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Abstract

This paper develops a quaternion attitude tracking control with an adap-
tive gains parameter that can be tuned to compensate for disturbances with
known bound. The adaptive gain is described by a simple, but singular, dif-
ferential equation and the corresponding adaptive control is shown to asymp-
totically track a reference attitude. However, this control requires the bound
on the disturbance torque to be known in order to appropriately tune the
controller to compensate for it. Using a linear state observer to estimate the
disturbance torque and compensating for the disturbance at each sampling
period the adaptive control can achieve asymptotic tracking in the presence
of an unknown disturbance torque. In this case the error in the estimation,
rather than the entire disturbance, is compensated for by the adaptive gain
at each sampling period. Simulations demonstrate that an improved tracking
performance can be achieved when compared to standard quaternion tracking
controls.
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1. Introduction

Attitude stabilization and tracking in the presence of disturbance torques
is an active area of research due to the increased pointing and tracking
requirements of many mission concepts. In the particular case of nano-
spacecraft there is also a need to increase accuracy to enable missions that
are currently only achievable with much larger spacecraft. There has been
a range of different techniques to address the problem of attitude control in
the presence of disturbance torques with a known bound [1, 2, 3]. These par-
ticular controls are useful when the order of magnitude of the environmental
disturbances are well known such as with spacecraft in LEO or when the
uncertainty in the spacecrafts moments of inertia can be computed experi-
mentally within a known error tolerance. However, future missions to more
complex environments, wear and tear in hardware (particularly evident in
CubeSats) require robust controls in the presence of unknown disturbance
torques. For example, future missions to asteroids or moons with uncer-
tain gravitational fields could lead to uncertain gravity gradient torques or
wear and tear of reaction wheels could lead to uncertain frictional torques.
This paper addresses the problem of attitude tracking for spacecraft in the
presence of such uncertain disturbance torques.

A number of adaptive control approaches have been developed to tackle
the problem of unknown disturbance torques and modelling parameters, for
example, using robust output regulation theory to develop a dynamic com-
pensator for uncertain parameters in [4], adaptive sliding mode control[7]
with an extended state observer [5], a non-regressor-based adaptive control
in [6], an inverse optimality approach without the need to solve the associ-
ated Hamilton-Jacobi-Isaacs partial differential equation directly in [8] and
adaptive backstepping in [9]. In this paper we use an adaptive gain parame-
ter whose evolution can be described by a simple differential equation which
effectively compensates for a known disturbance. Adaptive gains have been
used effectively for small-time maneuvers, for example in [10], whereby sim-
ple adaptive laws adjust when a fault is detected. However, the differential
equations describing the gain are unbounded and after a significant time will
become excessively large. The adaptive parameters of this paper are bounded
and can be designed specifically to counter a known disturbance. However,
if the disturbance is unknown then the adaptive parameter has to be tuned
based on a best guess which could consequently lead to poor tracking. How-
ever, by combining the adaptive control with an active disturbance rejection
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mechanism the disturbances can be estimated and compensated for in the
controller. In this case the adaptive parameter does not need to compen-
sate for a known disturbance but for the error in estimation whose order of
magnitude is shown to be small. Therefore, combining an active disturbance
rejection control (ADRC) with the singular adaptive control can asymptot-
ically track a reference attitude in the presence of an unknown disturbance
even with estimation errors.

ADRC is an effective control scheme that has been demonstrated both
theoretically and in many applications [11, 12, 13, 14, 15]. The extended
state observer (ESO), a key component of ADRC, estimates the uncertainty
and external disturbance of the nonlinear system. It has previously been ap-
plied to spacecraft attitude control where a nonlinear ESO method combined
with a sliding-mode controller [5] was used to develop an attitude control
method that is robust to parametric uncertainties and disturbances. It has
also been combined with a simple quaternion PID control that uses fuzzy log-
ic to choose the gains to stabilize a spacecraft in the presence of uncertainty
[16]. Nonlinear ESO uses a nonlinear function to achieve a high estimation
performance but requires extensive tuning. In this paper we use a linear
ESO which has the benefits of being simple to implement and tune and is
computationally light while providing good estimations of the disturbances.
In this paper we combine a singular adaptive control with a linear extended
state observer (LESO) to develop an analytically verifiable and robust track-
ing control. The differential equation describing the adaptive parameter can
be tuned to compensate for the estimation error as the order of magnitude
of the estimation is small and bounded. The closed-loop system is proved
to be asymptotically stable in the presence of the estimation error. In the
papers [5? ] the stability proofs of ADRC rely on the assumption that the
ESO provides an exact estimation of the disturbance. The adaptive tracking
control presented in this paper compensates for this error and therefore does
not rely on such an assumption. In addition, the presented control does not
suffer from the problem of chattering found in other robust controllers such
as sliding mode control.

