Comparison of Ensemble Kalman Filter groundwater-data assimilation
methods based on stochastic moment equations and Monte Carlo

simulation

M. Panzeri ¥, M. Riva*®, A. Guadagnini *”, S.P. Neuman "

2 Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
b Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA

Received 30 October 2013

Received in revised form 30 January 2014
Accepted 31 January 2014

Available online 10 February 2014

1. Introduction

Kalman Filter (KF) is a well-known inverse technique used to
assimilate incoming data into physical system models sequentially
in real time. It was originally introduced by Kalman [1] to integrate
data corrupted by white Gaussian noise in linear dynamic models
the outputs of which include additive noise of a similar type. KF
entails two steps: a forward modeling (or forecasting) step that
propagates system states in time until new measurements become
available, and an updating step that modifies system states
optimally in real time on the basis of such measurements. Some
modern versions of KF update system states (e.g., hydraulic heads)
and parameters (e.g., hydraulic conductivities) jointly based on
measurements of one or both variables (e.g., [2]).

Gelb [3] proposed an Extended Kalman Filter (EKF) to deal with
nonlinear system models. EKF linearizes the model and propagates
the first two statistical moments of target model variables in time.
As such it is not suitable for strongly non-linear systems of the kind
encountered in the context of groundwater flow or transport in any
but mildly heterogeneous media. EKF further requires large
amounts of computer storage which limits its use to relatively
small-size problems. Evensen [4] and Burgers et al. [5] proposed

* Corresponding author. Tel.: +39 0223996256.
E-mail address: marco.panzeri@polimi.it (M. Panzeri).

to overcome these limitations through the use of Monte Carlo
(MC) simulation. Their so-called Ensemble Kalman Filter (EnKF)
approach utilizes sample mean values and covariances to perform
the updating. The development of sensors and measuring devices
capable of recording massive amounts of data in real time has
made EnKF popular among hydrologists, climate modelers and
petroleum reservoir engineers [6,7]; assimilating such massive
data sets in batch rather than sequential mode, as is common with
classical inverse frameworks such as Maximum Likelihood, would
not be feasible. Applications of EnKF to groundwater and multi-
phase flow problems include the pioneering works of [8,9]; for
more recent reviews see [6,7,10].

A crucial factor affecting EnKF is the size of the ensemble, i.e.,
the number (NMC) of MC simulations (sample size) employed for
moment evaluation. Whereas to estimate mean and covariance
accurately requires many simulations, working with large NMC
tends to be computationally demanding. Chen and Zhang [11]
showed that a few hundred NMC appear to provide accurate esti-
mates of mean log-conductivity fields. They pointed out, however,
that obtaining covariance estimates of comparable accuracy would
require many more simulations, a task they had not carried
through. Efforts to reduce the dimensionality of the problem
through orthogonal decomposition of state variables have been re-
ported by Zhang et al. [12] and Zeng et al. [13,14].
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Small sample sizes give rise to filter inbreeding [6] whereby
EnKF systematically understates parameter and system state esti-
mation errors; rather than stabilizing as they should, these errors
appear to continue decreasing indefinitely with time, giving a false
impression that the quality of the parameter and state estimates
likewise keeps improving. There is no general theory to assess, a
priori, the impact that the number NMC of MC simulations would
have on the accuracy of moment estimates. The rate at which the
sample mean, variance and associated confidence intervals of a
random variable converge with the number of Monte Carlo runs
is found, for example, in [15] and references therein. It suggests
that increasing NMC by a factor of a few hundred, as is often done,
would likely not lead to marked improvements in accuracy. A prac-
tical solution is to continue running MC simulations till the sample
mean and variance stabilize or, if computer time is at a premium,
till their rates of change slow down markedly.

