,

with v(·) ∈ Lloc(R), a, b ∈ R (a < b) and
K̃(·, ·) : R× R → R. It is easy to show that the Fredholm
operator specializes to the Volterra operator when we consider
t ≥ 0, a ≤ 0, b ≥ t, and the kernelK̃(t, τ) verifies the
condition

K̃(t, τ) = 0 , ∀τ ∈ R\[0, t], ∀t ∈ R .

Indeed, for anyK(t, τ) ∈ HS, we can write

K̃(t, τ) = K(t, τ)H(τ)H(t − τ) , ∀t ∈ R≥0, ∀τ ∈ [a, b],

whereH(·) is the right-continuous Heaviside step-function.
The kernelK̃(t, τ) is calledFredholm extensionof the Volterra
kernel K(t, τ). The Fredholm kernel extension can be ex-
ploited to specialize to Volterra operators the propertiesand

the results conceived within the Fredholm operator theory.
In particular, we will use the Fredholm kernel extension to
characterize the kernel of composed Volterra operators (see
the Appendix).

A signal is defined as a generic function of time
u(t) : t 7→ ut, ut ∈ R, such thatu(·) ∈ L2

loc(R≥0). Further-
more, given two scalarsa, b∈R≥0, with a < b, let us denote
by u[a,b ](·) and u(a,b ](·) the restriction of a signalu(·) to
the closed interval[a, b] and to the left-open interval(a, b],
respectively. Then, we have the following:

Definition 2.1 (Weak (generalized) Derivative):Let
u(·) ∈ L1

loc(R≥0). We say thatu(1)(·) is a weak derivativeof
u(·) if
∫ t

0

u(τ)

(

d

dτ
φ(τ)

)

dτ = −

∫ t

0

u(1)(τ)φ(τ)dτ, ∀t ∈ R≥0

for all φ ∈ C∞, with φ(0) = φ(t) = 0.

We denote thei-th order generalized derivative asu(i)(·),
i ∈ Z≥0. Moreover, given a kernel functionK(·, ·) ∈ HS in
two variables, thei-th order weak derivative ofK with respect
to the second argument will be denoted asK(i), i ∈ Z≥0.
Finally, the notion of BIBO stability for an integral operator
is introduced.

Definition 2.2 (BIBO Stability):A bounded linear operator
T ∈ B(L2

loc(R≥0),L
2
loc(R≥0)) is said BIBO-stable if:

∣

∣

∣
[Tx](t)

∣

∣

∣
< ∞ , ∀t ∈ R≥0 ,

∀x(·) ∈ L2
loc(R≥0) :

{
∣

∣x(τ)
∣

∣ < ∞, ∀τ ∈ R≥0

}

.

In the case of a Volterra operatorVK , BIBO stability is
equivalent to the following property of the kernel:

sup
t∈R>0

{
∫ t

0

|K(t, τ)|dτ

}

< ∞ . (2)

Condition (2) will be used in the sequel to assess the stability
of the operators in our setting. A kernel fulfilling (2) will
be called a BIBOstable kernel. In this respect, it is worth
noting that BIBO stabilityper seis not sufficient to establish
the existence of a finite-dimensional state-space realization
for an operator, that is, its implementability. The order of
the realization can be determined only when an analytical
expression for the kernel is available.

III. N ON-ANTICIPATIVE AND NON -ASYMPTOTIC

VOLTERRA OPERATORS

In this section, the concepts of causality and non-
anticipativity are addressed as they play a key role in char-
acterizing the implementability (existence of a stable finite-
dimensional state-space realization for the integral operators)
of the proposed methodology.

A. Non-anticipativity of the Volterra operator

In qualitative terms, an operator T ∈
B(L2

loc(R≥0),L
2
loc(R≥0)) is said to be causal (non-

anticipative) if at any timet > 0 (respectively,t ≥ 0) the
image of a signalx(·) at timet, [Tx] (t), depends only on the
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restrictionx[0,t)(·) (respectively,x[0,t](·)). Being the Volterra
operator inherently non-anticipative, the signal[VKx] (t), for
t > 0, can be obtained as the output of a dynamic system
described by the following scalar integro-differential equation







ξ(1)(t) = K(t, t)x(t) +

∫ t

0

(

∂

∂t
K(t, τ)

)

x(τ)dτ

[VKx] (t) = ξ(t)
,

where ξ(1)(0) = 0 and ξ(0) = ξ0 =
∫ 0

0 K(0, τ)x(τ)dτ .
Clearly, ξ(1)(t) = d

dt [VKx](t) is obtained by applying the
Leibnitz rule in deriving the integral.

The following result is useful in dealing with the application
of Volterra operators to the derivatives of a signal.

Lemma 3.1 (Proof in Appendix):For a given i ≥ 0, con-
sider a signalx(·) ∈ L2(R≥0) that admits ai-th weak
derivative inR≥0 and a kernel functionK(·, ·) ∈ HS that
admits thei-th derivative (in the conventional sense) with
respect to the second argument,∀t ∈ R≥0. Then:

[

VKx(i)
]

(t) =

i−1
∑

j=0

(−1)i−j−1x(j)(t)K(i−j−1)(t, t)

+
i−1
∑

j=0

(−1)i−jx(j)(0)K(i−j−1)(t, 0)

+(−1)i
[

VK(i) x
]

(t) , ∀t ∈ R≥0

(3)

that is, the function
[

VKh
x(i)

]

(·) is non-anticipative with
respect to the lower-order derivativesx(·), . . . , x(i−1)(·). �

B. Non-asymptoticity conditions

By exploiting (3), we now characterize the kernels for which
the transformed signal

[

VKx(i)
]

(·) is independent from the
initial values of the signal and of its derivatives. The following
definition characterizes the kernels yielding non-asymptotic
Volterra operators.

Definition 3.1 (i-th Order Non-Asymptotic Kernel):
Consider a kernelK(·, ·) satisfying the assumptions posed in
the statement of Lemma 3.1; if, for a giveni ≥ 1, the kernel
verifies the supplementary condition

K(j)(t, 0) = 0 , ∀t ∈ R≥0, ∀j ∈ {0, . . . , i− 1} ,

then, it is called ani-th order non-asymptotic kernel.

Lemma 3.2 (Non-asymptoticity):If a kernel K(·, ·) is at
least i-th order non-asymptotic, then the image func-
tion of x(i)(·) at time t,

[

VKx(i)
]

(t), depends only on
the instantaneous values of the lower-order derivatives
(x(t), x(1)(t), . . . , x(i−1)(t)) and on the restrictionx(0,t](·),
but not on the initial statesx(0), x(1)(0), . . . , x(i−1)(0). �

The proof of Lemma 3.2 follows immediately from
Lemma 3.1 and is therefore omitted.