The attitude kinematics and dynamics of the spacecraft in the presence
of disturbances are formulated in an appropriate form for the application of
LESO in Section 2. Section 3 then addresses the problem of developing the
singular adaptive control. It is shown that if the bound on the disturbance is
known that a singular adaptive control can be designed to guarantee asymp-
totic stability. In Section 4, we propose an adaptive control based LESO
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to track a desired quaternion in the presence of external disturbance. For
the linear ESO, we present an estimation model and prove its convergence
and estimation error. It is shown that the adaptive control extended with
LESO can asymptotically track a prescribed trajectory in the presence of an
unknown disturbance torque even with an estimation error. In Section 5,
simulations are undertaken using the model of a spacecraft which illustrates
the robustness of the proposed control method to tracking desired quaternion
and angular velocity with unknown disturbances.

2. Attitude dynamics and kinematics of a rigid-spacecraft

In this section the attitude dynamics and kinematics in the presence of
unknown disturbance torques are formulated in the appropriate form for the
application of the LESO method. The spacecraft is assumed to be a rigid
body described by the dynamics and kinematics [17]:

Jω̇ = −ω×Jω + u+ d (1)

q̇ = 1
2
(q4ω − ω×q)

q̇4 = −1
2
ωTq

(2)

where, ω=[ω1, ω2, ω3]
T indicates the angular velocity vector of nano-spacecraft

with respect to the inertial frame and expressed in the body coordinates,
u = [u1, u2, u3]

T the control torque and d is the unknown external distur-
bance, J ∈ R3×3 is the positive definite and symmetric inertia tensor. The
unit quaternion is q̄ = [q1, q2, q3, q4]

T , which can be expressed equivalently

as q̄ =
[
qT , q4

]T
with q = [q1, q2, q3]

T and such that qTq + q24 = 1, the ×

denotes an operator, such that

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

The unit quaternion q̄ and angular velocity ω of spacecraft in Eq.(1) and
Eq.(2) can be measured and available in control law design.

The attitude tracking control problem is to track a desired quaternion

q̄d, where q̄d =
[
qT
d , qd4

]T
with qd = [qd1, qd2, qd3]

T satisfying qT
d qd + q2d4 = 1

denotes the desired attitude quaternion and ωd is the target angular velocity.
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Considering the error quaternion q̄e =
[
qT
e , qe4

]T
where qe = [qe1, qe2, qe3]

T

and the error angular velocity ωe are defined as

qe = qd4q − q×
d q − q4qd

qe4 = qT
d q + q4qd4

ωe = ω −Cωd

(3)

where C =
(
q2e4 − qT

e qe

)
I3 + 2qeq

T
e − 2qe4q

×
e is the direction cosine matrix

from inertial frame to body coordinate, where I3 an identity matrix.
The kinematics can be expressed as error quaternion form [17]

q̇e =
1
2
(qe4ωe − ω×

e qe)
q̇e4 = −1

2
ωT

e qe
(4)

where q̄e satisfies q
T
e qe + q2e4 = 1.

Substitution the ωe = ω −Cωd into the Eq.(1), considered Ċ = −ω×
e C

[18], the error dynamic equations is

ω̇e = −J−1(ωe +Cωd)
×J (ωe +Cωd) + ω×

e Cωd −Cω̇d + J−1u+ f (5)

where f = J−1d is an unknown disturbance will be estimated by LESO and
the control inputs designed to guarantee asymptotic stability of the closed-
loop system.