van Leeuwen [16] showed theoretically that filter inbreeding is
caused by (a) updating a given set (ensemble) of model output
realizations with a gain computed on the basis of this same set
and (b) spurious covariances associated with gains based on finite
numbers NMC of realizations. Remedies suggested in the literature
are generally ad hoc. Houtkamer and Mitchell [17] proposed split-
ting the set of MC runs into two groups and updating each subset
with a Kalman gain obtained from the other subset. Hendricks
Franssen and Kinzelbach [18] proposed alleviating the adverse ef-
fects of filter inbreeding by (a) dampening the amplitude of log-
conductivity fluctuations, (b) correcting the predicted covariance
matrix on the basis of a comparison between the predicted ensem-
ble variance and the average absolute error at measurement loca-
tions, and (c) running a large number of realizations (in their case
NMC = 1000) during the first simulation step and a subset of real-
izations (NMC = 100) thereafter; a procedure similar to the latter
was also suggested in [19]. To select an optimal subset one would
minimize some measure of differences between cumulative sam-
ple distributions of hydraulic heads obtained in the first step with
(say) NMC= 1000 and NMC = 100. This, however, brings about an
artificial reduction in variance [18]. Hendricks Franssen and Kin-
zelbach [18] obtained best results with a combination of all three
techniques. Hendricks Franssen et al. [20] observed filter inbreed-
ing when analyzing variably saturated flow through a randomly
heterogeneous porous medium with NMC = 100 even after damp-
ening log-conductivity fluctuations by a factor of 10. Several
authors (e.g., [21-24]) have seen a reduction in filter inbreeding ef-
fects through covariance localization and covariance inflation.
Covariance localization is achieved upon multiplying each element
of the updated state covariance matrix by an appropriate localiza-
tion function to reduce the effect of spurious correlations [17,25].
In the covariance inflation methods, the forecast ensemble is in-
flated through multiplication of each state by a constant or variable
factor (e.g., [23,24,26]).

To eliminate the need for repeated MC simulations and associ-
ated filter inbreeding effects, we [27] proposed a new EnKF ap-
proach based on stochastic moment equations (MEs) of transient
groundwater flow [28,29]. Solving these deterministic equations
yields direct estimates of theoretical ensemble moments required
for EnKF. We tested our new approach on a synthetic two-dimen-
sional flow problem, showing it to yield accurate estimates of log-
conductivity and their variance across the flow domain. MEs have
been used successfully to analyze steady state [30] and transient
flow [29] as well as particle travel times and trajectories [31,32]
in randomly heterogeneous media. Second-order approximations
of these equations have yielded accurate predictions of flows in
heterogeneous media with unconditional variances of (natural)
log hydraulic conductivity as high as 4.0 [30]. A transient algorithm
based on the Laplace transform due to [29] was shown to be more
efficient when computing transient hydraulic head variance than

the traditional Monte Carlo method. A detailed comparison be-
tween ensemble- and simulation-based inversion methods in the
case of steady-state groundwater flow was presented by Hendricks
Franssen et al. [33].

While the theoretical elements and the numerical algorithms
associated with our new ME-based EnKF framework have been
presented in [27], a detailed comparison between MC- and ME-
based EnKF variants in domains having various degrees of hetero-
geneity is still lacking. In this paper we compare the performances
and accuracies of these two approaches on synthetic problems of
two-dimensional transient groundwater flow toward a well pump-
ing water from a randomly heterogeneous confined aquifer subject
to prescribed head and flux boundary conditions. Problems differ
from each other in the variance and (integral) autocorrelation scale
of the log hydraulic conductivity field. The paper is organized as
follows. Section 2 casts the Kalman Filter updating algorithm for
groundwater data assimilation within a Bayesian framework
(e.g., [34-36]). Section 3 presents the flow problem and describes
the two EnKF procedures based on ME and MC. Section 4 illustrates
and discusses some of our key results and Section 5 presents our
conclusions.

2. Bayesian representations of ME- and MC-based EnKF

We consider transient groundwater flow in a saturated domain
Q governed by stochastic partial differential equations of mass bal-
ance and Darcy’s law

oh(x,t
Ss%+v-q(x-,t):f(x7t) 1)
q(x.t) = -K(X)Vh(x,1) (2)
subject to initial and boundary conditions
h(x,t =0)=Ho(x) xe€Q (3)
h(x,t) =H(x,t) Xxelp 4)

—q(x,t) -n(x) = Q(x,t)

where h(X, t) is hydraulic head and q(x, t) the Darcy flux vector at
point (x, t) in space-time, K(x) is an autocorrelated random field
of scalar hydraulic conductivities, Ss is specific storage treated here
as a deterministic constant, Ho(X) is (generally) a random initial
head field, f(x, t) is (generally) a random source function of space
and time, H(X, t) and Q(x, t) are (generally) random head and normal
flux conditions on Dirichlet boundaries I', and Neumann bound-
aries I'y, respectively, and n is a unit outward normal to I'y.