Up to now, a candidate class of kernels has been charac-
terized which allows to remove the influence of the unknown
initial derivatives from the transformed signal

[

VKx(i)
]

(t).
However, beyond depending on the current valuex(t) and
its past time-behaviour, such a signal depends also on the un-
measurable instantaneous values of the lower-order derivatives

x(j)(t), with j ∈ {1, . . . , n − 1}. To address this issue, we
need to introduce the concept of composed (or nested) Volterra
operators and to discuss some relevant properties.

Let us denote by
[

VKN◦···◦K1
x(i)

]

(·), the image function
obtained by the composition ofN Volterra integral operators
applied tox(i)(·):

[

VKN◦···◦K1
x(i)

]

=
[

VKN
· · ·

[

VK2

[

VK1x
(i)
]

]]

. (4)

In view of the composition property of Volterra operators (see
(39) and (40) in the Appendix), it holds that the composed
operator is in turn a Volterra operator with kernelKN ◦KN−1◦
· · · ◦ Ki ◦ · · · ◦ K2 ◦ K1, where · ◦ · denotes the kernel-
composition integral (see (40) in the Appendix). The following
result can now be proved.

Theorem 3.1 (Non-asymptotic Derivative Image):Let
x(i)(·) be the i-th derivative of the signalx(·) and let
N ≥ i be an arbitrary integer. GivenN kernel functions
K1(·, ·), . . . ,KN(·, ·), such that K1 is d-th order non-
asymptotic, withd ≥ i − 1 andKj ∈ HS, ∀j ∈ {1, . . . , N},
consider the composed operatorVPN

, with kernel

PN , KN ◦ · · · ◦K2 ◦K1 .

The image of the derivative signalx(i)(·) throughVPN
, i.e.,

[VPN
x(i)](·), can be obtained as the image of the restriction

x[0,t](·) through a non-anticipative operator. Indeed, there
exists an operatorVRN,i

, induced by the kernel

RN,i , −KN ◦KN−1 ◦ · · · ◦Ki+1 ◦ Ti,

with Ti(·, ·) defined recursively by

Tj(t, τ) , −
(

Kj ◦ T
(1)
j−1

)

(t, τ) +Kj(t, τ)Tj−1(τ, τ)

∀j ∈ {2, . . . , i}, ∀(t, τ) ∈ R
2 (5)

with the initialization T1 , K1 , such that
[

VPN
x(i)

]

(t)

= RN,i(t, t)x(t) −RN,i(t, 0)x(0)−
[

V
R

(1)
N,i

x
]

(t) . (6)

Proof: First, by integrating by parts, the innermost
operator in the right-hand side of (4) can be decomposed as
[

VPN
x(i)

]

(t) =
[

VKN
· · ·

[

VK2

(

x̃1 −
[

V
K

(1)
1

x(i−1)
]

)]]

(t)

(7)
where x̃1(t) , K1(t, t)x

(i−1)(t) − K1(t, 0)x
(i−1)(0). Now,

consider the composed kernel

T2(t, τ) = −(K2 ◦K
(1)
1 )(t, τ) +K2(t, τ)K1(τ, τ)

obtained by (5) (recall that
K2 ◦K

(1)
1 =

∫ t

τ
K2(t, σ)K

(1)
1 (σ, τ)dσ, see also the

Appendix). By the non-asymptoticity property ofK1:
K1(t, 0) = 0, ∀t ∈ R≥0, and in view of (5) and (7) we get

[VPN
x(i)] =

[

VKN
· · ·

[

VK3

[

VT2(−x(i−1))
]

]]

(t) . (8)
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Integrating by parts, the innermost operator in (8) can be
decomposed as

[VPN
x(i)] =

[

VKN
· · ·

[

VK3

(

x̃2 + [V
T

(1)
2

x(i−2)]
)

]]

(t) ,

where x̃2(t) , −T2(t, t)x
(i−2)(t) + T2(t, 0)x

(i−2)(0). Since
thei-th order non-asymptoticity condition is implicitly in place
when considering the kernelK1(·, ·), then, by (5), we have
T2(t, 0) = 0, ∀t ∈ R≥0, i.e., also T2(·, ·) is non-asymptotic.
Thus, we can write

[

VPN
x(i)

]

(t) =
[

VKN
· · ·

[

VK4

[

VT3(−x(i−2))
]

]]

(t) .

Integrating again by parts, the innermost operator can be
decomposed as

[

VPN
x(i)

]

(t) =
[

VKN
· · ·

[

VK4

(

x̃3 +
[

V
T

(1)
3

x(i−3)
])

]]

,

wherex̃3(t) , −T3(t, t)x
(i−3)(t) + T3(t, 0)x

(i−3)(0). Due to
the fact that the kernelK1(·, ·) is at leasti− 1-th order non-
asymptotic, thenTj(t, 0) = 0, ∀j ∈ 1, . . . , i− 1. By iterating
this line of reasoning, we finally get
[

VPN
x(i)

]

(t) =
[

VKN
· · ·

[

VKi+1

[

VTi
(−x(1))

]

]]

(t)

= RN,i(t, t)x(t) −RN,i(t, 0)x(0)−
[

V
R

(1)
N,i

x
]

(t) ,

thus ending the proof.
Remark 3.1 (Implications):In Theorem 3.1, the existence

of a composed Volterra integral operator has been shown,
namelyVPN

= VKN◦···◦K1
, that, fed by thei−th derivative

x(i)(·) of a signal, produces an image signal, say
[

VPN
x(i)

]

(·),
which, in turn, can be expressed, in the most general case, in
terms of the sole restrictionx[0,t](·) and that, in any case, does
not depend on the initial conditions of the hidden derivatives.
Assume now thatx(i)(·) is not measurable whilex(·) is
available; then, thanks to (6), the signal

[

VPN
x(i)

]

(·) can be
obtained by applying a non-anticipative operator (see (6))to
x(·).

IV. N ON-ASYMPTOTIC KERNELS FOR PARAMETER

ESTIMATION

In the context of the parameter estimation problem formu-
lated in Section II, consider (1) which relates the unknown
parameters with the time-derivatives of the signalsu(·) and
y(·). In the sequel, the results presented in the previous
section are exploited to overcome the unavailability of signal
derivatives (hidden internal states of the system) in (1), thus
obtainingnon-asymptotic estimatesof the unknown parameters
by means ofcausal filtering.

