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Abstract
Removing noise from images while keeping its important details unchanged is a challenging 
issue in image restoration. In this paper, we propose a novel approach based on partial 
differential equations (PDE) in order to mitigate three well-known types of noises from remote 
sensing data while important features such as edges are preserved. In the presented method, 
after performing the Watershed-based segmentation as a preprocessing step, optimum values 
of PDE parameters are adaptively found based on the noise type and the image texture. In 
order to evaluate the performance of the proposed algorithm, Peak Signal-to-Noise Ratio 
(PSNR) criterion is applied. Moreover, feeding the original/noisy/denoised images into 
SVM classifier and exploring the classification ratios are suggested as an application-based 
assessment. The gained results prove a considerable enhancement both in quantitative metrics 
(PSNR and MSE) and SVM classification ratios (from 71.71% to 95.07%).
Keywords: Remote sensing, multispectral image restoration, partial differential equations, 
watershed partitioning, support vector machines.

Introduction
Remotely Sensed (RS) images (which may be single-layer or multiband) are often 
contaminated by additive or multiplicative noises while they are taken by sensors or during 
transformation through media or communication channels. In presence of noise, data 
interpretability can be considerably reduced and extracting required information from images 
can be a challenging task. “Image restoration” is the processing of infected images in order 
to approximate the initial image and earning required features from the denoised image. 
Traditional filters such as Mean, Median and Gaussian filters are some examples of these 
methods [Gonzales and Woods, 2004]. Moreover, Wavelet transformation [Jensen, 2001] 
as well as Wiener filtering [Song and Choi, 2005] is frequently used among researchers for 
denoising purposes. The subspace-based approaches are also applicable for multispectral 
RS image noise reduction, as we proposed in Zehtabian and Ghassemian [2013].
Retaining image structure and important features untouched, while performing an acceptable 
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level of denoising, is a bottleneck in image restoration techniques. Being more clear, a 
given restoration method may guarantee a considerably high level of noise reduction, but it 
may also provide some blurring effects. Dislocation or smoothing important image details 
such as edges is another probable consequence of such approaches. Due to this problem 
and other defects, scientists have been inspired to perform denoising processes using Partial 
Differential Equation (PDE) based approaches [Perona and Malik, 1990]. In PDE-based 
techniques, changes in image pixels has been considered like temperature varying model 
in which the air moves from warmer environments to cooler spaces until two places reach 
equilibrium. In the process of applying PDE approaches, the model of changing in gray 
level is frequently considered as a Gaussian function. Based on this assumption, any sudden 
change in image will be recognized as noise. PDE-based methods, different from other kinds 
of noise removal techniques, makes the interior regions of an image smoothed while leaves 
the edges and intra regions relatively unaffected [Zehtabian and Ghassemian, 2015].
In PDE based methods, there is an important parameter called “diffusion coefficient” which 
has an important role in the denoising process. If this coefficient is a constant value, then 
the diffusion process will be equilateral in each direction. This isotropic process is usually 
called as “linear diffusion”. Considering a nonlinear function for this parameter will result 
in anisotropic diffusion or “nonlinear diffusion”. This idea was first presented by Perona 
and Malik [1990]. They introduced a function which has a reverse relation with image 
gradients around each pixel. By this idea, they could control the smoothing level regarding 
the amount of details in each region of the image. Applying this strategy, the image details 
have been preserved.
One of the most significant parameters in the Perona-Malik (P-M) equation is the “scale 
constant” (also named as “gradient threshold”) which is usually denoted by letter “k” in 
literatures. Smoothing level of images as well as the sensitivity of denoising procedure 
to edges has been controlled by this parameter. Assigning low values to this parameter 
causes lower level of denoising, while high values of k leads to stronger denoising as well 
as probable mitigation of edges in image. Unlike the traditional PDE-based noise removal 
methods (where this parameter has been determined experimentally), in this paper (which is 
an extended version of our recently work in Nazari et al. [2014]), we propose an innovative 
method to adaptively estimate the parameter k. The adaptively defined parameter is able to 
deal with different kinds of image textures and noises. In other words, by proposing some 
metrics which estimate the level of noise in images, we let the image restoration system to 
adaptively set the parameter k and consequently tune the noise removal level for each case. 
Meanwhile, in order to obtain more accurate results, we propose to localize the adaptation 
procedure. To this end, each band of data is partitioned into several disjoint segments and 
then the proposed adaptation algorithm is applied separately to each segment.
The rest of the paper is ordered as follows: the next section provides a brief review on the 
most well-known methods dealing with the restoration of RS images. Then we present the 
theory of PDE in the third section. The fourth section introduces our proposed method in 