Our goal is to determine the posterior probability distribution of
the random augmented (i.e.,, containing both model parameters
and state variables) state vector

- m (6)

conditioned on measurements of the random vectors Y and h. The
parameter vector Y contains Ny log-conductivities and the state vec-
tor h includes Nj, hydraulic head values satisfying (1)-(5), so that s
has dimension Ns = Ny + Np. In our finite element solver of (1)-(5),
described below, Ny is the number of elements (or collections of ele-
ments) in which hydraulic conductivity is taken to be uniform and
Ny, is the number of nodes at which heads are computed.

We denote the state vector s at the end of time interval (Ty., Ti],
before new measurements become available at time t = Ty, by s/,
In line with [34-36] we consider s/« to be multivariate Gaussian
with prior probability density (pdf)

xeTly (5)
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where () denotes expectation, the superscript ‘+’ stands for
transpose,
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is the Ny x Ny covariance matrix of s/ in which C}"* and €/ are
the covariance matrices of Y/™* and h’/*, respectively, and u/;™ is
their cross-covariance matrix. Suppose that, at time Ty, one mea-
sures Ny variables that are linearly proportional to s where, typi-
callyy, Ng< N;s. Denoting this Nyz-dimensional vector of

measurements by d’, the Kalman filter postulates that
d’ = Hs/ T 4 gl (10)

where H is a Ny x Ns transformation matrix (which typically
contains numerous zero entries) and slT," is a statistically indepen-
dent vector of Gaussian measurement errors having zero mean
and N4 x N4 covariance matrix X7k

The pdf of d™, given the prior system states s/, is the likeli-
hood function

f(d™(s/T) = @m) N e
X exp {—%(d” —Hs/™)" (2l " (d"™ — Hs’ ﬂ)}
(11)

The posterior (updated) pdf of s/ T« is related to it through Bayes’
theorem according to

S/ (d"|s/Tr)
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fd™)

where the pdf of d"*
fd') = @m) NPz
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plays a normalizing role. From (10) it follows that
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Substituting (7), (11), and (13) into (12) allows one to write the pos-
terior pdf of the state vector, s*'x, as

f(su.Tk) — f(Sfka |di)
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in which
K = S[TeH* £l + HELTH'] ' (19)

is the Kalman gain matrix.

The Bayesian updating procedure embodied in (16)-(19) is
common to KF and MC- as well as ME-based EnKF. At this point
the three approaches diverge, differing fundamentally in the way
each computes the mean and covariance of the prior state vector,
(s/Ty and £LTx. Classical KF computes (s/T«) and £+ on the basis
of a linear model the output of which is corrupted by additive
Gaussian noise with zero mean and given covariance function
(e.g., [10]). We avoid such linearization by updating both log-con-
ductivity and hydraulic head in real-time, as new measurements of
one or both of these variables come in, using common MC-based
EnKF as well as our new ME-based version [27]. The key steps of
the corresponding assimilation procedures are described briefly
in Section 3. We treat the forward models as exact, without model
error; uncertainty enters through the stochastic nature of our gov-
erning equations and through measurement errors.

