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Abstract A space station in the vicinity of the Moon can be exploited as a
gateway for future human and robotic exploration of the Solar System. The
natural location for a space system of this kind is about one of the Earth-Moon
libration points.

The study addresses the dynamics during rendezvous and docking opera-
tions with a very large space infrastructure in a EML2 Halo orbit. The model
takes into account the coupling e↵ects between the orbital and the attitude
motion in a Circular Restricted Three-Body Problem environment. The flexi-
bility of the system is included, and the interaction between the modes of the
structure and those related with the orbital motion is investigated. A lumped
parameters technique is used to represents the flexible dynamics.

The parameters of the space station are maintained as generic as possible,
in a way to delineate a global scenario of the mission. However, the developed
model can be tuned and updated according to the information that will be
available in the future, when the whole system will be defined with a higher
level of precision.
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Keywords Large Space Station · Circular Restricted Three-Body Problem ·
Halo Orbits · Orbit-Attitude Dynamics · Flexible Structure.

1 Introduction

In the last two decades humanity achieved amazing goals with space missions
in Low-Earth orbit, creating the base for what can be called prolonged human
habitation in space. In the same time, robots have been targeted throughout
the Solar System to explore di↵erent planets and numerous celestial objects.
Now, the time for another step forward in space exploration has come. In
fact, the future exploration of Solar System will be driven by a cooperation
of astronauts and robots in space missions that will be aimed progressively
further away from the Earth. The roadmap to drive this ambitious program has
been already proposed by the International Space Exploration Group (ISECG)
[8], and one of the key points in the whole mission scenario is the so called
Evolvable Deep Space Habitat : a modular space station in lunar vicinity.

At the current level of study, the optimum location for space infrastructure
of this kind has not yet been determined, but a favorable solution can be
about one of the Earth-Moon libration points, such as in a EML2 (Earth-
Moon Lagrangian Point no 2) Halo orbit. Moreover, the final configuration of
the entire system is still to be defined, but it is already clear that in order
to assemble the structure several rendezvous and docking activities will be
carried out, many of which to be completely automated.

Unfortunately, the current knowledge about rendezvous in cis-lunar or-
bits is minimal and it is usually limited to point-mass dynamics. The aim of
this paper is to present some preliminary results about a possible rendezvous
scenario with a large space infrastructure in non-Keplerian orbits. The dynam-
ical analysis is based on a coupled orbit-attitude model of motion in a Circular
Restricted Three-Body Problem (CR3BP) environment, and includes the flex-
ibility of the structure with a lumped parameters technique.

The research is started with the definition of a possible rendezvous strat-
egy that can be inserted as a part of a broad mission framework in cis-lunar
space. It exploits invariant manifolds associated with unstable periodic or-
bits, such as EML2 Halo orbits, by finding a heteroclinic connection between
two di↵erent orbits. A tool to optimize this class of transfers is developed
and discussed. Moreover, a tool to simulate the relative dynamics during fi-
nal approach phases is also presented. The analysed rendezvous strategy is
an example of application of the simulation tools and the coupled dynamical
model that have been and are being developed from the authors. A separate
section is dedicated to highlight the e↵ects of the extended flexible bodies on
the dynamics in non-Keplerian orbits.

This work is intended to pose a preliminary base for further developments
within the research area on very large and flexible structure in Three-Body
problem environments. The purpose is the definition of a new astrodynamics
tool, able to simulate such a class of space systems. At the current stage of
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development, the model does not yet include perturbing e↵ects, such as Solar
Radiation Pressure and fourth-body (Sun) gravity, and the analysis is still
concentrated on a single element of the structure. However, the model has
been founded on a ”Multi-Body-Friendly” approach, and the extension of the
results is of easy implementation.