order to adaptively adjust the parameter k. The proposed Watershed-based restoration method 
(called as WshSeg-APDE) is explained in the fifth section. The sixth section comprises the 
outcomes of an extensive set of experiments which has been performed on satellite images. 
As a final point, conclusion and future works are presented in the last section.
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Background and Literature Review
There have been valuable researches carried out in the past decades to favorably restore 
the RS datasets. Authors in Hird and McDermid [2009] review two novel logistic and 
asymmetric Gaussian function-fitting methods as well as four alternative filtering 
approaches for noise reduction from MODIS (Moderate Resolution Imaging Spectro-
radiometer) remote sensing dataset. In Chui et al. [2012] an image denoising technique 
is introduced based on a nonlinear thresholding function with adaptive Bayes threshold 
in Non-Subsampled Contourlet Transform (NSCT) domain. In this method, first the noise 
deviation of each sub-band is estimated and then the thresholds of every sub-band are 
estimated by Bayesian threshold estimation technique. Although this method is able to 
considerably remove additive white Gaussian noise (AWGN) as well as keeping the image 
texture relatively unchanged, it has been only tested on single-band images.
Authors in Huang et al. [2009] develop a technique to overcome the problem of speckle 
noises which infect the synthetic aperture radar (SAR) images. Their main goal is to improve 
the detection ratio for ship targets from SAR imaging mechanism. In Di Martino et al. 
[2013] a framework is developed in order to simulate SAR images with speckle statistics. 
A so-called ‘BiShrink’ threshold as well as a novel remote sensing image denoising 
method is also presented in Li et al. [2011]. The method is based on the shift-invariance 
and better directionality of the Dual-Tree Complex Wavelet Transform (DTCWT), and 
incorporating the neighboring wavelet coefficients with BiShrink. Applying the singular 
value decomposition (SVD) based approaches in a wide variety of image processing 
applications has been considerably attracted by researchers. Authors in Herries et al. [1996] 
comprehensively study the applications of singular value decomposition in applied remote 
sensing. As stated in his article, SVD had been previously applied to the problems of the 
agricultural land classification and proved its accuracy and efficiency. They also mention 
some other applications of SVD in remote sensing such as key vector analysis, dimensional 
reduction, robustness, and finally the noise removal.
Another study which has been carried out to show the applications of SVD in RS data 
denoising can be referred in Su et al. [2012]. This technique (called as “K-SVD”) leads 
to relatively considerable denoising at lower noise levels, but as reported in the article, 
the efficiency of the technique degrades in the environments with relatively high noise 
levels. Authors in Ragged et al. [2012] develop a novel spatial-spectral schema to derive the 
eigenvectors and separate those eigenvectors representing signal as opposed to noise. Their 
proposed approach is applied to the AVIRIS hyperspectral dataset.
We have recently developed a novel subspace based approach which employs SVD to 
separate the noise subspace and the signal subspace from noisy RS Multispectral images to 
overcome the AWGN processes [Zehtabian and Ghassemian, 2013].
As mentioned in the introduction section, simple denoising methods such as Mean, Median, 
and Gaussian filters are also commonly used in many researches but they suffer from some 
shortages. The idea of Mean filtering (also called as Averaging or Box filtering) is to replace 
the gray-level of each pixel in the image with the average value of its neighbors (often 
including the pixel itself). Mean filter is widely used because of its simplicity and easy 
implementation, but since it generates a new gray-level value in each step, some details may 
be lost and never be restored again. Therefore, it can be said that this method is a tradeoff 
between the denoising level and detail preservation. Moreover, this filter performs a better 
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denoising for images corrupted by Gaussian noise rather than salt and pepper noise. Indeed, 
the considerable difference between the noisy pixel intensities (i.e. value “0” for “pepper” 
and “255” for “salt”) may lead to distort the pixel average values from their surroundings.
In Median filtering, instead of replacing the pixel value with the average of its neighbors, the 
median value of the surrounding pixels is applied. In this method, first the pixel intensities 
should be sorted and then the value in the middle will be selected. Compared to the Mean 
filter, the pixel values in Median filter will be substituted with a gray-level value which 
is already existed in the image. Therefore, it prevents the image from large changes in 
its intensity values. The efficiency of Median filter in removing the salt and pepper noise 
is better compared to the Mean filter. In case of Gaussian noise, however, Median filter 
behaves weaker. On the other hand, Median filter is more difficult to be implemented since 
sorting the neighbor values into numerical order takes more time compared to calculating 
the average values.
Referring to Equation [1], the Wiener filter attempts to perform filtering process by 
diminishing the Mean Square Error (MSE) between the original image (IOriginal) and denoised 
image (IDenoised):

d I I2
Original Denoised

2
= − [ ]1

In Wiener filtering, it is often assumed that both image and noise have a Gaussian distribution. 
Therefore, the Wiener filter works very well in case of Gaussian noise while it may not be 
suitable for other noises types.