3. Description of test cases

We consider 9 reference test cases obtained upon solving (1)-
(5) in a two-dimensional square domain of 40 x 40 elements of
size 1 x 1, all quantities being given in consistent space-time
units. Each element has uniform hydraulic conductivity, yielding
a parameter vector Y of dimension Ny=1600. Head values are
prescribed or computed at Nj, = 1681 nodes, yielding a head vector
h of similar dimension. Deterministic head values of 0.8 and 0.0
prescribed along the left and right boundaries, respectively, gener-
ate a mean hydraulic gradient of 2% in direction x;. Top and bottom
domain boundaries are set to be impervious (Fig. 1). Initial heads
are considered random, as detailed below. Superimposed on this
background gradient is convergent flow to a centrally located well
that starts pumping at a deterministic constant rate Q, = 1073 at
reference time t=0. Mathematically the well is simulated by
setting f(x,t=0) = 0 and f{X, t>0) = Q, 6(X - Xy) in (1) where ¢ is
the Dirac delta function, x,, are the Cartesian coordinates of
the well and well radius is neglected. Storativity is set equal
to a uniform deterministic value of 10~ Nine reference log-
conductivity realizations, Y(X)=InK.(x), are generated by

Impervious boundary
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X

Fig. 1. Flow domain, nodes of the numerical grid (+), boundary conditions, pumping
well (O), log-conductivity (<) and hydraulic head (A) measurement locations.



sampling statistically homogeneous and isotropic multivariate
Gaussian fields having mean equal to In(10~*) = —9.21 and 9 expo-
nential variograms with different combinations of sill and integral
scale, Iy, as detailed in Table 1. The reference realizations are gen-
erated by the sequential Gaussian simulator SGSIM of Deutsch and
Journel [37]. Included in Table 1 are the ratios between domain
length scale and Iy, sample variance, as well as sill and integral
scale obtained for each reference realization by fitting, via least
squares, an exponential variogram model to the corresponding
sample variogram. The least squares variogram parameter esti-
mates are seen to differ, generally, from their original field values.

Both MC- and ME-based EnKF require specifying the variogram
parameters for the initial step. We work with the generating rather
than the estimated sill and integral scale to avoid introducing addi-
tional sources of bias or uncertainty in the comparison. Chen and
Zhang [11] showed that incorrect initial sill and integral scale of
Y have only a secondary effect on the final log-conductivity esti-
mates. On the other hand, Jafarpour and Tarrahi [38] found in ana-
lyzing flow through a highly anisotropic system that inaccuracies
in prescribed directional integral scales tends to persist throughout
MC-based EnKF runs. The analysis of this effect in the context of
ME-based EnKF is outside the scope of the present contribution.

We solve equations (1)-(5) in Laplace transformed form for the
duration of 200 time units by the Galerkin finite element method
with bilinear Lagrange interpolation functions. We then back
transform our solution into the time domain using the quotient dif-
ference algorithm of [39]. We sample each reference Y field in nine
elements uniformly distributed (Y,,, m=1,...9) across the domain
and the reference head fields at 20 grid points (Fig. 1) and 10 obser-
vation times (hzk, n=1,...20, T, =10.0; 15.0; 20.0; 25.0; 30.0; 50.0;
80.0; 100.0; 150.0; 200.0; k=1, 2, ..., 10). This selection of observa-
tion times enables us to sample transient as well as pseudo steady
state flow regimes (during which computed heads vary linearly
with log time) the latter of which develop, in our cases, at
T, > 80. To turn these log-conductivity and head samples into our
measurement dataset, we corrupt them with white Gaussian noise,
&m and &1, having zero mean and standard deviations gy; = 0.1 and
one = 0.01, respectively, according to

Y, =Ym+ém m=1,...9 (20)

hole—hlk 4 el n=1,...,20, k=1,...,10 (21)
The resulting absolute relative differences between reference and
measured values range from 0.0% to 2.6% (with mean 0.8%, mode
1.7%, 5th percentile 0.2% and 95th percentile 21.5%) for log-conduc-
tivity and from 0.0% to 144% (with mean 4.6%, mode 0.6%, 5th per-
centile 0.0% and 95th percentage 19.4%) for hydraulic head. Large
relative errors (>50%) in head measurement are thus obtained far
from the pumping well, at short times T, where hﬁk are close to
zero. Log-conductivity measurements are made available at initial

Table 1

time t =Ty = 0. The elements of vector d’, which in our examples
contain head measurements at time Ty as defined in (10), coincide
with h;'T" in (21). The corresponding covariance matrix of head
measurement errors, Xk, is diagonal homoscedastic with diagonal

entries equal to oZ,. Entries Hy; of H are equal to 1 when d; is a mea-
surement of s; and 0 otherwise.