3. A Singular Adaptive Attitude Control Law

In this section, we propose an adaptive control law that can provide
asymptotic tracking of a reference attitude in the presence of disturbances.
In particular a singular differential equation defines the adaptive parameter
(so called because the differential equation describing the adaptive parameter
has a singularity σ = 0) and provides a simple means to compensate for
disturbance torques. Adaptive parameters described by simple differential
equations were used in [10] to compensate for disturbances. However, these
adaptive parameters were unbounded i.e. they do not converge to a steady
state. This causes problems when tracking over large time periods as the
gain and corresponding required attitude torque input become too large.
The adaptive control law is defined and proved to track a feasible attitude
motion with asymptotic convergence.As the desired state of the closed-loop
system ωed = [0, 0, 0]T and q̄ed = [qed, qed4]

T = [0, 0, 0,±1]T provide a non-
unique description of the desired tracking error, we define the desired error
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state as any element of the set E = {(ωe, qed4) ∈ D : ωe = 0, qed4 = ±1}.
Then defining the sets A1 = {(ωe, qe4) ∈ D : ωe ∈ R3, qe4 ∈ [0, 1]} and A2 =
{(ωe, qe4) ∈ D :
ωe ∈ R3, qe4 ∈ [−1, 0)} such that A1 ∩ A2 = ∅ with the entire error domain
D = A1 ∪ A2 we state the following theorem:

Theorem 1. For an initial tracking error (ωe (0) , qe4 (0)) ∈ D of equations
(5) for d = 0, the adaptive feedback control law:

u = (ωe +Cωd)
×J (ωe +Cωd)−Jω×

e Cωd+JCω̇d+
1

4
σ2J

∂Hi (qe4)

∂qe4
qe−Jσωe

(6)
with adaptive parameter σ > 0 satisfying the singular differential equation:{

σ̇ = s1ωT
e ωe

Hi(qe4)
− LωT

e sgn(ωe)
Hi(qe4)σ

if Hi(qe4) > 0

σ̇ = 0 if Hi(qe4) = 0
(7)

where sgn(ωe) = [sgn(ωe1), sgn(ωe2), sgn(ωe3)]
T, s1 ≤ 1 is a scalar constant,

L is a positive scalar and i = 1 if qe4 (0) ∈ [0, 1], i = 2 if qe4 (0) ∈ [−1, 0),
then an element of the equilibrium set E is asymptotically stable on a subset
S ⊆ D if the following conditions hold: (a) H1 (1) = 0 and H1 (qe4) > 0
for qe4 ̸= 1 on A1 and H2 (−1) = 0 and H2 (qe4) > 0 for qe4 ̸= −1 on A2,
(b) H1 (qe4) is a C1 function with respect to qe4 on A1 and H2 (qe4) is a C1

function with respect to qe4 on A2. (c) the only solution to ∂Hi(qe4)
∂qe4

= 0 on S
is either qe4 = 1 or qe4 = −1.

Proof: Defining the Lyapunov function V1 on A1:

V1 =
1

2
ωe

Tωe +
σ2

2
H1(qe4) (8)

we have that, at ωed = [0, 0, 0]T and q̄ed = [0, 0, 0, 1]T , V1 = 0 and V1 > 0
in all other cases. Given condition (b) the time derivative of the Lyapunov
function can be computed as

V̇1 = ωe
T ω̇e +

σ2

2

∂H1 (qe4)

∂qe4
q̇e4 + σ̇σH1 (qe4) (9)

then initially assuming Hi(qe4) > 0 and substituting Eq.(7) and Eq.(5) into
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(9) gives:

V̇1 = ωe
T
[
−J−1(ωe +Cωd)

×J (ωe +Cωd) + ω×
e Cωd −Cω̇d + J−1u

−σ2

4

∂H1 (qe4)

∂qe4
qe

]
+ s1σωe

Tωe − LωT
e sgn (ωe)

(10)
Substituting the control law Eq.(6) into Eq.(10) gives

V̇1 = (s1 − 1)σωe
Tωe − LωT

e sgn (ωe) (11)

then from condition (a), the function H1 (qe4) ≥ 0, s1 ≤ 1, therefore V̇1 ≤ 0.
In addition noting that the closed-loop dynamics when ωe = 0 and (V̇1 = 0)
is