Let us select an integerN ≥ n and apply the Volterra
operatorVPN

= VKN◦···◦K1 (with kernels taken as in Theorem
3.1) to both sides of (1) thus obtaining

[VPN
y(n)](·) =

n−1
∑

i=0

ai[VPN
y(i)](·)+

m−1
∑

k=0

bk[VPN
u(k)](·) . (9)

In view of (6), (9) can be rewritten as

ry,n(t) =

n−1
∑

i=0

airy,i(t) +

m−1
∑

k=0

bkru,k(t), ∀t ∈ R≥0 , (10)

where the auxiliary signals in (10) can be obtained as the
image of measurable signalsy(·) and u(·) through non-
anticipative operators, that is, forj ∈ {0, . . . , n},

ry,j(t) = RN,j(t, t)y(t)−RN,j(t, 0)y(0)− [V
R

(1)
N,j

y ](t) ,

and, forj ∈ {0, . . . ,m− 1},

ru,j(t) = RN,j(t, t)u(t)−RN,j(t, 0)u(0)− [V
R

(1)
N,j

u](t) .

Finally, by introducing the true parameter vector

θ∗ , [a0, . . . , an−1, b0, . . . , bm−1]
⊤,

and the vector of auxiliary signals

z(t) , [ry(t), . . . , ry,n−1(t), ru(t), . . . , ru,m−1(t)]
⊤,

equation (10) can be rewritten in a compact form as

z⊤(t)θ∗ = ry,n(t) , t ∈ R≥0 . (11)

Now, assuming that all the operators in our formulation
admit a stable realization, we need to collect a suitable number
of equations like (11) in order to form a well-posed algebraic
system, to be solved in the unknown parameters. Several
approaches can be used to obtain the needed set of constraints.
As usual in the CT identification framework, a suitable number
of constraints can be formed by sampling the signals in (10)-
(11) at different time-instants and in collecting the data for
batch regression.

In order to emphasize the generality of the proposed
methodology, we still have not assigned explicit analytic
expressions to the kernelsK1, . . . ,KN and to RN,j, j ∈
0, . . . , n, which are needed to compute the auxiliary signals.
The problem of selecting a class of non-asymptotic kernels
yielding stable finite-dimensional state-space realizations is
addressed in the following.

V. B IVARIATE CAUSAL NON-ASYMPTOTIC KERNELS

In this section, the main contribution of this paper is
presented by introducing a novel class of non-asymptotic
causal kernels with guaranteed stability properties that allow
the application of Theorem 3.1 to construct auxiliary signals
yielding the unavailable input-output time-derivatives.To this
end, let us first introduce the following definition.

Definition 5.1 (i-th Order BC-NK): A kernelK(·, ·) ∈ HS
that satisfies the assumptions given in Lemma 3.1 and that,
for a giveni ≥ 1, also verifies the conditions

K(j)(t, 0) = 0 , K(j)(t, t) = 0 ,

∀t ∈ R≥0, ∀j ∈ {0, . . . , i− 1} (12)

is calledi-th Order Bivariate (strict) Causal Non-Asymptotic
(BC-NK) kernel.

It is worth noting that, owing to Lemma 3.1, if a kernelPN

verifies both the conditions stated in (12), then the image of
a derivative signalx(i) can be expressed as

[

VPN
x(i)

]

(t) = (−1)i
[

V
P

(i)
N

x
]

(t) .
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On the other hand, a kernelPN verifying (12) is not easy to
obtain by means of the kernel composition integral, as outlined
in the statement of Theorem 3.1.

Therefore, in the paper we devise the following analytical
form for a kernelPN = Cω,N(t, τ). Specifically, we propose
the following bivariate function as a BC-NK that we exploit
later on to design a stable non-asymptotic continuous-time
parametric estimator:

Cω,N (t, τ) , e−ω(t−τ)
(

1− e−ωτ
)N

[

1− e−ω(t−τ)
]N

,

(13)
whereω ∈ R>0 is a tuning parameter (see Sections VI and
VII). The non-asymptoticity, causality and stability charac-
teristics of the BC-NK given by (13) are provided in the
following lemma.

Lemma 5.1 (Kernel Characterization:Cω,N (t, τ)): The
bivariate kernelCω,N (t, τ) is BIBO-stable andN -th order
BC-NK. Moreover, all the kernel derivativesC(i)

ω,N (t, τ), with
i ∈ {0, . . . , N − 1}, are BIBO-stable. �

Proof: First, we prove that the kernelCω,N (t, τ) is aN -
th order BC-NK. Indeed, all the non-anticipativity conditions
up to theN -th order are met by the factor(1− e−ωτ )

N .
The causality conditions up to theN -th order are met by the
third factor(1−e−ω(t−τ))N . The BIBO-stability ofC(i)

ω,N (t, τ)

is implied by the fact that each(e−ω(t−τ))(i), with i ∈
{0, . . . , N − 1}, is BIBO-stable and the following terms are
bounded:|(1 − e−ω(t−τ))N | < 1, ∀τ : 0 ≤ τ ≤ t and their
derivatives up to the(N − 1)-th order are bounded too.

Now, we describe how the image of the derivative
x(i)(·) through the operatorVCω,N

, i.e.,
[

VCω,N
x(i)

]

=
(−1)i[V

C
(i)
ω,N

x] can be obtained as the output of a BIBO-

stable finite-dimensional time-varying linear system. First, the
i-th derivative of the BC-NK (13) with respect to the second
argument can be expressed as:

C
(i)
ω,N (t, τ) =

N+1
∑

j=1

e−ωj tfω,N |i,j(τ) , (14)

where fω,N |i,j(·) are univariate functions ofτ . Let
Cω,N |i,j(t, τ) , (−1)ie−ωj tfω,N |i,j(τ); then, by the linearity
of the Volterra operator, it follows that

[VCω,N
x(i)](t) = (−1)i[V

C
(i)
ω,N

x](t) =

N+1
∑

j=1

[

VCω,N|i,j
x
]

(t) .