Looking at recent literature, it is possible to find other research works
that investigated the coupled orbit-attitude dynamics in non-Keplerian envi-
ronment. For example, the works of Guzzetti and Knutson[7,11] considered
both planar and full three-dimensional motion, providing a method to study
families of periodic orbit-attitude solutions. More recently, Colagrossi [3] in-
vestigated the coupling between orbit-attitude dynamics and the flexibility of
the structure in a slightly di↵erent way than the one presented in this paper.
A comparison between the two di↵erent approaches of the authors will be
discussed in the conclusions of this paper.

2 Theoretical Background

The present research is based on Circular Restricted Three-Body Problem
modelling approach, which consider the motion of three masses m1, m2 and
m, where m ⌧ m1,m2 and m2 < m1. m1 and m2 are denoted as primaries,
and are assumed to be in circular orbits about their common center of mass.
The motion of m does not a↵ect the trajectories of the primaries.

The dynamics is written in a rotating reference frame, S, which is called
synodic frame and is represented in fig. 1. It is centered at the center of masses,
m1 and m2, of the system, O; the first axis, x̂, is aligned with the vector from
m1 to m2; the third axis, ẑ, is in the direction of the angular velocity of S,
! = !ẑ; ŷ completes the right-handed triad. The system can be defined by
the mass parameter,

µ =
m2

m1 +m2
, (1)

the magnitude of the angular velocity of S,

! =

s
G(m1 +m2)

r312

, (2)

and the distance between the primaries r12. The equations of motion are usu-
ally normalized with respect to r12, ! and the total mass of the system
mT = m1+m2. After the normalization, the universal constant of gravitation
is G = 1.

The mass m is an extended body, and the model is currently based on a
simple and generic structural element: a rigid rod. In this way, it is possible
to have a solid foundation, which can be easily extended to more complex
configurations of the space system, with a Multi-Body technique [19]. The
body m has five degrees of freedom: the position of its center of mass B, rB ,
and two independent parameters to define the orientation of the versor aligned
with the rod, û.
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Fig. 1: Synodic Reference Frame.

The equations of motion can be derived starting from a Lagrangian Formu-
lation, where the Lagrangian function, L = T � G, includes the kinetic energy,
T , and the generalized potential, G.

The kinetic energy T of the rigid body can be expressed as the kinetic
energy of the translational motion of the center of mass plus the kinetic energy
of the rotational motion of m as:

T =
1

2
m ṙB · ṙB +

1

2
⌦ · IB ·⌦, (3)

where ṙB is the velocity of B, ⌦ is the angular velocity of the body relative
to the S frame and IB is the inertia tensor about B.
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The generalized potential G is related with the gravitational forces and
with the inertia forces, since the synodic frame S is a non-inertial reference
frame that is rotating with the two primaries. It can be expressed as the sum
of the ordinary gravitational potential, Vg = Vg1 + Vg2 and the generalized
potential of the inertia forces, Vi.

The gravitational action exerted by the i-th spherical primary on m, can
be derived from:

Vgi = �Gmim

rBi

+
Gmi

r3
Bi


3

2
(r̂Bi · IBi · r̂Bi)� tr(IB)

�
, (4)

where rBi and r̂Bi are respectively magnitude and direction of rBi : position
vector of m with respect to the i-th primary. The previous expression is an
expansion up to the second order of the gravitational potential generated by
a spherical attractor on a small extended body [10].

The generalized potential of the inertia forces is needed to write the equa-
tions of motion in S, and it can be expressed as:

Vi =
m

2
rB · [! ⇥ (! ⇥ rB) + 2! ⇥ ṙB ]�

1

2
! · IB · (! + 2⌦). (5)

It is important to remember that a generic generalized potential V(P, Ṗ),
where P is the position and Ṗ the velocity, is defined in a way that the related
force can be computed as:

F =
d

dt
(
@V
@Ṗ

)� @V
@P . (6)

In order to write the normalized equation of motion, L has to be written in
non-dimensional form. In fact, from now on, all the variables will be intended
to be non-dimensional: lengths will be divided by r12, masses by mT and times
by 1/!. In the same way, from now on, the time derivative will be taken with
respect to the non-dimensional time ⌧ = !t: �̇ = d � /d⌧

At this point, it is possible to derive the equations of motion as:

d

d⌧

✓
@L
@q̇j

◆
� @L

@qj
= Aj , (7)

where qj , j = 1, . . . , 5 are the generalized coordinates, and Aj the generalized
non-dimensional contributions due to di↵erent external forces, such as the solar
radiation pressure or the presence of a fourth-body. In the present analysis
Aj = 0.