Nonlinear Diffusion Filters
Researchers proposed PDE-based filtering techniques as a remedy to the shortages of the 
traditional noise removal methods stated in the aforementioned section. To be more precise, 
they bring the idea of applying nonlinear diffusion techniques. Diminishing the noise 
pollution from images where the important features still remain unaffected is an ability 
of PDE-based restoration techniques. In other words, PDE makes inter-regions smoothed 
while the intra-region parts (such as edges) remain relatively unsmoothed [Zehtabian and 
Ghassemian, 2015].
The basic idea of using PDE as a multi-scale smoothing filter goes back to 1983 [Witkin, 
1983]. But first time in 1990, Perona and Malik came with a nonlinear diffusion equation for 
filtering purposes [Perona and Malik, 1990]. Later, the researchers continued their efforts to 
improve the PDEs and use them for image smoothing as well as restoration [Nadernejad et 
al., 2007]. In this paper, an innovative version of PDE has been used which includes some 
key progresses in its implementation. We also propose an adaptation method in order to 
assign an optimum value for PDE parameters.
The partial differential equation for image I(x, y) can be shown as below:

∂ ( )
= ∇ ( ) =

∂ ( )
∂

[ ]I x y t
t

I x y t
I x y t

x
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Where 𝛻 is the Gradient operator and I(x, y, 0) = I0(x, y) is the initial image. In heat diffusion 
equations, “t” represents the time, while here t = σ2/2 where σ is the standard deviation of the 
corresponding Gaussian filter. There is another form for Equation [2] which can be written as:

∂ ( )
= ∇ ( )∇ ( )( ) [ ]I x y t

t
c x y t I x y t

, ,
. , , , , 3

Where c(x, y, t) is the “diffusion coefficient” and (𝛻.) denotes divergence operator. 
Coefficient “c” has a vital impact on denoising process and defines the power of the 
smoothing/denoising procedure. Setting a constant value for this parameter will result in 
Isotropic diffusion (linear diffusion) which performs the homogenous smoothing in all 
directions. An anisotropic diffusion (nonlinear diffusion) will be achieved by embedding a 
nonlinear function which depends on the image local features. In other words, in “nonlinear 
diffusions”, the diffusion coefficient is also varied according to the local changes and details 
in the image. Therefore, it controls the noise removal level in each region of the image, 
regarding the amount of details embedded in that region. Since diffusion coefficients must 
be dependent on the localized details in the image, they are usually nonlinear functions of 
the image gradients around each pixel. Indeed, the gradient operators are beneficial because 
of their capability to detect edges and boundaries.
There are a few number of equations which have been proposed by researchers in order to 
relate the diffusion coefficient with the image gradients. In this paper, we apply Equation 
[4] which is proposed by Perona and Malik to calculate the diffusion coefficient:

c x y t
I

k

( , , )
( | | )

=
+

∇
[ ]1

1
42

2

As previously introduced, k is the scale constant. Controlling the diffusion process can be 
done using this parameter. Equation [3] can be restructured as [5] which is implemented in 
an iterative form:

I x y t t I x y t t d c d c d c d cN N S S E E W W( , , ) ( , , ) ( . . . . )+ = + + + + [ ]∆ ∆ 5

where derivations along four cardinal directions have been implied by dN , dS , dE and dW. 
As two examples, we rewrite dS and cS in [6] and [7] which respectively indicate derivation 
along the south direction and its corresponding diffusion coefficient:

d I x y t I x y tS = + − [ ]( , , ) ( , , )1 6

c d
k

S
s

=
+

[ ]1

1
7

2( )
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As can be inferred from [5], the gradients have been calculated along four cardinal directions 
(i.e. north, south, west, and east). As a result, traditional PDE-based implementations are 
only capable of detecting and preserving the horizontal and vertical edges. In this study, 
we also benefit from derivations along the other four sidelong directions besides cardinal 
directions as suggested by Nadernejad et al. [2007]. By this, it is guaranteed to preserve the 
slant boundaries as well. The second-ordered neighbors will be also considered in calculating 
the derivations in the presented paper. Therefore, we update [5] as the following equation:

I x y t t I x y t t d c d c d c d c

d
N N S S E E W W

NE

( , , ) ( , , ) (

(

+ = + + + + +∆ ∆
1 1 1 1 1 1 1 1

1
α cc d c d c d c d c d c

d c d c
NE SE SE NW NW SW SW N N S S

E E W W

1 1 1 1 1 1 2 2 2 2

2 2 2

+ + + + + +

+
22 2 2 2 2 2 2 2 2

8) ( ))+ + + + [ ]β d c d c d c d cNE NE SE SE NW NW SW SW

The directions (where gradients are calculated) have been labeled by subscripts in [8].