(15)
Moreover, letting ξi,j(t) ,

[

VCω,N|i,j
x
]

(t), with i ∈
{0, . . . , n}, j ∈ {1, . . . , N + 1}, and taking into account that,
∀t ∈ R≥0, we have

Cω,N |i,j(t, 0) = 0
∂

∂t
Cω,N |i,j(t, τ) = −ωj e−ωj t fω,N |i,j(τ)

,

then,
[

VCω,N
x(i)

]

admits the following(N+1)-th dimensional
state-space realization:














ξ
(1)
i,j (t) = Cω,N |i,j(t, t)x(t) − ωj ξi,j(t), j = 1, . . . , N + 1

[

VCω,N
x(i)

]

(t) =

N+1
∑

j=1

ξi,j(t),

(16)
with ξi,1(0) = 0, . . . , ξi,N+1(0) = 0. As |e−ωj t fω,N |i,j(t)| <
∞, ∀j ∈ {1, . . . , N+1}, (i.e., all the time-varying terms affine
to the x(t)-injection are bounded), and since the system is
diagonal withω > 0, then (16) is a BIBO-stable time-varying
linear system.

Moreover, there exist finite scalarsβi,j ∈ R>0 such that
(e−ωj t fω,N |i,j(t)) → βi,j for t → ∞. This implies that
the time-varying system (16), fort → ∞, tends to a stable
linear time-invariant system in which thex(t)-injection is
never suppressed. Thanks to (16), the extended auxiliary signal
vector ze(t), which embeds both the signalsz(t) and ry,n
needed to form the constraint (11):

ze(t) = [ry,0(t), . . . , ry,n(t), ru,0(t), . . . , ru,m−1(t)],

with
ry,i =

[

VCω,N
y(i)

]

, i ∈ {0, . . . , n},
ru,i =

[

VCω,N
u(i)

]

, i ∈ {0, . . . ,m− 1},

can be obtained as the output of an overallnξ = (n +m +
1)(N+1)- dimensional linear time-varying dynamical system,
described as:

Gu,y→ze
:

{

ξ(1)(t) = Gξξ(t) +Ey(t)y(t) +Eu(t)u(t) ,
ze(t) = Hξξ(t),

(17)
with ξ(0) = 0 and whereξ ∈ R

nξ is the overall state-vector;
moreover, the other quantities in (17) are

Gξ =blockdiag (G, · · · ,G) ∈ R
nξ×nξ ,

G =diag (−ω, . . . ,−ω(N + 1)) ∈ R
(N+1)×(N+1).

Ey(t) = [E0(t) · · · En(t) 0 · · · 0]⊤ ∈ R
nξ ,

Eu(t) = [0 · · · 0 E0(t) · · · Em−1(t)]
⊤ ∈ R

nξ ,

Ei(t) =







Cω,N |i,1(t, t)
...

Cω,N |i,N+1(t, t)






∈ R

N+1, (18)

and
Hξ = blockdiag

(

1
⊤, · · · ,1⊤

)

∈ R
nξ×nξ ,

where1⊤ denotes a row vector of ones with(N+1) elements.

VI. A SYMPTOTIC ANALYSIS OF THE KERNEL-BASED

CONTINUOUS-TIME MODEL IDENTIFICATION ALGORITHM

In the following, the analysis of the asymptotic properties
of the proposed identification algorithm is addressed. To this
purpose, the so-called hybrid framework of continuous-time
model identification (see [7]) is assumed,i.e., the system
generating the data is assumed to be a continuous-time, linear
time-invariant system, while the noise model is defined in
discrete-time.
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Consider the continuous-time linear time-invariant input-
output system

x(n)(t) =

n−1
∑

i=0

aix
(i)(t) +

m−1
∑

i=0

biu
(i)(t), (19)

corresponding to (1), and introduce the following assumptions:
Assumption 1:the system (19) is asymptotically stable.
Assumption 2:The inputu is a quasi stationary, piece-wise

constant, deterministic sequence.
Consider now a dataset consisting ofK input-output mea-
surements associated with the sampling instantstk = t0+kT ,
k = 0, . . . ,K − 1 (uniform sampling is assumed, for the sake
of simplicity), defined as follows

y(k) = x(tk) + e(k) , u(k) = u(tk),

wheree(k) represents (output) measurement noise. Then, the
following further assumptions are in place.

Assumption 3:the processe is a stationary zero mean white
process noise with second moments given by

E
[

e(i)e⊤(j)
]

= Reδij

whereδij is the Kronecker delta.
Assumption 4:The inputu is uncorrelated with noisee.
Assumption 5:Instantaneous sampling, in the sense of [12],

is assumed,i.e., sampling is assumed to be “fast" with respect
to the dynamics of interest.

To deal with deterministic and stochastic signals in a
compact manner, the following operator is defined

Ē [·] = lim
K→∞

1

K

K
∑

t=1

E [·]

whereE [·] is the expectation operator. For two signalsa(t)
and b(t), the cross-covariance matrix is denoted asRab =
Ē
[

a(t)b(t)⊤
]

. Then, the proposed identification algorithm
aims at estimating the parameter vector

θ = [a0, a1, . . . , an−1, b0, b1, . . . , bm−1]
⊤ = [θ⊤

y θ
⊤
u ]

on the basis of the available data by solving the linear
regression problem

ry,n = z
⊤θ (20)

where

z = [ry,0, . . . , ry,n−1, ru,0, . . . , ru,m−1]
⊤ = [z⊤y , z

⊤
u ]

⊤ (21)

andry,i,ru,i are given by the outputs of a suitably discretised
version of the filter bank in equation (16), to be defined in the
following. Note that the state space representation of the filter
bank in (16) can be broken down to a set ofn+ 1 filters for
the outputy

ξ̇y,i(t) = Gξy,i(t) +Ei(t)y(t) (22)

ry,i(t) = Hξy,i(t), (23)

i = 0, . . . , n, andm filters for the inputu

ξ̇u,i(t) = Gξu,i(t) + Ei(t)u(t) (24)

ru,i(t) = Hξu,i(t), (25)

i = 0, . . . ,m− 1, where

G = diag[−ω, . . . ,−ω(N + 1)] and H = [1, . . . , 1] .

For the purpose of an asymptotic analysis, the time-varying
matricesEi(t) can be replaced with their asymptotic values,
so in the following the constant matrices

Ēi = lim
t→∞

Ei(t) (26)

are considered in the definition of the filters in equations (23)
and (25). Note that, in view of the definitions of the kernels
giving rise to the time-varying vectorsEi(t), the limits in (26)
are well-defined.