3.1. ME-based EnKF

In the ME-based EnKF procedure the vector (s/T¢) and the ma-
trix £LTx are set equal to second-order solutions of corresponding
MEs. The following procedure is employed:

1. At initial time Ty, the measured log-conductivities, Y* , are pro-
jected via ordinary kriging onto the centroids of all grid ele-
ments using the generating variogram and parameters listed
in Table 1 and the measurement error variance .

2. First and second moments of initial heads, together with cross-
covariances between h and Y, are obtained by solving steady
state MEs [30] without pumping and with kriged Y values,
and corresponding covariances, obtained at step 1 of the
procedure.

3. The vector (h)/"™ and the matrices Ci‘rk and u{,hT" are computed
to second-order in the standard deviation of Y by solving corre-
sponding MEs (equations S1-S13 of the Supplementary mate-
rial) with pumping using (a) at k = 1, kriged log-conductivities
and covariances obtained in step 1 with initial head and second
moments established at step 2; (b) at k> 1, mean log-conduc-
tivity (Y)"™* and covariance matrix C{,‘Tk updated at time Ty,
(equivalent to (Y)"" and C&™, respectively) and initial condi-
tions given by (h)"T1, Ci-lit ulilir,

4. The Kalman gain matrix K is evaluated according to (19).

5. The mean state vector and its covariance are updated on the
basis of (17) and (18).

Steps 3-5 are repeated for each time period between measure-
ments. For completeness, we include all relevant equations as an
online supplement to this paper.

3.2. MC-based EnKF

In the MC-based EnKF procedure the vector (s/«) and the ma-
trix /'« are evaluated by Monte Carlo simulations as follows:

1. One generates a collection of log-conductivity realizations, Y;,
i=1,.. ,NMC, conditioned on Y" using the generating variogram
and parameters listed in Table 1 and the measurement error
variance oZ.. Note that each Y; is conditioned on different Y val-
ues, obtained by perturbing Y;, with a Gaussian noise having
standard deviation ayg, as suggested by [5].

Variogram input parameters, ratio between domain side and Iy, sample variance, sill and integral scale obtained by fitting, using least squares, an exponential variogram model to

the corresponding sample variogram.

Ref. case Input parameters Sample variance Least squares fit
Sill Iy Domain side / Iy Sill Iy

TC1 0.5 4.0 10 043 041 3.02
TC2 1.0 4.0 10 1.08 1.22 6.20
TC3 2.0 4.0 10 1.80 1.89 3.53
TC4 0.5 10.0 4 0.34 0.42 6.718
TC5 1.0 10.0 4 0.89 1.58 15.95
TC6 2.0 10.0 4 1.62 2.50 15.62
TC7 0.5 20.0 2 0.39 0.53 17.94
TC8 1.0 20.0 2 0.66 1.16 23.85
TC9 2.0 20.0 2 1.40 2.47 22.19




2. For each MC realization, Y;, one computes an initial head vector
by solving the deterministic steady-state flow problem (1)-(5)
without pumping.

3. For each Y; and corresponding initial head one solves the deter-
ministic transient flow problem (1)-(5) with pumping till time
T, at which new head measurements become available. The cor-
responding head, hif‘Tk, is computed (a) at k=1 using Y; from
step 1 and initial head from step 2, and (b) at steps k > 1 using
Y*Te1 and initial head h*™ updated at time Tj_;,

4. The mean and covariance are approximated by their sample
counterparts

NMC
(1 =T = > )
i=1
i BT L N (s/ T Tl Te — ity 23
ss — “ss 7NMC712(SI- us )(Si lls ) ( )
i=1

1. At time T, each vector sif"T" is updated on the basis of recently
acquired measurements, in a manner similar to (17), through

st — s/ T L Kye(dl* —Hs/™*) i=1,...,NMC (24)

where each vector dl.Tk is obtained by adding white Gaussian noise
with variance ¢, to the measurements ¢Z,. The empirical Kalman
gain matrix, Kyc, is obtained through (19) with x! Tk approximated
by (23).