Figure 1 - Calculating the gradients along new 
directions according to a wider neighboring 
structure [Nadernejad et al., 2007].

Figure 1 illustrates the neighboring structure where these directions have been extracted 
from. Similar to [6], gradients along new directions can be calculated. Two examples are 
stated in [9] and [10]. Meanwhile in [8], the parameters α  and β  denote the weighting 
factors which define the priority level of the first and second-order slant neighbors. In this 
paper, these values are experimentally set to 0.30 and 0.10, respectively.

d I x y t I x y tNW1
1 1 9= − − − [ ]( , , ) ( , , )

d I x y t I x y tSE2
2 2 10= + + − [ ]( , , ) ( , , )
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Proposed Adaptation Method for PDE-based Restoration
The scale constant k in [4] plays a key role in controlling the diffusion along denoising process. 
Various experiments on different datasets depicted that a small k will result in slow diffusion 
and less denoising while a large one leads to severe denoising and probable edge fading. Up to 
now, parameter k has been usually calculated experimentally. However, finding an appropriate 
value for scale constant k in an adaptive manner is one of the main goals of this paper. In 
order to define a suitable value for k, one idea is to approximate the amount of noise from 
the noisy dataset. To this end, we propose calculating the variations and changes of image 
gradients along different directions. As a result, if there is a large amount of variations in image 
gradients, it can be a sign of more pollution of noises or unwanted information in that image. 
Therefore, more smoothing should be performed for the image (i.e. parameter k should be 
larger). Furthermore, fewer changes in image pixels and lower variations in the gradients can 
be the results of less amount of noise. In these cases, smaller values for k should be chosen.
In order to evaluate the variation of gradients in a noisy image, one solution is calculating 
the gradient values of each pixel along four cardinal directions. However, our experiments 
prove that for a higher level of denoising (besides better preserving of slant edges), 
diagonal directions should be used as well (the applied neighboring structure can be recall 
from Fig. 1). Hence, first we calculate the image gradients around each pixel. This has 
been done for all the pixels from the whole image and along all eight cardinal and diagonal 
directions. Consequently, one matrix of gradients is achieved from the noisy image for each 
direction. The eight matrices are depicted by d d d dn s ne nw, , , , ,… …( ) . The differences of 
these gradients are then computed in horizontal, vertical and diagonal axes:

d d d
d d d

ns n s

ew e w

= −
= −

[ ]11

and
d d d

d d d
ne sw ne sw

nw se nw se

= −

= −
[ ]12

In order to produce a positive value, each element of these matrices is then powered by 
two. Since the resulted matrices are not necessarily identical to the initial matrices which 
are entirely powered by two, we use the notations of d d d dns ew ne sw nw se

2 2 2 2, , ,  instead of 
d d d dns ew ne sw nw se

2 2 2 2, , ,  to emphasize the difference. Now by applying equations [13] and [14], 
two matrices ϕc  and ϕd  are defined. These matrices are related to the gradient differences 
along the cardinal and diagonal directions respectively:

ϕc ns ewd d= + [ ]2 22 13

ϕd ne sw nw sed d= + [ ]2 22 14
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After calculating the variances of elements in matrices ϕc  and ϕd , the parameter F which 
shows the average value of the results, can be driven as below:

v varc c= [ ]( )ϕ 15

v vard d= [ ]( )ϕ 16

F
v vc d=

+[ ]
[ ]

2
17

The adaptively set k can be then resulted by multiplying F by a scale factor:

K Fadapt = ´ [ ]γ 18

Referring to extensive sets of experiments, there can be practically a linear relation between 
parameter k and the gained F. After performing some experiments on datasets, optimum 
values can be assigned to the scaling factor γ as well. Figure 2 illustrates the block-diagram 
of the proposed method which is called APDE, hereafter. As can be seen in this figure, each 
band of data is infected by a noisy process. The proposed adaptation method is then applied 
to each band and the PDE parameters are consequently tuned. The PDE-based restoration 
algorithm is then used in order to reduce the noise from each band. The restored data are 
then assessed using the quantitative metrics as well as an application-based approach which 
is based on SVM classification (Fig. 2).