ω̇e =
1

4
σ2∂Hi(qe4)

∂qe4
qe (12)

then following from the Barbashin-Krasovskii theorem [25], if the only equi-
libria of the closed-loop system Eq.(12) is qe = 0 then the desired state is

asymptotically stable. This is equivalent to the condition that ∂Hi(qe4)
∂qe4

= 0
if and only if qe4 = 1 and that σ > 0. Defining an analogous Lyapunov
function V2 on A2 similar computations show that ωed = [0, 0, 0]T and
q̄ed = [0, 0, 0,−1]T is asymptotically stable on A2.

Remark 1. If we consider a sliding surface S = ωe + κqe where κ ≥ 0 is a
scalar then Eq.(5) can be expressed as JṠ = −(ωe +Cωd)

×J (ωe +Cωd) +
Jω×

e Cωd − JCω̇d + u + d + 1
2
Jκ(qe4ωe − ω×

e qe). To guarantee that the
sliding surface S converges to a zero vector, a control law of the form u1 =
−G−σS−γsgn(S) (where σ is a constant) with G = 1

2
Jκ(qe4ωe − ω×

e qe)−
(ωe +Cωd)

×J (ωe +Cωd) + Jω×
e Cωd − JCω̇d, σ ≥ 0 is a scalar, γ ≥ ρd

is a gain, ∥d∥ ≤ ρd and ρd is a constant can be used. To show stability of
the closed loop system a Lyapunov function can be defined such that V =
1
2
STJS, with the time derivative of the Lyapunov function equal to V̇ ≤

−σSTS −
3∑

i=1

(γ − ρd)|Si| ≤ 0. Therefore, if ρd is known, γ can be selected

such that the system is stable in the presence of disturbances. The motivation
for designing the adaptive parameter σ (Eq.(7)) is that the derivative of the
Lyapunov function in the presence of disturbances using the adaptive control
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would be:

V̇1 = (s1 − 1)σωe
Tωe + ωe

Tf − LωT
e sgn (ωe)

≤ (s1 − 1)σωe
Tωe +

3∑
i=1

(|f i| − L)
3∑

i=1

|ωei| ≤ 0
(13)

which has a similar negative definite term to that found with the sliding mod-
e controller, but where the control (6) does not contain the switching term
−γsgn(·). This implies that the adaptive control will have robustness to dis-
turbances but without chattering. It can be seen that the scalar L can be
chosen to be greater than |f i| to yield a semi-negative definite derivative in
the presence of disturbances. However, for appropriate tuning of L the bound
of the disturbance |f i| is required a priori.

Remark 2. There are a number of Hi(q4e) functions which can be used:
H(qe4) = 1 − qe4 or H(qe4) = 1 − q2e4 in [20, 21, 22] and H(qe4) = ln(qe4)
in [23]. In addition the term Hi(qe4) = arccos2[sgn(qe4)qe4] is considered in
[24] which under ideal conditions can provide faster convergence of the error
to zero. In the case of a control designed such that Hi(qe4) = 1− sgn(qe4)qe4
this can lead to chattering around qe4 = 0 in the presence of noise and a
hybrid control must be designed [26]. In this paper we consider the function
Hi(qe4) = 1−sgn[qe4(0)]qe4. Note that the choice of Hi(qe4) is only dependent
on the initial value qe4(0) and therefore will avoid any problems with switching
in the presence of noise.

In the following sections the adaptive controller is combined with an ex-
tended state observer to develop a control that tracks a reference trajectory
in the presence of unknown disturbances such that the closed-loop system is
stable. More, precisely if the estimator perfectly measures the disturbance
then the desired state in asymptotically stable. In this case the control is
adapted such that the tuning of the parameter L does not require knowledge
of the bound of the disturbance but knowledge of the magnitude of the es-
timation error which is known to be small. Note that there is a singularity
at σ = 0 which is theoretically possible. Moreover, the adaptive parameter
when Hi (q4e) ̸= 0 can be expressed in the form:

σ̇ = A(t)− B(t)