Applying the previous equations to the case of the rigid rod m of length l,
L can be expressed as:

L = L0 + ✏
2
0L2 + ✏

3
0L3 + . . . , (8)

where ✏0 is the non-dimensional length of the rod: ✏0 = l/r12, and it is usually
a small number.
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6 Andrea Colagrossi, Michèle Lavagna

Limiting the expansion to the second order, our system of equations be-
comes:

d

d⌧

✓
@L0

@ẋ

◆
� @L0

@x
= ✏

2
0
@L2

@x
(9)

d

d⌧

✓
@L0

@ẏ

◆
� @L0

@y
= ✏

2
0
@L2

@y
(10)

d

d⌧

✓
@L0

@ż

◆
� @L0

@z
= ✏

2
0
@L2

@z
(11)

d

d⌧

✓
@L2

@✓̇

◆
� @L2

@✓
= 0 (12)

d

d⌧

✓
@L2

@'̇

◆
� @L2

@'
= 0, (13)

where x, y and z are the non-dimensional cartesian coordinates of B in S,
while ✓ and ' are respectively the in-plane and out-of-plane libration angles
that define univocally the orientation of û.

It is interesting to note that limiting L to the main order L0, the eqs. (9)
to (13) reduce to the usual Circular Restricted Three-Body Problem equations.
In this case, the size of the rigid rod disappears from the problem.

The attitude dynamics of a one-dimensional body, such a rod, is fully
defined by ✓ and '. However, it is possible to use another set of attitude
parameters that, despite it can be redundant, it is usually more convenient,
and allows more intuitive analyses [18]. In this work, a set of Euler angles in 1-
2-3 sequence, commonly called Bryant Angles [6], is employed. The singularity
condition of these attitude parameters happens when û is perpendicular to the
orbital plane, which is not likely to happen in this research work. The angles
associated with the 1-2-3 rotations are, respectively, �1, �2 and �3; they allows
to express orientation of m as:

û = [cos�2 cos�3,

cos�1 sin�3 + sin�1 sin�2 cos�3,

sin�1 sin�3 � cos�1 sin�2 cos�3]. (14)

The equations of motion in terms of Bryant angles can be derived using a
Newton-Euler formulation. In fact, the angular momentum at B, hB , is related
to the torque applied to the center of mass, mB , as:

dhB

dt
= mB .tb (15)

A new system of reference attached to the rod can be defined: it is centered
in B; û1 = û; û2 is aligned with the direction of the variation of û, ˙̂u; û3

completes the right-handed frame as in fig. 2. In this body frame, the angular
momentum of m is:

hB = IB⌦?û3, (16)
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x’

y’

z’

m

rB

û = û1

B

û2

y

x

z

Fig. 2: Body Reference Frame.

where ⌦? = |û⇥ ˙̂u| = | ˙̂u|, and IB the moment of inertia of the rod with
respect to B.

From eq. (15) and eq. (16), with some algebraic manipulation, it is possible
to write a system of three equations with the time evolution of ⌦?, û1 and
û3. However, exploiting the Bryant angles to describe the orientation of the
body frame with respect to S, the attitude equations of motion are four. In
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8 Andrea Colagrossi, Michèle Lavagna

non dimensional form they are:

d�1

d⌧
= � M2

!⌦?IB

cos�3

cos�2
(17)

d�2

d⌧
= � M2

!⌦?IB
sin�3 (18)

d�3

d⌧
=

⌦?
!