Figure 2 - Block-diagram of the proposed PDE-based image restoration algorithm 
(APDE method) which benefits from an innovative adaptation process.
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Localizing the Adaptation Process Using Watershed Preprocessing (WShSeg-
APDE)
The previous chapter reviewed the proposed PDE-based algorithm with adaptively set parameters 
(APDE). In this chapter, we improve the proposed method by performing a segmentation 
preprocessing step. The applied segmentation method is based on Watershed algorithm. 
Hereafter, this version of the proposed approach is called WShSeg-APDE. In WShSeg-APDE, 
each band of the given noisy data is partitioned into a set of relatively homogenous regions. 
By this, we localize the adaptation and consequently the denoising process to each segment. 
In other words, the APDE algorithms are individually applied to each segment instead of the 
whole image. Hence, a unique parameter k is found for each segment and the PDE algorithms 
(with different parameters) can be then applied distinctly to each segment.
Watershed-based segmentation methods have been widely used in various remote sensing 
applications [Tarabalka et al., 2010]. These techniques can be considered as the combination 
of edge-based and region-based approaches. In Watershed method, intensity of each pixel 
is interpreted as its elevation. Therefore, brighter pixels stand for higher altitudes while 
darker pixels represent the valleys. The Watershed transform then divides the image into 
catchment basins. Each basin is associated with one local minima (point surrounded by 
other points with higher gray-levels) of the gradient image.

Figure 3 - The result of applying Watershed-based segmentation algorithm to a noisy single-layer 
dataset without using smoothing preprocessing step (noise is S&P with density equal to 0.1).

After applying the Watershed segmentation to the noisy image, the number of extracted 
segments may be considerably high (Fig. 3). In this situation, localizing the adaptation 
process for each segment is practically impossible or very time consuming. Therefore, we 
propose to apply a Gaussian filter to the noisy image before extracting the segments. As 
shown in Figure 4, after using the smoothing Gaussian filter, the number of segments is 
significantly reduced. The localized adaptation step can be now easily implemented to each 
segment. The segments maps in Figure 4 are colorized to provide better understanding of 
the segmentation results. From this figure, higher level of smoothing leads to less number 
of segments. In these experiments, a satellite image taken from Patagonia in Argentina 
has been used as the land-cover dataset. This image is gained using the Landsat-7 satellite 
which benefits from ETM+ (Enhanced Thematic Mapper Plus) sensors with spatial 
resolution of 30 meters. Our main reason for choosing Watershed technique among all 
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available segmentation methods is its ability to precisely find the image boundaries as well 
as its relatively straight-forward implementation. After adaptively finding the parameters 
for each segment and applying the PDE-based restoration algorithm, the denoised segments 
should be remerged together to form the whole restored image.

Figure 4 - The result of applying Watershed-based segmentation algorithm to the noisy 
Volcano after using two Gaussian filters with different smoothing levels: lower smoothing level 
(middle) and higher smoothing level (right).

Experimental Results
In this section, the outcomes of implementing the proposed approaches as well as the other 
restoration methods are reported in figures and tables.

Parameters Setting
The gained results show that for a special type of noise process, a unique γ  can be achieved 
regardless of the level of noise. In other words, it is guaranteed that a predefined value 
for γ can be applied to different noisy images corrupted by the same noise type. In the 
experiments carried out in this paper, the value of γ is set to “0.01” for salt and pepper noise. 
Meanwhile, this value is set to “0.05” for the Gaussian as well as the Speckle noise.
The iteration number in numerical implementation of PDE is also set to 100 for all 
the experiments. Parameters α  and β  in the PDE process are equal to 0.30 and 0.10, 
respectively. For the experiments in which the SVM classification is applied, the number 
of training samples is set to 5% from each class. The other available samples are used for 
test. In other words, to fairly evaluate the gained results, the pixels from the training set are 
excluded from the test set and vice versa. The number of Monte-Carlo runs for the executed 
experiments is equal to 50 to obtain more robust results.

Datasets Description
Several single-layered remotely sensed images (with different textures) and multispectral 
datasets are used in our experiments. However, in this paper we report only the results of 
using one of the single-layered datasets as well as the F210 multispectral dataset in order to 
shorten the manuscript. Figure 5 shows the used single band data which is a high resolution 
panchromatic image with original spatial resolution of 10 meters per pixel. The resolution 
and size of the image are reduced to decrease the computational time. This data is obtained 
using the Advanced Land Observing Satellite (ALOS) via the Advanced Visible and Near 
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Infrared Radiometer-2 (AVNIR-2) sensor, in August 2007. The location of this urban image 
is the Fairbanks city in Alaska. To simplify the text, this single-layered dataset is called as 
“City”, hereafter.