σ
(14)
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where σ(0) > 0, A(t) ≥ 0, and B(t) ≥ 0. Therefore, if A(t) > B(t)
σ

then σ is

always increasing and thus positive definite. In the case that B(t)
σ

> A(t) ≥ 0
then σ will decrease and converge to a constant which is lower bounded
by 0. However, it is possible to tune the system to avoid convergence to
zero which can be demonstrated numerically in simulation. In addition, for
practical implementation, a saturation limit can be placed on σ to avoid the
singularity such that:

sat [σ] =

{
ε, σ ≤ ε
σ , σ > ε

(15)

where ε is positive small constant.
However, if the adaptive parameter does saturate such that σ = ε is

constant, then during saturation the time derivative of the Lyapunov function

Eq.(13) will be V̇1 ≤ −εωe
Tωe+

3∑
i=1

|f i||ωei|. In this case, the stability proof

depends on the choice of ε and the bound of the total disturbances |f i|. In
the next section, we will utilize the ESO technique to estimate the uncertain
total disturbance and guarantee the estimation error is bounded and that it
converges to a small neighborhood even in the presence of the saturation.

4. Adaptive Attitude Controller with LESO

In this section, an attitude tracking control is designed which compensates
for the estimation error at each sampling period via the adaptive controller.
The external disturbances in the attitude dynamics of the spacecraft are
estimated by LESO and compensated for in the control.

4.1. LESO Design for External Disturbance Estimation

The external disturbance term f of spacecraft error dynamics shown in
Eq.(5) will be estimated as an extended state by the LESO. Let x2 be an
extended state of the disturbance term f . Note that although we focus on
disturbance torques the problem can be reformulated to consider uncertain-
ties in the inertia matrix. Noting that f is smooth and bounded then χ = ḟ
is continuous and bounded then we can write Eq.(5) as

ẋ1 = x2 − J−1(ωe +Cωd)
×J (ωe +Cωd) + ω×

e Cωd −Cω̇d + J−1
0 u

ẋ2 = χ
(16)
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where x = [x1,x2]
T , x1 = ωe = [ωe1, ωe2, ωe3]

T and x2 = f = [f1, f2, f3]
T .

To estimate the total disturbance f under the assumption that it is s-
mooth and bounded we design a linear second-order extended state observer[19]
and specialise it to the system (5) such that

˙̂x1 = x̂2 + β1I3 (ωe − x̂1)− J−1(ωe +Cωd)
×J (ωe +Cωd) + ω×

e Cωd

−Cω̇d + J−1
0 u

˙̂x2 = β2I3 (ωe − x̂1)
(17)

where x̂ = [x̂1, x̂2]
T , x̂1 = [x̂11, x̂12, x̂13]

T is the estimation value of the ωe

and x̂2 = [x̂21, x̂22, x̂23]
T is the estimation value of the unknown term f . The

I3 denotes the identity matrix. β1 and β2 are the LESO gain parameters to
be chosen. In particular, let us choose a special case of the LESO gains[19]
as β1 = 2wc and β2 = w2

c where wc > 0 is the bandwidth of LESO. Then
defining the estimated error as x̃ = [x̃1, x̃2]

T = x − x̂, the estimation error
dynamics are

˙̃x1 = −2wcI3x̃1 + x̃2

˙̃x2 = −w2
cI3x̃1 + χ

(18)

Lemma 1. Assuming |χ| ≤ M , there exists some constant scalars δi > 0 and
a finite T1 > 0 such that the estimation error is bounded ∥x̃i∥ ≤ δi, i = 1, 2,

where δi = O
(

1
wn

c

)
, n is positive integer, ∀t > T1 > 0 and wc > 0, where wc

is the band-width of Eq. (17).

Proof. Let εi=
x̃i

wi−1
c

, i = 1, 2, then the Eq.(18) becomes{
ε̇1 = wcI3ε2 − 2wcI3ε1
ε̇2 = −wcI3ε1 + χ/wc

⇒ ε̇ = wcA0ε+B
χ

wc

(19)

where A =

[
−2I3 I3
−I3 0

]
and B =

[
0
I3

]
.