In the following, we denote byFi(s) the transfer function
associated with the state space quadruple

(

G, Ēi,H, 0
)

. For
the purpose of the following analysis it is interesting to point
out and exploit the particular structure of the filtersFi(s):
indeed, asG is diagonal and the definition of the output matrix
H implies that the output of each filter is simply given by the
sum of its states, one can conclude that

Fi(s) =

N+1
∑

j=1

Fij(s), (27)

with

Fij(s) =
Ēij

s−Gj
, j = 1, . . . , N + 1 , (28)

whereGj = −jω, j = 1, . . . , N + 1 and whereĒij denotes
the jth element of vector̄Ei.

Finally, as the hybrid framework of continuous-time identi-
fication has been assumed, for the sake of implementation,
a discretised version of the above defined continuous-time
filters has to be derived. By using,e.g., the backward Euler
transformation, the discrete-time counterparts of theFij(s)
filters can be derived as

Fij(z) = Fij(s)|s=(z−1)/(Tz) =
zĒd,ij

z −Gd,j
, j = 1, . . . , N+1

where

Ēd,ij =
ĒijT

1−GjT
, Gd,j =

1

1−GjT
, (29)

so that

Fi(z) =

N+1
∑

j=1

Fij(z).

Therefore, in discrete-time, the variables appearing in the
regressions (20) and in (21) can be defined as

ry,i(k) = Fi(z)y(k), i = 0, . . . , n ,

ru,i(k) = Fi(z)u(k), i = 0, . . . ,m− 1 .

Finally, in the definition ofry,i it is convenient to highlight the
deterministic part, resulting from the filtering ofx(k) and the
stochastic part, resulting from the filtering ofe(k), as follows:

ry,i(k) = ry,i(k) + ei(k), i = 0, . . . , n ,

where rx,i(k) = Fi(z)x(k), i = 0, . . . , n and ei(k) =
Fi(z)e(k), i = 0, . . . , n . Similarly,zy in (21) can be expressed
aszy = zx + ze, with obvious definitions ofzx andze.
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On the basis of the above definitions, our aim is to establish
an expression for the bias of the estimate ofθ computed by
solving the discrete-time regression. In this respect, forthe
purpose of parameter bias analysis, it is convenient to express
the linear regression (20) as

ry,n = z
⊤θ

=
[

z
⊤
x + z

⊤
e z

⊤
u

]

[

θy

θu

]

=
[

z
⊤
x z

⊤
u

]

[

θy

θu

]

+ z
⊤
e θy. (30)

Left-multiplying by z equation (30) and lettingzx,u =
[

zx zu

]

, we obtain

zx,ury,n = zx,uz
⊤
x,uθ −

[

ze

0

]

rx,n −

[

ze

0

]

en

+

[

ze

0

]

[

z
⊤
x z

⊤
u

]

+

[

zxz
⊤
e + zez

⊤
e 0

zuz
⊤
e 0

]

θ. (31)

Letting Rzxurx,n
= Ē [zxurx,n] and Rzxu

= Ē
[

zxuz
⊤
xu

]

,
and applying theĒ [·] operator to both sides of (31), after
some algebra, we get

(Rzx,ury,n −R



ze

0



en

) = (Rzx,u
+R



ze

0





)θ. (32)

Therefore, from (32), it follows immediately that, in the
absence of measurement noise, the regression reduces to

Rzx,ury,n = Rzx,u
θ . (33)

When noise is taken into account, the resulting estimate is
necessarily affected by bias if a least squares solution of the
linear regression problem in (32) is considered. While thisis
a known fact in the continuous-time identification literature,
which has led to the development of sophisticated instrumental
variable algorithms for bias elimination (see,e.g., [7] and
the references therein), it is interesting to pursue the above
analysis further, exploiting the above derived expressions for
the discrete-time counterparts of the filters (23) and (25).
More precisely, lettingθ∗ the true value of the unknown
parameter vector (corresponding to the solution of the noise-
free regression (33)) and denoting with∆θ = θ−θ∗ the bias
in the computed noisy estimate, from (32) and (33) we get

E [∆θ] = [Rzx,u
+R



ze

0





]−1[−R



ze

0



en

−R



ze

0





θo]. (34)

The noise-dependent covariance functions in (34) can be
further analysed by noting that

R



ze

0





=

[

E
[

zez
⊤
e

]

0
0 0

]

,

where, in turn,

E
[

zez
⊤
e

]

= E







e20 e0e1 . . . e0en−1

...
...

...
e0en−1 e1en−1 . . . e2n−1






,

and

R



ze

0



en

= E [e0en e1en · · · en−1en 0 · · · 0] .

Hence, to evaluate the bias on the estimated param-
eters, we have to computeRe0eq = E [e0eq] , q =
0, . . . , n . To this purpose, note that, by definitionE[e0eq] =
E[(F0(z)e)(Fq(z)e)], which, in view of (27), becomes

E [(F0(z)e)(Fq(z)e)] = E



(

N+1
∑

j=1

e0j)(

N+1
∑

l=1

eql)



 ,

where (see (28)) e0j(k) , F0j(z)e(k) =
[Ēd,0j/(1−Gd,jz

−1)]e(k) , or, equivalently, e0j(k) =
Gd,je0j(k − 1) + Ēd,0je(k − 1) , and similarly foreql.

It follows that the covarianceRe0jeql = E [e0j(k)eql(k)]
corresponds to the covariance between two first order AR
processes forced by the same white noise input, so that

Re0jeql =
Ēd,0jĒd,ql

1−Gd,jGd,l
Re, (35)

and, in turn,

Re0eq =

N+1
∑

j=1

N+1
∑

l=1

Ēd,0jĒd,ql

1−Gd,jGd,l
Re,

which can be used in (34) to quantify the bias in the estimate
of θ∗. These results on the asymptotic expression of the bias
can be used to quantify the performance of the proposed
identification algorithm in many respects. In particular, one
expects the asymptotic bias to depend on the sampling interval
T and on the filter parameterω. In this connection, the
influence ofT andω on the quality of the computed estimates
is analyzed in the following, for given values ofN in the
kernel (13). Focusing initially on the dependence onT , in view
of the expressions in (29) for the parameters of the discrete-
time filtersFij(z), it follows that

Ēd,ij =
ĒijT

1−GjT
≃

T

1− T
, Gd,j =

1

1−GjT
≃

1

1− T
,

so that, again in terms of theT -dependence only, we obtain

Ēd,0jĒd,ql ≃
T 2

(1− T )2
, Gd,jGd,l ≃

1

(1− T )2
.