Figure 5 - One of the single-layered remotely 
sensed datasets utilized in our experiments:The 
Fairbanks city in Alaska.

The second data used in this paper is a multispectral dataset named as F210, comprising 12 
bands, each in size of 220 by 140. The GTM (Ground Truth Map) of F210 covers 8 classes 
as well as a “non-farm” region. This dataset contains the agricultural data of the Indiana 
state in USA. The twelve bands of F210 are illustrated in Figure 6.

Banda 1 Banda 2 Banda 3 Banda 4

Banda 5 Banda 6 Banda 7 Banda 8

Banda 9 Banda 10 Banda 11 Banda 12

Figure 6 - Visual illustration of the twelve spectral 
bands of F210 dataset.
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Quantitative Results of Applying the Proposed APDE Method
The gained outcomes of utilizing the proposed APDE method as well as other well-known 
restoration methods to the noisy single-layered City dataset have been depicted in Tables 1 
and 2. In these tables, the PSNR of the restored methods as well as the Standard Deviations 
(SD) of the results (after 50 Mont-Carlo runs) are reported. In these experiments, we 
applied three common kinds of noise processes (Gaussian, Salt and Pepper, and Speckle) 
with different levels of variances and densities. In order to have a fair comparison with our 
proposed method, we report the best achieved results of the other restoration filters, in the 
upcoming tables.

Table 1 - Comparison of the gained results from applying different restoration methods on the 
noisy City dataset which is infected by various levels of Salt & Pepper noise and Gaussian noise 
(best results are emphasized by bold text).

PSNR (Salt & Pepper noise case)
(d= density of noise, P= PSNR of noisy data)

PSNR (Gaussian noise case)
(v= variance of noise, P= PSNR of noisy data)

d=0.05 d=0.08 d=0.1 d=0.2 v=0.01 v=0.02 v=0.03 v=0.04
P=23.22 P=21.24 P=20.20 P=17.20 P=25.29 P=22.45 P=20.85 P=19.77

Mean Filter
(Optimal 
Kernel)

PSNR 27.47 
[3x3]

26.59
[3x3]

26.036
[3x3]

23.89
 [3x3]

28.16
[3x3]

27.27
[3x3]

26.58
[3x3]

25.98 
[3x3]

SD 0.0174 0.0280 0.0240 0.0299 0.0098 0.0085 0.0103 0.0142

Median 
Filter

(Optimal 
Kernel)

PSNR 27.26
[3x3]

26.51
[3x3]

25.89
[3x3]

23.34
[5x5]

26.02
 [3x3]

24.68
[3x3]

23.73
[3x3]

22.95
 [3x3]

SD 0.0290 0.04 0.0317 0.0106 0.0103 0.0112 0.0156 0.0193

Gaussian 
Filter

(Optimal 
Kernel)

PSNR
28.14
[3x3] 
sig=1

27.05
 [3x3] 
sig=1

26.36
 [3x3] 
sig=1

23.96
[3x3] 
sig=2

29.07
[3x3] 
sig=1

27.89
[3x3] 
sig=1

27.02
[3x3] 
sig=1

26.29
[3x3] 
sig=1

SD 0.0389 0.0347 0.0197 0.0268 0.0160 0.0108 0.0116 0.0097

Wiener 
Filter

(Optimal 
Kernel)

PSNR 25.83
[5x5]

25.08
[5x5]

24.67
 [5x5]

23.25 
[5x5]

29.13
[3x3]

27.50
[3x3]

26.42
[3x3]

25.57
[3x3]

SD 0.0268 0.0188 0.0237 0.0320 0.0103 0.0124 0.0122 0.0123

Mode Filter
(Optimal 
Kernel)

PSNR 23.22 21.24 20.20 17.20 25.29 22.45 20.85 19.77

SD 0.0284 0.0368 0.0271 0.0269 0.0105 0.0130 0.0145 0.007

P-M-PDE
K=25

PSNR 28.97 27.60 26.47 22.26 26.71 24.69 23.40 22.42

SD 0.0424 0.0632 0.0450 0.0541 0.0098 0.0139 0.0126 0.0170

P-M-PDE
K=Optimal

PSNR 29.86
(k=46)

29.00 
(k=49)

28.24
 (k=55)

24.59
 (k=67)

27.80
(k=60-
100,>)

26.10
 (k=60-
100,>)

24.95
(k=80-
100,>)