Solving the Eq.(19), the result is

ε (t) = ε (0) exp (wcAt) +

∫ t

0

exp [wcA (t− τ)]
Bχ

wc

dτ (20)

For equations of the form Eq.(20) there exists a constant δi = O
(

1
wn

c

)
, n

is positive integer, such that the estimation error ∥x̃i∥ ≤ δi, i = 1, 2 [19] .

Defining the set B (δ2, x̂2) = {x̂2 : ∥x̂2 − f∥ ≤ δ2} ∀δ2 > 0, it follows
that, as t → ∞, x̂2 ∈ B.
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4.2. Adaptive Feedback control law with LESO

In Subsection 4.1, it has been proved the unknown term f can be es-
timated by LESO. However, the estimation error bounded by δ2 can cause
inefficiencies in the control where at each sampling time it will be correcting
also for the error. In this subsection, the design of an adaptive feedback
controller with LESO is shown that can compensate for the estimation error
rather than the entire disturbance and can track a prescribed reference tra-
jectory such that the closed-loop system is stable. Let Eδ = f − x̂2 denote
the error estimation of LESO. The Eδ is bounded and ∥Eδ∥ ≤ δ2. Recall-
ing here the error dynamics described by Eq.(5) with desired equilibrium
ωed = 0 and q̄ed = [0, 0, 0, 1]T with qed = [0, 0, 0]T and qe4 = 1 then we state
the following theorem.

Theorem 2. The adaptive feedback control law Eq.(6) can be modified such
that:

u = up − Jx̂2 (21)

with

up = (ωe +Cωd)
×J (ωe +Cωd)−Jω×

e Cωd+JCω̇d+
1

4
σ2J

∂Hi (qe4)

∂qe4
qe−Jσωe

(22)
where σ is the adaptive parameter defined by Eq.(7), with L ≥ δ2 and where
x̂2 is the estimated value of f , then the adaptive feedback controller (21),
under the conditions (a),(b) and (c) of Theorem 1, asymptotically stabi-
lizes the desired closed-loop equilibrium ωed and qed such that lim

t→∞
qe = qed,

lim
t→∞

ωe = ωed as the gain of the estimator wc → +∞.

Proof: Using the same Lyapunov function (8) and differentiating with respect
to time and substituting in the control law Eq.(21) gives

V̇1 = (s1 − 1)σωe
Tωe + ωe

T (f − x̂2)− Lωe
T sgn(ωe)

≤ (s1 − 1)σωe
Tωe +

3∑
i=1

(|Eδi| − L)
3∑

i=1

|ωei|
(23)

Since L ≥ δ2 and ∥Eδ∥ ≤ δ2, |Eδi| − L ≤ 0. Then from condition (a), the
function Hi (qe4) ≥ 0, s1 ≤ 1 and σ > 0, therefore V̇ ≤ 0. It follows that the
closed-loop dynamics when ωe = 0 and V̇1 = 0 are

ω̇e =
1

4
σ2∂Hi(qe4)

∂qe4
qe +Eδ (24)
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then as wc → +∞ we have Eδ → 0 and following the Barbashin-Krasovskii
theorem and an analogous argument to Theorem 1 then the state (ωed,qed)
is asymptotically stable on D.

In practise wc is finite and constrained by the saturation of the actuators,
so the best that can be achieved in practise is asymptotic stability of a
small bounded region around the desired state which is demonstrated in the
following simulation example.

5. Numerical Example

In this section, the proposed singular adaptive control with active distur-
bance rejection is demonstrated in simulation and compared to a standard
quaternion tracking controller described by

uqfc = (ωe +Cωd)
×J (ωe +Cωd)− Jω×

e Cωd + JCω̇d − kqeJqe − kωeJωe

(25)
we implement the control law (21) in simulation on a representative rigid
spacecraft which is with the inertial matrix as

J =

 20 1.2 0.9
1.2 17 1.4
0.9 1.4 15

 kg ·m2 (26)

The external disturbance torque d is assumed:

d =

 1 sin 0.1t
2 sin 0.2t
3 sin 0.3t

× 10−3N ·m (27)

In order to test the effectiveness of the proposed control law (21), the desired
angular velocity ωd will be chosen as