+
M2

!⌦?IB
cos�3 tan�2 (19)

1

!

d⌦?
d⌧

=
M3

!2IB
, (20)

where M2 and M3 are the components of mB along the second and the third
direction of the body frame. It must be noted that in the present analysis all
the torques are normal to the rod, and this conditions must be respected in
the framework of this research. The torque mB is computed from the forces
that are derived from the already presented potentials in eqs. (4) and (5). Both
the inertial forces and the gravitational forces must be considered to compute
mB , because this research is carried out in the synodic frame S. In this paper,
any other external force is neglected.

The coupled orbit-attitude dynamical model is therefore represented by
eqs. (9) to (11) and (17) to (20).

The astrodynamics tool that is presented and discussed in this paper is
based on the dynamical model that has been previously described and it is
intended to simulate the orbit-attitude dynamics of large and flexible space
infrastructures in cis-lunar environment. In particular, it is mainly dedicated
to analyse transfer trajectories and rendezvous dynamics with extended space
systems in non-Keplerian orbits. The structural properties of the proposed
space station are not completely known yet, but its probable dimensions and
typical structural characteristics of existing space systems require to analyse
and simulate the dynamics with the inclusion of flexible e↵ects. The main
reason is to highlight possible couplings between orbit-attitude dynamics and
flexible dynamics. In fact, orbital and rotational motion of the space station
may be perturbed by the natural vibrations of the flexible structure or, in-
versely, the frequencies associated to the non-Keplerian dynamics may be an
issue with respect to possible resonances of the flexible system. At the current
stage of development of the dynamical tool, the flexibility of the system is in-
cluded in the model with a lumped parameters technique, exploiting lumped
masses connected to a rigid structure with a massless spring; in a way to
have an equivalent spring-mass system, able to represent a pseudo-mode of
vibration [14,9].

The spring-mass systems are attached to the rod in arbitrary points at
a fixed distance from B. Their motion is excited from the dynamics of the
rod itself. In this preliminary analysis, it is assumed that the lumped masses
do not interact directly with the gravitational field. Their e↵ect is inserted
in the equations of motion through mB , in fact the spring generates a force
on the rod and therefore a torque with respect to B. The net force on B
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û = û1
B

û2

û3

zi
~

z
iu3

~

z
iu1

~
= 0 : Spring-Mass constrained to be orthogonal to the rod

z
iu2

~

yi
~

:

mi

~

ki

~

Fig. 3: Spring-Mass System.

is neglected; hence, the flexibility e↵ect is considered only in the attitude
dynamics. However, the orbital motion is influenced by the coupling with the
attitude equations.

Each i-th spring-mass system, represented in fig. 3, is located at a distance
li from the barycenter of the rod, and it is defined by a pseudo-modal mass emi

and an equivalent sti↵ness eki. All the modal masses are scaled to 1, and each
pseudo-mode is entirely represented through eki. From the natural frequency
of each mode of the structure e!i the sti↵ness can be computed as:

eki = e!2
i
emi. (21)

The motion of the spring-mass systems is constrained to be orthogonal
to the rod in order to simulate only the bending modes. The elongation of
the spring, with respect to the linking point, is ezi. The acceleration of the
linking point is ëy

i
, and it can be easily computed knowing the dynamics of

the body m. Also in this case, the equations of motion have to be normalized
with same process that has been described for the rigid body dynamics; all the
aforementioned variables are in non-dimensional form. For each spring mass
system it is possible to write:

emi(ëzi + ëy
i
) + ekiezi = 0. (22)

The torque exerted on the rod, with respect to B, by a single spring-mass
system is:

mBki
= liû1 ⇥ ekiezi. (23)

The results that are presented in this paper refer to a configuration with
two spring-mass systems at the ends of the rod. In this way, it is possible to
simulate the first bending mode of two cantilever beams attached to B.
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3 Rendezvous Definition

Rendezvous in space involves a spacecraft already in a operational orbit, which
is commonly called target, and a spacecraft that is approaching to it, chaser.
The di↵erent phases of a generic rendezvous have been extensively studied in
the past and consist of a series of orbital manoeuvres and controlled trajecto-
ries, which have to progressively bring the chaser into the vicinity of the target
[5].