Steps 3-5 are repeated for each time period between
measurements.

4. Results

In most previous applications of MC-based EnKF [11,18,24,40]
the number NMC of Monte Carlo did not exceed a few hundred.
Recognizing that NMC may have an impact on the results, we con-
sider here a series of values NMC = 100; 500; 1000; 5000; 10,000;
50,000; 100,000. Here we show results corresponding to four se-
lected scenarios. The complete set of results corresponding to all
nine cases is available as Supplementary material online. Figs. 2
and 3, respectively, compare the spatial distributions of updated
log-conductivity (Y*'*) with the corresponding reference fields,

and corresponding estimation variances af, *Tx (diagonal entries
of Cﬁ‘” ), at the final assimilation time (T} = 200.0) for the selected
reference cases obtained by ME- and MC-based EnKF. Values of
(Y*Tky obtained with NMC < 1000 exhibit more pronounced spatial
variability than those obtained from a larger number of MC realiza-
tions. Indeed, as (Y"'¥) represents a relatively smooth estimate of
Y, spatial fluctuations are expected to diminish with increasing
NMC. Results obtained with NMC > 10,000 are similar to those ob-
tained with NMC = 10,000 for all cases examined and therefore not
shown.

Estimation variance is seen to vary locally with NMC, due most
likely to filter inbreeding. The problem seems to disappear at
NMC > 1000 where the spatial distribution of MC-based variances
is quite similar to that of their ME-based counterparts.

Figs. 4 and 5, respectively, show temporal behaviors of the aver-
age absolute difference, Ey, between (Y"'*) and its reference value,
Y.e;, as well as the average estimation variance, Vy, at all element
centers, X;. As shown in [41], the quantity Vy corresponds to the
A-criterion of optimal design and provides a measure of condi-
tional uncertainty associated with the estimated Y field. The two
statistics are defined as

o TN ey _
EYW*N—Y;W (%)) = Y (Xi),o (25)
Vy(tY) ,Liaz wxy) (26)
Y = Ny - Y i

Where t* = Ty/Tmax» Tmax = 200.0, is normalized time (assimilation
take place at t*=0.050, 0.075, 0.100, 0.125, 0.150, 0.250, 0.400,
0.500, 0.750, 1.00). Ey and Vy are seen to increase as the sill of
the variogram increases and as Iy decreases. The largest difference
between MC-based values of Ey and Vy obtained with NMC = 100
and with NMC = 10,000 occurs in TC3 (Figs. 4b and 5b) where the
sill is largest and the integral scale smallest. Fig. 4 shows that
whereas Ey tends to decrease with NMC, at large NMC its MC- and
ME-based values are close. The only exception is TC9 (associated
with the largest sill and Iy, Fig. 4d), where the curve obtained with
NMC=10,000 lies slightly below that obtained with ME-based
EnKF. In TC9, the relative difference between MC- and ME-based re-
sults varies between 18% at small t* and 10% at large t*. We ascribe

ME NMC = 10,000

NMC = 1,000

NMC =100 Reference field

TC2

.-:' .

4 ..|.i-' .

TC3

TC8

TC9

Fig. 2. Spatial distributions of (Y*"*) at T;, = 200 obtained by ME- and MC-based EnKF with diverse values of NMC and for selected test cases. Reference Y fields are also shown.
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Fig. 4. Ey versus t* for the test cases depicted in Fig. 2. ME-based (solid black) and MC-based results with NMC = 100 (dashed gray), 500 (dashed-dotted gray), 1000 (solid

gray), and 10,000 (dashed-dotted black) are reported.

this behavior to approximations required to close what would
otherwise be exact moment equations. Inaccuracies associated with
these approximations tend to increase with increasing values of Iy
relative to domain size.