ωd = [sin(πt/100); sin(2πt/100); sin(3πt/100)]× 10−2rad/s (28)

and let the desired quaternion is computed by integrating the kinematic e-
quation for q̄d(0) = [0.5,−0.5,−0.5, 0.5]T , the initial angular velocity ω(0) =
[0.01, 0.01, 0.01]T rad/s, initial quaternion q̄ (0) = [0.3,−0.3,−0.2, 0.8832]T .
The comparison control gains are kqe = 0.1 and kωe = 0.4. The gain pa-
rameters of adaptive control are s1 = 1, L = 0.02, ε = 0.1, σ (0) = 1, the
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Figure 1: Quaternion tracking comparison
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Figure 3: Angular velocity comparison
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Figure 4: Control torque comparison

0 50 100 150 200
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t(s)

E
st

im
at

io
n 

of
 d

is
tu

rb
an

ce
(N

 ⋅ 
m

)

ξ
1

ξ
2

ξ
3

 d
1

 d
2

 d
3

100 150 200
−1

0

1
x 10−3

(a)
100 150 200

−2

0

2
x 10−3

(b)
100 150 200

−5

0

5
x 10−3

(c)

Figure 5: Estimation of disturbance via lin-
ear ESO

0 50 100 150 200
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

t(s)

σ

Figure 6: Adaptive gain σ of proposed control

14



linear ESO parameter β1 = 10, β2 = 40, x̂1 = [0, 0, 0]T , x̂2 = [0, 0, 0]T and
maximum of control torque umax ≤ 0.1N ·m.

The tracking of the quaternion component q1 and quaternion error qe

are shown in Fig.1. It can be seen that the quaternion tracking error of the
proposed control is significantly less than 2× 10−5 in magnitude in contrast
to 1×10−3 for a standard quaternion controller. Fig.2 illustrates the angular
velocity tracking and error of the proposed control. The angular velocity of
spacecraft can great track the desired angular velocity with extremely small
error. The angular velocity of the spacecraft is presented in Fig. 3 and
the corresponding control torque in Fig.4. Fig.5 indicates the estimation
performance of LESO where [ξ1, ξ2, ξ3]

T = Jx̂2 and external disturbance
d = [d1, d2, d3]

T . Fig.5(a) is the estimation value ξ1 of d1, Fig.5(b) denotes the
estimation value ξ2 of d2 and Fig.5(c) indicates the estimation value ξ3 of d3.
In Fig.5, the estimate of the disturbance has a significant error during the first
two oscillations, but converges quickly after the second oscillation. The cause
of this large oscillation is that the estimator has large initial errors and that
the control torque of the actuator saturates at the beginning of the motion
(maximum torque is 0.1N ·m). Fig.6 illustrates the adaptive gain σ which
is shown to converge to a steady state. In this example, it can be seen from
the figures that the proposed controller is effective at dealing with unknown
disturbances and shows a significant improvement in tracking capability in
the presence of uncertainty when compared to a standard quaternion tracking
controller.

6. Conclusion

In this paper a singular adaptive control has been presented which can be
tuned to track a reference attitude in the presence of disturbance torques with
a known bound such that the closed loop system is stable. By combining the
control with an active disturbance rejection controller the disturbances can
be estimated at each sampling period and compensated for in the controller.
In this case the adaptive parameter only needs to compensate for the much
smaller estimation error rather than the entire disturbance torque. There-
fore, the new control can provide robust tracking in the presence of unknown
disturbances. The proof is demonstrated by using a Lyapunov function and
does not need to make the assumption that the disturbance estimator has
no error. The control is simple to implement in that it extends standard
quaternion tracking control to include a simple linear estimator and a sin-
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gular adaptive gain parameter described by a 1-D differential equation. The
only complication is that it is possible for the adaptive parameter to converge
to zero where the stability proof breaks down and the singularity can cause
numerical issues. Although careful tuning can avoid this situation, adding a
simple lower bound saturation on the parameter avoids this problem. Simu-
lations demonstrate that the control is robust to unknown disturbances and
provides more accurate tracking when compared to a conventional quaternion
feedback tracking controller.
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