24.01 
(k=80-
100,>))

SD 0.0196 0.0341 0.0503 0.0420 0.0097 0.0087 0.0149 0.0131

APDE
K=Adaptive

PSNR 29.63
(k=31)

29.47
(k=39)

29.28
 (k=44)

28.02
(k=62)

28.56
 (k=82)

27.72
(k=100)

27.10
(k=119)

26.56 
(k=136)

SD 0.008 0.009 0.0216 0.0330 0.004 0.005 0.001 0.0112

APDE
K = 

Optimal

PSNR 29.67
(k=41)

29.48
(k=43)

29.28
(k=43)

28.05
(k=54)

28.57
(k=4,70)

27.72
(k=60-
100,>)

27.11
(k=80-

100,>130)

26.57
(k=80-

100,>150)

SD 0.0073 0.0164 0.0235 0.0298 0.0068 0.0108 0.0067 0.0098
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Table 2 - Comparison of the gained results from applying different restoration methods on the 
noisy City dataset which is infected by Speckle noise. (Results are averaged after 50 Monte-Carlo 
runs, v = variance of noise).

v=0.04 v=0.05 v=0.06 v=0.07

PSNR=25.9571 PSNR=25.0247 PSNR=24.2751 PSNR=23.6433

Mean Filter
(Optimal 
Kernel)

28.22
[3x3]

27.97
[3x3]

27.76
[3x3]

27.54
[3x3]

Median Filter
(Optimal 
Kernel)

25.97
[3x3]

25.59
[3x3]

25.25
[3x3]

24.92
[3x3]

Gaussian 
Filter

(Optimal 
Kernel)

29.16
[3x3] sig=1

28.82
[3x3] sig=1

28.55
[3x3] sig=1

28.26
[3x3] sig=2

Wiener Filter
(Optimal 
Kernel)

29.04
[3x3]

28.48
[3x3]

28.00
[3x3]

27.58
[3x3]

Mode Filter
(Optimal 
Kernel)

25.95
[1x1]

25.02
[1x1]

24.27
[1x1]

23.64
[1x1]

P-M-PDE
K=25 26.57 25.93 25.37 24.888

P-M-PDE
K = Optimal

27.93
(k=95)

27.41
(k=98)

26.98
(k=113)

26.57
(k=124)

APDE
K = Adaptive

28.48
(k=95)

28.22
(k=100)

27.92
(k=107)

27.51
(k=113)

APDE
K = Optimal

28.48
(k=90)

28.22
(k=100)

27.93
(k=130)

27.53
(k=150)

Moreover, the results of applying the traditional Perona-Malik algorithm (P-M-PDE) to this 
dataset is reported for two different conditions listed as below:
1) when the parameter k is fixed to 25, as suggested by some of the other literatures;
2) when the value of parameter k is optimally found via testing all possible integer values 
for k (which are constrained in a reasonably defined range) and reporting the best output.
From these tables, the PSNR values after applying the proposed APDE approach are usually 
the best among the restoration methods, especially for Gaussian and Salt & Pepper noise 
cases. Meanwhile, the gained results using the adaptively set parameter k are very close to 
the optimal results obtained through exploring all possible values for k.
Another achievement from the tables is this fact that the optimum results obtained by the 
proposed method are generally better than the optimum outcomes achieved after using the 
P-M-PDE method. This fact is more obvious where the level of noise is considerably high. 
The main reason of this achievement is the more proper neighboring structure which is used 
in the numerical implementation of the proposed method. The visual results are also shown 
in Figure 7 for the City dataset infected by Salt and Pepper noise process.
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(a)

(b)

(c)

Figure 7 - (a) The original City image and a cropped area from 
the source image, (b) The noisy City image (Salt and Pepper 
noise with Density = 0.1) and a cropped area from this noisy 
image, (c) Two cropped areas from the restored versions of the 
noisy City image using proposed APDE method for two different 
conditions: (left) Parameter k is adaptively set, (right) Parameter 
k is optimally set after trying a range of integer values for k.

Classification Results of Applying the Proposed APDE Method
According to Table 1, the proposed APDE-based approach commonly expresses better results 
in terms of PSNR value, compared to other restoration techniques. Nevertheless, PSNR 
improvement is not assured for some probable conditions such as speckle noise cases (Tab. 2). 
Indeed, the main superiority of the proposed method is to keep the needed features in images 
while performing the denoising process. In cases involved in applications such as classification, 
this feature can be very helpful. Classification of the multispectral land-cover images is a 
common application in remote sensing which has been also addressed in Machala and Zejdova 
[2014]. Thus, first we utilize the proposed restoration method on the F210 multispectral dataset, 
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and then the original, noisy and denoised data will be fed into the SVM classifier. Note that, 
all the values reported as the results of the competing methods are optimally found. In other 
words, the reported values in the following figures are gained using the restoration filters with 
optimal features (i.e. kernel size and/or Sigma). For the P-M-PDE algorithm, the parameter k 
is also optimally set. Finally for the APDE method, this must be noted that the adaptive values 
for parameter k are individually calculated for each band of F210 data.