Figs. 4 and 5 indicate that assimilations done with NMC = 100
are generally associated with (a) large Ey values that tend to in-
crease with time and (b) small Vy values that tend to decrease with
time. The two phenomena are symptomatic of filter inbreeding.
Several authors [18,23,24] suggest to analyze the occurrence of fil-
ter inbreeding by plotting the ratio Vy/MSEy versus time where

Ny
MSEy (t) Z (Y™ (%)) = Y (Xi)p)” (27)
=1

Under ideal conditions, Vy/MSEy should be 1 [23]. Here we explore
this issue by considering also the quantity

Pyq, (t7)

ZH{ZG” ) — Y (%)) = Y (%) |} (28)

where H{e} is the Heaviside step function, P,,, representing per-
cent reference values of Y lying inside a confidence interval of width
equal to 26" (x;) about (Y** (x;)). Analyses of the way Vy/MSEy
(Fig. 6) and Py, (Fig. 7) evolve with time lead to similar conclusions.
When NMC < 1000, Vy/MSEy and P,,, decrease with time, exhibit-
ing a distinct filter inbreeding effect. No such deterioration with
time is exhibited by either MC-based results with NMC > 1000 or
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by ME-based outcomes where Vy/MSEy remains approximately
constant and P,,, larger than 90%. The only exception concerns
ME-based results associated with TC9 (see Figs. 6d and 7d) where
Py, is slightly smaller than 90% (~88%). However, even here the
ME-based values of Vy/MSEy and P,,, show no systematic decrease
with time (as would happen in the presence of filter inbreeding) but
instead diminish rapidly during the first assimilation period and
then stay approximately constant. The rapid early decline is likely
due to spurious updates caused by second-order approximation of
the cross-covariance terms. In contrast to MC-based P,,, which, at
small NMC, drops down to below 40%, a steep decline in ME-based
values is limited to early time.

Black dots in Fig. 8 indicate the spatial location of the reference
values of Y lying, following the last assimilation period at t*= 1.0,
outside confidence intervals having widths equal to +2a,*" (x;)
about (Y"''(x;)). This confirms the poor quality of estimates ob-
tained with NMC < 1000, even in the weakly heterogeneous test
cases TC1, TC4 and TC7 (see also Supplementary material online).
Remarkably, black dots in Fig. 8 corresponding to MC- (with
NMC =10,000) and ME-based filters have similar spatial distribu-
tions. It thus appears that the two EnKF approaches behave simi-
larly in both a global (as observed in Figs. 4 and 5) and a local
sense when NMC is sufficiently large. This behavior can be quanti-
fied by analyzing the percentage y of cells in which reference
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values of Y lie within 95% confidence intervals around updated Y
values in both the ME- and the MC-based solutions. As expected,
this metric is seen to decrease as the number of MC realizations
grows in all test cases. In case of the MC approach, average values
of x in the nine test cases are 94%, 93%, 91%, 87% and 48% for

NMC = 10,000, 1000, 500, and 100, respectively.

Figs. 9 and 10 depict temporal behaviors of E; and Vj;, the
hydraulic head analogues of E;, and Vy in (25) and (26), defined as

N
NI
En(t") = 1 > I(h"" (%0)) = h(X;) |
Ny i=1
1 b
Vi(t') = 5= >0 " (%)
hiz1
where aﬁ “'(x;) is the estimation

diagonal component of C;*') and

(29)

(30)

variance of h at node x; (i.e., a
Nj, is the number of nodes, Nj,
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minus those located on Dirichlet boundaries and at the pumping step, (b) the temporal increase or decrease (depending on location

well where, theoretically, h - —co due to the well’s negligible ra- in the domain; see also Fig. 7 of [29] and results of [42]) in head var-
dius. Fig. 9 shows that E; decreases sharply at the first assimilation iance during the forward steps. Effect (a) dominates during the first
time, then increases with t*. The largest rate of increase is associ- assimilation period, due to the high information content of the mea-
ated with MC-based values obtained with NMC = 100. ME-based surements (see also Figs. 4 and 5), causing Vy to decrease initially
values of E,, are in general very close to MC-based values obtained with time. As time increases and pseudo-steady state conditions
with sufficiently large NMC. On the other hand, the monotonically are approached, the conditioning head data become less informa-
decreasing temporal trend in Vy is not mirrored by the mean esti- tive (see also [27,42]). This is reflected in Fig. 4 where Ey is seen
mation variance of h in Fig. 10. Instead, V}, in Fig. 10 decreases shar- to be almost constant at large values of t*. Here effect (b) dominates,
ply during the first assimilation step and then increases with time. manifested by an increase in Vy with time.