The rendezvous between two spacecrafts in Earth orbits, i.e. in the frame-
work of the Restricted Two Body Problem, is nowadays well studied and
tested, thanks to the experience of the ISS (International Space Station).
However, this delicate phase is strongly supported by the direct control of the
astronauts. The technology to support completely automated and unmanned
rendezvous missions has not yet reached an high level of maturity. Moreover,
if the autonomous rendezvous operations have to be conducted in CR3BP, the
studies are even more preliminary and not completely developed yet. Further-
more, as already said, studies in literature were always limited to point-mass
spacecrafts.

Possible rendezvous strategies have been recently proposed with a target
on a Earth-Moon L2 Halo orbit by di↵erent authors [13,15,20]. An example
involving the same family of operational orbits is presented in this paper, in
accordance with the existing feasibility studies about the cis-lunar space sta-
tion mentioned above. However, the tool that is being developed from the
authors is already able to work around the other collinear Lagrangian points,
even though only L1 can be a valid alternative for this kind of space infras-
tructures.

The automated transfer vehicles (chaser) will have to reach the cis-lunar
space station (target) from di↵erent locations, such as the Earth, the Moon or
a di↵erent non-Keplerian orbit, within a reasonable time and cost. Therefore,
a preliminary analysis involves the design of a trajectory connecting the op-
erational Halo orbit with the desired location. A vast literature addresses this
problem, and many solutions were proposed to solve it. For example, the one
proposed in the same department of the authors [1], injects the spacecraft on
an highly eccentric orbit from a Low Earth Orbit (LEO) or Low Lunar Orbit
(LLO), and near the the apogee a dedicated manoeuvre pushes the spacecraft
on a stable manifold, which is progressively converging to the operational Halo
orbit.

By assuming the evolvable space infrastructure on a EML2 Halo orbit it is
reasonable to have the injection point of the stable manifold in the vicinity of
the Moon. In this way, it is possible to find many injection points that can be
easily reached from a LEO, a LLO, the Lunar surface or a safe parking orbit.
The complete scenario of logistic transfers and operational missions on the
Moon is out of the scope of this work, and it is just employed to contextualize
the presented solution, which considers a parking Halo orbit for the chaser and
the operational Halo orbit of the target.
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Fig. 4: Operational and Parking Halo orbits in normalized S.

According to the definition introduced by Koon [12], this kind of rendezvous
can be denoted as Halo Orbit Insertion (HOI), being the chaser on a di↵erent
Halo orbit when the sequence of manoeuvres is started. The other type of
rendezvous is called Stable Manifold Orbit Insertion (MOI), because in that
case, the chaser is travelling from the Earth, or the Moon, and is directly
inserted in the stable manifold of the operational orbit.

The rendezvous that is presented in this work is composed by the following
phases, similarly to what has been proposed by Lizy-Déstrez [13]:

– Starting Phase: the chaser and the target are orbiting their own Halo orbits,
which are characterized by two di↵erent values of maximum elongation in
z, Az.

– Departure: the chaser is injected in an unstable manifold of the parking
orbit with a first manoeuvre, �v1.

– Switching manoeuvre: the chaser is injected in the stable manifold of the
target operational orbit. The injection point is at the intersection of the
unstable and the stable manifolds. A second manoeuvre, �v2, is needed.
If a MOI rendezvous is considered the starting point is here.

– Approach manoeuvre: the chaser arrives in proximity of the target and,
with a third manoeuvre, �v3, is moved very close to the operational Halo
orbit. The relative distance between chaser and target is maintained within
the safety standards.

– Closing phase: a fourth manoeuvre,�v4, aligns the chaser with the docking
axis of the space station. This phase starts as soon the chaser enters in the
field of view of the space station.

– Final approach: a series of manoeuvres, �v5 and �v51, progressively re-
duces the relative distance between cargo and space station. The chaser is
maintained aligned with the the docking axis of the space station, which
is rotating.