Substituting the above relationships for̄Ed,0jĒd,ql and
Gd,jGd,l in (35) one can see that the scalar covariances have
the following dependence onT :

Re0jeql =
Ēd,0jĒd,ql

1−Gd,jGd,l
Re ≃

T 2

(1− T )2
1

1− 1/(1− T )2

=
T

T − 2
, (36)

which clearly becomes smaller and smaller for decreasing
values of T . Also, in view of the structure of the bias
expression in (34), we conclude thatE [∆θ] decreases asT
decreases (recall thatω is given, as mentioned above). Note
that this conclusion is in agreement with the simulation results



8

presented in Section VII, from which this effect is apparent.
For the sake of generality, a complete expression for the
covarianceRe0jeql is reported, in which the dependence on
ω is made explicit, by substituting expressions forĒij and
Gj in (29) (the derivation is omitted for brevity):

Rzeen+p
= −

1

4
Tω2 (−11ωT + 18ω2T 2 + 6)

(1 + 3ωT )2(3 + 2ωT )(2 + ωT )(1 + ωT )
.

ConcerningRzeen+p
, it is worth noting that:

• for a given value ofω, the covariance vanishes (linearly)
for decreasing values ofT (in agreement with (36) and
with the numerical evaluation shown in Fig. 1).

• For a given value ofT , the covariance is a function of
ω, again as depicted in Fig. 1.

Finally, as a simple example of application of the above
analysis, the covariancesRze

and Rzeen , which appear in
the numerator of the bias expression in (34) are computed,
for the case ofn = 1 andN = 2. The kernel (13) is used
considering increasing values ofω ranging from0.1 to 10 and
three choices for the sampling periodT , namely10−3s,10−4s
and10−5s. The results are summarised in Fig. 1, in which the
dependence of the two covariances (normalised to the noise
varianceRe) on ω andT is depicted. As can be clearly seen
from the figure, the analysis confirms the numerical results in
Section VII as far as the effect ofT is concerned: bothRze

and
Rzeen become negligible with respect toRe for decreasingT ;
in particular, for very small values ofT , the result becomes
almost insensitive to the value ofω. Furthermore, as far as
the dependence onω is concerned, the results in the figure
indicate that smaller values ofω appear to be more suitable
to minimize the bias induced by the time-discretization.

Remark 6.1:It is worth noting that the choice ofω andT is
critical both in terms of bias (as well as on the bias/variance
tradeoff) and in terms of transient behavior. In particular, it
is important to underline that the tuning of the algorithm
cannot be based on the sole bias analysis but has to take into
account the impact of such choices on the variance of the
estimates. Indeed, during transient operation the minimisation
of the mean square error could be a more relevant requirement
than unbiasedness. A detailed investigation on this important
aspect, however, is out of the scope of the present paper.
Nevertheless, in the next section, for given values ofω and
N , the effects of the choice of the sampling periodT will
be evaluated also in the context of comparative analysis with
other techniques and the numerical results will confirm the key
conclusion of this section,i.e., that bias becomes negligible for
fast sampling applications.

VII. S IMULATION RESULTS

Consider the benchmark proposed by Rao and Garnier in
[13] (see also [14] and [15])






x(4)(t) = a1x
(3)(t) + a2x

(2)(t) + a3x
(1)(t) + a4x(t)

+b1u
(1)(t) + b2u(t),

y(t) = x(t) + ηy(t),
(37)

where x(0) = x0, x(1)(0) = x
(1)
0 , x(2)(0) =

x
(2)
0 , x(3)(0) = x

(3)
0 and b1 = −6400, b2 = 1600, a1 = −5,
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T=1e−5

Fig. 1. Rze andRzeen+p
(normalised with respect toRe) as functions of

the kernel parameterω and of the sampling periodT .

a2 = −408, a3 = −416 anda4 = −1600. y(·) is the output
of the system affected by an output measurement noiseηy(·),
while u(·) is the measured forcing input signal.

To carry out a simulation in the BC-NK framework, the
value of N = 5 is used in the implementation of the BC-
NK kernel (13). The kernel parameterω is set toω = 1.
As mentioned in Remark 6.1 an analysis concerning the best
choice of this tuning parameter is out of the scope of the paper.
However, in the following examples, different values ofT are
considered.

The procedure for constructing the auxiliary signals gener-
ation system by BC-NK kernels (depicted in Fig. 2) consists
in taking the derivativesC(i)

ω,N (t, τ), i ∈ {1, 2, 3, 4, 5} of the
BC-NK (13), then in identifying the termsCω,N |i,j, with j ∈
{1, 2, 3, 4, 5, 6} (see (14) and (15)), and finally in computing
Cω,N |i,j(t, t) to form theEi(t) matrices (see (18)) needed for
the implementation of the auxiliary signal generation system
Gu,y→ze

(see (17)).
The initial conditions for system (37) have been set to

x(0) = 1 , x(1)(0) = 10 andx(2)(0) = x(3)(0) = 0, while the
forcing input has been chosen as a combination of sinusoidal
signals:

u(t)=10 sin(5t) + 6 sin(20t) + 3 sin(8t) + sin(2t) + 7 sin(4t)

+ 9 sin(12t) .

The sampling period is set asT = 1 · 10−4s and the
additive output measurement noiseηy(·) is simulated as a
uniformly distributed random signal taking values in the
interval [−0.5, 0.5], corresponding to a signal-to-noise ratio
(SNR) SNR = 42.4152, where the SNR is defined as

SNR = 10 log10

(Py

Pν

)

.

Pν denotes the average power of the additive noise on the sys-
tem output (e.g., the variance), whilePy denotes the average
power of the noise-free output fluctuations. As can be seen
in Fig. 3, the BC-NK estimator shows very fast convergence
and good robustness against the output measurement noise.
Clearly, in a noisy scenario, the bias on the estimates is
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(a) Cω,N (t, τ) (b) C
(1)
ω,N

(t, τ) (c) C
(2)
ω,N

(t, τ)

(d) C
(3)
ω,N

(t, τ) (e) C(4)
ω,N

(t, τ) (f) C
(5)
ω,N

(t, τ)

Fig. 2. Plots of the Bivariate Causal Non-Asymptotic Kernel(13) and its derivatives (see (14)), forω = 0.1 andN = 5. The value ofω is different from
the one used for the simulations due to mere graphical rendering reasons.

unavoidable as illustrated in Section VI.

A. Comparative Analysis

Now, the proposed BC-NK parameter estimation method
is compared with two well-known techniques from the lit-
erature, namely, the State Variable Filtering (SVF) method
and the Integral Method (IM). More specifically, the BC-NK
algorithm is compared with the Hartley Modulating Function
method (HMF, seee.g., [7])) and with the Simplified Refined
Instrumental Variable one (SRIVC, seee.g., [16]).