We attribute this to the combination of two contrasting effects: (a) We close our analysis by plotting in Fig. 11 the temporal behav-

the decrease of Vy which is typically associated with the updating ior of
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representing percent reference h values lying inside a confidence
interval of width equal to +2¢}* (x;) about (h** (x;)). Fig. 11 con-
firms that filter inbreeding associated with small NMC impacts
not only Y but also h.

Ye et al. [29] compared the computational time required by ME-
and MC-based forward solutions of a transient groundwater flow
problem similar to the one we analyze here and within a domain
which is half the size of the one we consider. They found that, with
NMC = 2,000, the ME-based method required one quarter to one
half the computer time to evaluate mean heads and variances than
did the MC-base approach. The authors computed head variances
by solving an integral expression (their (47)) in the presence of
deterministic sources, boundary and initial conditions, which does
not require computing a complete head covariance matrix. To con-
duct a more comprehensive comparison with the MC-based ap-
proach, we opted in this work to compute the complete head
covariance matrix at the end of each time interval (Tj.q, Ti]. Our
EnKF updating step requires computing additional terms appearing
in (§8)-(5S10) and (S13) of the Supplementary material to account
for randomness of the initial head condition. As recognized by
[29], the computation of these terms can have a significant effect
on computational time during the forward step. Indeed we find
that, in our case, the ME- and MC-based approaches require
13,650 s and 0.375 x NMC s, respectively, of CPU time on 10 paral-
lel 2.80 GHz Intel i7-860 processors. It follows that CPU time asso-
ciated with ME-based EnKF is comparable to that associated with
NMC ~ 35,000 MC-based assimilations. Considering that in our test
cases the MC approach converges within NMC > 10,000, which
however requires a tenfold increase in NMC to ascertain conver-
gence (i.e., NMC = 100,000 realizations are needed to ascertain con-
vergence at NMC=10,000), we conclude that ME-based EnKF
constitutes a viable alternative to the traditional MC-based
approach not only in terms of quality but also in terms of compu-
tational efficiency. To avoid bias in comparing the two methodolo-
gies, we applied both without resorting to covariance localization
or inflation techniques. Both techniques have been noted to

partially reduce filter inbreeding in the MC-based approach
[17,23-26] and may thus help improve the quality of Y estimates
for a given number of MC realizations.

5. Conclusions

The traditional Ensemble Kalman Filter (EnKF) method of data
assimilation relies on Monte Carlo simulations and the computa-
tion of corresponding sample (not theoretical ensemble) moments.
Elsewhere we proposed an alternative based on stochastic ensem-
ble moment equations (MEs) of transient groundwater flow. Here
we compared the performances and accuracies of the two methods
on nine synthetic test cases involving two-dimensional transient
groundwater flow toward a well pumping from a randomly heter-
ogeneous confined aquifer subject to stochastic initial conditions
and deterministic boundary conditions. The test cases differed in
the variance and (integral) autocorrelation scale of log hydraulic
conductivity. Our results confirm an earlier finding by others that
a few hundred MC simulations are not enough to overcome filter
inbreeding issues, which have a negative impact on the quality of
log-conductivity estimates as well as predicted heads and associ-
ated estimation variances. ME-based EnKF, which obviates the
need for repeated simulations, was demonstrated to be free of
inbreeding issues.

The number of MC simulations required for accurate assimila-
tion (on the order of 10,000 in our test cases), free of inbreeding ef-
fects, cannot be predicted a priori. To ascertain this number a
posteriori, one must conduct ten times as many simulations (on
the order of 100,000 in our study). Using 10 parallel 2.80 GHz Intel
i7-860 processors, CPU times required for ME-based EnKF was
equivalent to those required for about 35,000 MC runs. We thus
conclude that ME-based EnKF constitutes a viable alternative to
the traditional MC-based approach in terms of both quality and
computational efficiency.
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