– Mating phase: a continuous manoeuvre,�v6, is performed to reduce to zero
the relative distance between the two spacecrafts and brings the chaser at
the docking port, before the final contact.

The case that is presented in this paper involves an operational EML2 Halo
orbit with Az = 10 000 km in positive direction, Northern Halo. The chaser’s
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Table 1: Operational and Parking Halo parameters.

Name Az [km] T [d] C [nd]

Operational Halo 10000 14.808 3.149
Parking Halo 8000 14.813 3.150

(a) Sub-optimal connections. (b) Corrected sub-optimal connections.

Fig. 5: Possible Heteroclinic connections for xSP < 1� µ.

parking orbit is a di↵erent Northern EML2 Halo orbit with Az = 8000 km.
The switching point is assumed to be in the vicinity of the Moon, in the space
between Earth and Moon: xSP < 1 � µ. This choice is motivated from the
willing to simulate a possible cyclic chaser that is continuously transferring
between the operational and the parking Halo orbit; the passage between Earth
and Moon allows an easy encounter with a cargo coming from the Earth, the
Moon or a Low Lunar orbit. The chaser is a point mass, while the target (space
station) is a rod with lT = 100m, and mass mT = 300 000 kg. The docking
axis is aligned with the rod axis, û1T . The halo orbits considered in this work
are shown in fig. 4, with data reported in table 1

4 Rendezvous Simulation

The dynamical tool that is used to simulate the rendezvous of the chaser with
the target propagates the coupled orbit-attitude dynamics of the space station
and the point-mass orbital motion of the chaser.

First of all, it is important to find an heteroclinic connection between the
two Halo orbits: the transfer trajectory. In this work, it has been assumed
that the chaser and the target are approximately phased in their own orbits
according to the chosen transfer, i.e. the target needs the time of the transfer,
ttransfer, to move from its starting point to the ending point of the heteroclinic
connection. Such requirement can be always satisfied with a Phasing Phase to
be conducted before the Starting Phase of the rendezvous operations; more-
over, the proximity operations after the heteroclinic transfer are able to correct
some errors in the phasing of chaser and target.

The heteroclinic connection is individuated, computing the unstable man-
ifold of the parking orbit and the stable manifold of the operational orbit.
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Table 2: Optimal transfer parameters.

ttransfer [d] �v1 [m/s] �v2 [m/s] �v3 [m/s] �vtransfer [m/s]

26.14 5.49 152.29 0.51 158.29

Manifolds can be computed from the eigenvectors of the Monodromy Matrix,
M, which is the State Transition Matrix, �, evaluated after one orbital pe-
riod, T. The intersections of the two manifolds are analysed on a Poincarè
section and di↵erent sub-optimal solutions are located for xSP < 1�µ. Then,
a correction procedure is applied to all the sub-optimal solutions, in order to
exactly connect in position starting point, switching point and ending point.
In fig. 5 the sub-optimal solutions are shown before and after the correction
procedure. Among the selected sub-optimal solution the best one is chosen as
the one with the smallest�vtransfer = �v1+�v2+�v3. This best sub-optimal
transfer is then optimized with an optimization algorithm.

The transfer optimization algorithm starts from the already mentioned
sub-optimal connection and slightly varies the state vector of the chaser at
the starting point, svStart = [xStart, yStart, zStart, ẋStart, ẏStart, żStart]. The
starting position, rBStart = [xStart, yStart, zStart], is constrained to lie on the
Halo orbit. Moreover, also the state vector at the switching point can be varied
with the constraint to preserve the continuity in position with the stable man-
ifold of the operational Halo orbit. The algorithm is based on a constrained
multiple-shooting corrector with a multi-variable Newton methods [17]. The
optimum solution is searched with a derivative-free method. The result of the
transfer optimization algorithm is shown in fig. 6, and the characteristics of
the best heteroclinic transfer are reported in table 2. From these data, the
low-cost transfer capabilities of invariant manifolds are evident, but the time
of flight during this connection can be somewhat too long for certain applica-
tions, e.g. humans transportation or emergency cargos. However, this is only
a limit for transfers that have to pass between Earth and Moon; in fact, for
xSP > 1� µ, the typical time of transfer is in the order of few days.