Comparison with the Hartley Modulating Function method:
An important advantage of using Hartley-based modulating
functions is that the system identification problem can be
equivalently posed entirely in the frequency domain which
makes it possible to exploit efficient DFT/FFT techniques.
This method is well suited for digital implementation and has
been included in the CONTSID toolbox ([17], [18]).

A Monte Carlo comparative analysis is carried out and the
results (averaged over200 runs) are presented in Table I for
different values of the SNR. Note that in the table, each row
provides an estimate of the unknown parameters for different
levels of noise and sampling intervalsT .

The table shows that the proposed technique yields accurate
estimates of the parameters in several sampling and noise
conditions, showing a better behavior with smaller values

of the sampling intervalT , which is in agreement with the
analysis provided in Section VI. Compared with the HMF
technique, the BC-NK shows good robustness at decreasing
values of the SNR and of the sampling interval.

Comparison with the Refined Instrumental Variable Method:
The SRIVC method is a very powerful tool for the identi-
fication and estimation of continuous-time transfer function
models. It was first suggested and implemented in [16], while
the full RIVC has been implemented more recently (see [14])
and the reader is referred to this work for more details.

The comparison with the SRIVC method has been car-
ried out under two different scenarios. In the first one, the
asymptotic properties of the three methods (BC-NK, HMF
and SRIVC) have been compared, as reported in Table I. The
second scenario refers to the transient mode of behavior. More
specifically, a simulation trial characterized by aSNR = 30
and a sampling interval ofT = 1 ·10−4s has been performed.
The results concerning the parametera1 are shown in Fig. 4
on a time-window of15s (the results are obtained computing
the ergodic mean values over a number of100 runs). Similar
results are obtained concerning parametersa2, a3, a4, b1, and
b2 and they are not shown for the sake of brevity.

As can be noticed, the BC-NK technique shows, in the tran-
sient phase, very good results compared with SRIVC, while
SRIVC shows slightly better performance asymptotically. In
this regard, the good transient behavior is a relevant feature
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Fig. 3. (a)-(d): Time-behaviors of the estimates of parametersa1, a2, b1, andb2 provided by the BC-NK estimator in noisy conditions (the time-behaviors
of the estimates of parametersa3 anda4 are similar).

of the proposed technique and enhances in simulation the
effectiveness of the guaranteed internal stability properties of
the estimator. For the sake of completeness, in Figs. 5 and 6
the behaviors of the standard deviations on the whole time-
period and in the transient phase are shown with reference to
the estimation of parametera1 by the proposed method and
by the SRIVC technique, respectively. Similar behaviors take
place for the other parameters.

VIII. C ONCLUDING REMARKS

In this work, a novel framework arising from the algebra
of linear integral operators has been established for the de-
sign of non-asymptotic parametric estimators for continuous-
time linear dynamical systems. In particular, a new class of
bivariate kernels has been devised allowing to get rid of
the influence of the unknown initial conditions while, at the
same time, guaranteeing the internal stability of the estimator.
As a consequence, very fast convergence of the estimates
can be achieved. The proposed estimation method has been
thoroughly evaluated and compared with other techniques in
simulation on a benchmark problem available in the literature.
A parameter-bias analysis has also been provided.

Future research efforts will be devoted to a deeper analysis
of the delicate issue of good (even optimal) selection of the
tuning parameters and to an extensive robustness analysis.
This will lead to the evaluation of the proposed technique in
real-world scenarios. Moreover, future work will also aim at
exploring the bias/variance tradeoff, as well as the behaviour
of the algorithm in the presence of under-modelling, both for
the deterministic and the stochastic parts of the model class.

APPENDIX

A. Proof of Lemma 3.1

Integrating by parts, we have:

[

VKx(i)
]

(t) =

∫ t

0

K(t, τ)x(i)(τ)dτ = x(i−1)(t)K(t, t)

− x(i−1)(0)K(t, 0)

∫ t

0

K(1)(t, τ)x(i−1)(τ)dτ . (38)
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Sampling Method SNR Param. Parameters
Interval value &