Reference GTM Original Data Classification Noisy Data Classification

Classification after APDE Classification after Gaussian Classification after Median

Classification after Average Classification after Wiener Classification after P-M-PDE

Figure 8 - The SVM classifier results after applying to F210 dataset, before and after using 
the restoration techniques, where the noise is Salt and Pepper with density equal to 0.05.
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Figure 8 illustrates the results of applying the SVM classifier to the F210 dataset before and 
after using the restoration techniques. The reference Ground Truth Map (GTM) of the F210 
data is shown in Figure 8a. Generally, more similarity between the reference GTM and the 
resulted class maps (after applying the restoration method) implies better accuracy of that 
given restoration method. The visual comparisons besides the gained classification ratios 
clearly prove the efficiency of our proposed approach. As can be seen in Figure 8, using the 
APDE restoration method enhances the averaged classification accuracy of SVM classifier 
from 71.71% (for the noisy data) to 95.07%. The results of the two PDE-based methods are 
even better than the outcomes which are gained by classifying the original data. However, 
this is not surprising since the smoothing effect of PDE leads to remove some unwanted 
details from the original data.

Results of Applying the Proposed WshSeg-APDE Method
Figure 9 illustrates the results of utilizing the proposed WshSeg-APDE method to a noisy 
single-layer dataset. After extracting the segments from noisy image and calculating the 
adaptive parameters, PDE algorithm is applied to each segment separately and then the 
restored segments are merged together to form Figure 9a. In order to compare the outcomes 
of applying the two proposed methods (WshSeg-APDE vs. APDE), Figure 9b is also 
provided. It concludes that by applying the proposed WShSeg-APDE method instead of 
the previously presented APDE technique, there exists a slight progress in the PSNR value 
(from 26.6 dB to 27.5 dB).

(a) (b)

Figure 9 - (a) the result of the proposed WshSeg-APDE restoration method, after adding edges 
from the smoothed noisy image, and (b) the result of applying the traditional APDE.

Conclusion and Future Works
Performing the image restoration process in order to filter the probable noise from remote 
sensing datasets without dislocating or changing the important image features is the main 
goal of this paper. For this purpose, a restoration technique based on partial differential 
equations with adaptive parameters (APDE) is proposed by us. Moreover, a segmentation 
preprocessing step has been applied to each band of data before performing the restoration 
process (WShSeg-APDE). Using the Watershed segmentation technique, each band of the 



199

European Journal of Remote Sensing - 2015, 48: 183-200

noisy data is first partitioned into a set of disjointed segments and then the parameters 
are adaptively set in each segment. The proposed methods are implemented on several 
standard remote sensing datasets (including single-layer land-cover images as well as 
multispectral satellite images) and the obtained results are evaluated using a quantitative 
criterion (i.e. PSNR), and the application-based metrics which are the enhancement levels 
of the classification accuracy and validity after the denoising process. To have a fair 
comparison, we compare the performance of the proposed methods with those of the other 
restoration techniques such as Median, Mean (Average), Gaussian, Mode and Wiener filters 
as well as the traditional PDE algorithm presented by Perona and Malik. The achieved 
results represent a higher level of noise filtering along with better classification accuracies 
compared to the other restoration approaches. The adaptation method proposed in this paper, 
comparing to the other texture-based tools (such as the methods based on Gray-Level Co-
occurrence Matrix (GLCM)) includes an outstanding priority which is its extensively low 
computational time. In the real-time applications, this counts as a key feature.
Although the traditional PDEs (which are implemented in real domain) are capable to 
denoise data while exempting edges from being smoothed, they cannot sharpen the edges. 
Therefore, our future works will emphasize on implementing some more state-of-the-art 
diffusion-based techniques (such as the higher order PDEs and non-linear complex PDEs) 
to gain better results. Moreover, we pursue our research to develop some robust statistical 
algorithms in order to automatically tune the other free parameters (such as Alpha and Beta) 
which have been used in the proposed approach. Applying some other modern classifiers 
instead of the traditional versions of SVM is also one of the main goals in our future works 
which may considerably result in better classification ratios. 
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