st. dev.
a1 = −5 a2 = −408 a3 = −416 a4 = −1600 b1 = −6400 b2 = 1600

1 · 10
−3 BC-NK

20
θ̂
∗ -4.685 -405.135 -413.231 -1568.656 -6250.399 1493.692

σθ∗ 0.0005 0.1923 0.3285 3.6495 57.1571 34.9348

30 θ̂
∗ -4.919 -407.179 -414.543 -1597.616 -6384.814 1585.849

σθ∗ 0.0000 0.0041 0.079 0.790 3.2375 5.0161

35
θ̂
∗ -4.957 -407.759 -415.413 -1599.539 -6394.814 1585.910

σθ∗ 0.0000 0.0027 0.0048 0.0483 0.796 0.6702

1 · 10
−3 HMF

20 θ̂
∗ -5.079 -408.883 -450.807 -1666.169 -6389.525 848.298

σθ∗ 0.0005 0.5547 173.8672 577.4829 375.3087 546.8073

30
θ̂
∗ -5.008 -408.113 -419.262 -1604.249 -6398.651 1519.295

σθ∗ 0.0000 0.0193 4.3941 13.1635 12.1270 246.4390

35
θ̂
∗ -5.002 -408.036 -416.442 -1599.270 -6399.602 1582.447

σθ∗ 0.0000 0.0134 2.8191 8.3934 7.8879 157.4980

1 · 10
−3 SRIVC

20 θ̂
∗ -5.001 -407.811 -415.741 -1591.133 -6380.437 1561.847

σθ∗ 0.0001 0.0761 0.27529 2.1745 16.0868 29.7428

30
θ̂
∗ -5.001 -407.665 -415.549 -1602.287 -6388.085 1589.601

σθ∗ 0.0000 0.0006 0.0039 0.0246 0.3530 0.4893

35 θ̂
∗ -5.000 -407.968 -415.953 -1600-158 -6397.152 1598.641

σθ∗ 0.0000 0.0000 0.0020 0.0157 0.9927 0.2435

1 · 10
−4 BC-NK

20 θ̂
∗ -4.919 -406.793 -414.791 -1594.948 -6387.959 1579.771

σθ∗ 0.0004 0.0155 0.2131 0.6797 10.0588 12.3100

30
θ̂
∗ -4.976 -407.453 -415.750 -1598.907 -6398.317 1594.118

σθ∗ 0.0000 0.0006 0.0012 0.0009 0.1722 0.3065

35 θ̂
∗ -4.986 -407.871 -415.875 -1599.443 -6399.297 1596.752

σθ∗ 0.0000 0.0018 0.0013 0.0309 0.4501 0.1142

1 · 10
−4 HMF

20
θ̂
∗ -5.005 -408.180 -418.937 -1617.120 -6401.134 1440.808

σθ∗ 0.0000 0.02826 12.0170 54.754 32.2305 182.5871

30
θ̂
∗ -4.995 -408.001 -413.943 -1598.309 -6401.138 1608.519

σθ∗ 0.0000 0.0018 0.6144 2.7075 1.7241 82.8194

35 θ̂
∗ -4.993 -407.967 -412.914 -1594.777 -6401.000 1641.983

σθ∗ 0.0000 0.0147 0.404 3.853 2.135 68.173

1 · 10
−4 SRIVC

20
θ̂
∗ 4.969 407.418 416.319 1597.030 6408.718 1578.066

σθ∗ 0.001 0.069 3.820 9.750 8.391 54.424

30 θ̂
∗ 4.987 407.762 416.191 1599.706 6401.018 1597.049

σθ∗ 0.000 0.001 0.059 0.474 0.130 1.921

35
θ̂
∗ 4.999 407.972 416.182 1599.816 6400.090 1597.676

σθ∗ 0.000 0.001 0.072 0.058 0.202 1.218

5 · 10
−5 BC-NK

20
θ̂
∗ -5.009 -407.515 -415.742 -1598.016 -6395.546 1589.910

σθ∗ 0.000 0.021 0.007 0.186 2.697 6.828

30 θ̂
∗ -5.003 -407.892 -415.966 -1599.553 -6399.711 1596.998

σθ∗ 0.000 0.018 0.002 0.048 1.114 2.609

35
θ̂
∗ -5.002 -407.944 -415.986 -1599.769 -6399.721 1598.333

σθ∗ 0.000 0.002 0.001 0.031 0.224 0.450

5 · 10
−5 HMF

20
θ̂
∗ -5.007 -408.154 -415.087 -1599.959 -6399.602 1568.693

σθ∗ 0.000 0.0322 1.363 10.116 21.364 61.407

30 θ̂
∗ -4.996 -407.999 -412.984 -1593.468 -6402.867 1643.441

σθ∗ 0.000 0.013 0.651 2.629 5.542 46.590

35
θ̂
∗ -4.993 -407.967 -412.404 -1592.121 -6401.965 1660.997

σθ∗ 0.000 0.005 0.228 1.712 3.605 58.242

5 · 10
−5 SRIVC

20 θ̂
∗ -4.989 -407.776 -413.612 -1592.580 -6404.072 1643.590

σθ∗ 0.002 0.277 2.846 7.706 4.557 31.112

30
θ̂
∗ -5.002 -407.981 -415.761 -1599.715 -6400.839 1598.274

σθ∗ 0.000 0.068 0.567 1.425 1.651 2.902

35 θ̂
∗ -5.002 -408.051 -416.177 -1600.253 -6400.695 1598.189

σθ∗ 0.000 0.002 0.039 0.114 0.680 0.842

TABLE I

MEANS AND STANDARD DEVIATIONS OF THE ESTIMATED PARAMETERS CALCULATED USING BC-NK, HMF AND SRIVC APPROACHES, FOR DIFFERENT

SAMPLING INTERVALS AND SNRS.
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Fig. 4. (a) Parametera1 = −5 estimated by the SRIVC method (blue) and by the BC-NK estimator (black); the horizontal line (red) denotes the true
parameter value. (b) Enhancement of the transient modes of behavior.
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Fig. 5. (a) Behavior of the estimate ofa1 by the BC-NK estimator and (b) respective standard-deviation. (c) Behavior of the estimate ofa1 by the SRIVC
estimator and (d) respective standard-deviation.
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Fig. 6. (a) Transient behavior of the estimate ofa1 by the BC-NK estimator and (b) respective standard-deviation. (c) Transient behavior of the estimate
of a1 by the SRIVC estimator and (d) respective standard-deviation.

The integral operator on the right-hand side of (38) can be
further split by parts:

−

∫ t

0

K(1)(t, τ)x(i−1)(τ)dτ = −x(i−2)(t)K(1)(t, t)

+ x(i−2)(0)K(1)(t, 0) +

∫ t

0

K(2)(t, τ)x(i−2)(τ)dτ .

Proceeding by induction we obtain

∫ t

0

K (t, τ)x(i)(τ)dτ =

i
∑

j=1

(−1)j+1x(i−j)(t)K(j−1)(t, t)+

i
∑

j=1

(−1)jx(i−j)(0)K(j−1)(t, 0)+ (−1)i
∫ t

0

K(i)(t, τ)x(τ)dτ

that is, the function obtained by applying the Volterra operator
to thei-th derivative is non-anticipative with respect to lower-
order derivatives. The proof is concluded by rearranging the
indexing of the summation in the above expression.

B. Composition of Volterra operators

The composition of two integral Volterra operators yields,
in turn, a Volterra integral operator (see [9]). The derivation
is non-trivial due to the necessity of considering explicitly the
integration over finite domains. Suppose thatVKh

and VKg

are two Volterra operators induced by theHS kernelsKh and
Kg respectively. By introducing the Fredholm extension of the
Volterra kernelK̃g(σ, τ) , Kg(σ, τ)H(τ)H(σ − τ), we get:

[

VKh

[

VKg
x
]]

(t) =

∫ t

0

Kh(t, σ)

(
∫ σ

0

Kg(σ, τ)x(τ)dτ

)

dσ

=

∫ t

0

Kh(t, σ)

∫ t

0

K̃g(σ, τ)x(τ)dτdσ

=

∫ t

0

(Kh ◦Kg)(t, τ)x(τ)dτ , (39)

where the kernel of the composed integral operator can be thus
obtained by thekernel composition integral(· ◦ ·), defined as:

(Kh ◦Kg)(t, τ) ,

∫ t

τ

Kh(t, σ)Kg(σ, τ)dσ. (40)
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From the causality of the Volterra operator, we have
(Kh ◦Kg)(t, t) = 0, ∀t ∈ R≥0 . Moreover, if for somei ∈ N,

K
(i)
g (t, 0) = 0, ∀t ∈ R≥0, then (Kh ◦Kg)

(i)(t, 0) = 0, ∀t .
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