After �v3 the relative distance between chaser and target is usually in the
order of few hundreds of kilometers; in the presented example |rRel| ' 150 km.
In the following phases, the dynamical tool performs more convenient analyses
exploiting a Local Vertical Local Horizontal (LVLH) reference frame, similarly
to what is usually done in LEO. The CR3BP LVLH reference frame is centered
at the barycenter B of the target; ẑLV LH (R-bar) is always directed towards
the Lagrangian point associated to the studied Halo; ŷLV LH is opposite to
the direction of the orbital momentum vector; x̂LV LH (V-bar) completes the
right-handed frame as shown in fig. 7.

When the chaser enters in view of the target along the R-Bar, �v4 is
performed to align the chaser with the docking axis, û1T , of the space station.
After this closing phase manoeuvre, the chaser is maintained always aligned
with the docking axis of the target, within the field of view along û1T . During
the final approach phase, this alignment is checked at di↵erent interface points;
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Fig. 6: Optimal transfer.
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the first is at a distance of 200 km from the target, the second at 10 km and
the third at 500m. These interface points are needed to break the rendezvous
trajectory with some check-and-go points, in order to have a more gradual and
safe final approach.

The di↵erent phases after the transfer are computed and optimized with a
constrained optimization algorithm. The cost of the manoeuvre at each inter-
face point and the di↵erence in velocity between chaser and target at the end
of the arc, as a preliminary measure of the next �v, are the objective functions
of the optimization algorithm. In this way, the rendezvous path is evaluated
minimizing the cost of all the proximity manoeuvres. The constraint is used to
reduce the relative distance and maintain the alignment between chaser and
target. Thus, at each interfaces point the chaser reaches the desired location
with a desired attitude relative to the target. The velocity of the chaser is
used as design variable to connect the di↵erent interface points minimizing
the overall �v cost. It has been assumed to control the dynamics with im-
pulsive manoeuvres and, therefore, the actual design variable is not directly
the velocity of the chaser, but the instantaneous �v that are applied at the
interface points in order to control the chaser along the rendezvous trajectory
with the minimum possible cost. If the optimization algorithm converges to
a feasible solution, the result is a trajectory that matches the final position
vector of the target and minimizes the �v cost. The initial guesses at each
interface point are obtained randomly. The programming algorithm chosen in
this work is a particular version of the barrier method [2,21], belonging to the
class of the so-called interior point methods [16].

In fig. 8 and fig. 9 the proximity phases are shown in the synodic and in
the LVLH frame. Both frames are useful to analyse the rendezvous, but the
latter is more insightful when the distance between chaser and target is in the
order of few hundreds of kilometers. In fig. 9, it can be noted how the closing
phase starts when the chaser enters in the field of view along the R-bar, then
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Fig. 8: Proximity Operations in Synodic Frame.

the following phases are maintained within the field of view in direction of the
docking axis. Moreover, in the same figure, the approach along û1 is evident;
the interface points follows the approach axis that is changing in time because
of the rotation of the space station.

In fig. 10 is shown a more detailed view of the final approach phase, while
the mating phase can be analysed in fig. 11. In the aforementioned pictures the
typical behaviour of relative motion in CR3BP is confirmed: the approaching
trajectories are almost rectilinear and the carving feature of LEO rendezvous
trajectories is missing.

In fig. 11, the interface point before �v6, 500m from the target, is char-
acterized by an hold in the procedures. In fact, for safety reasons, the chaser
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Fig. 9: Proximity Operations in LVLH Frame, x-z view: Closing and final approach phase.
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Fig. 10: Final approach in LVLH Frame, x-z view.

cannot enter in the Keep-Out sphere until the authority to proceed is obtained.
After the final approach, the mating phase begins.

In this dynamical analysis tool the guidance during the mating phase is as-
sumed to be continuous. The trajectory is computed using a Linear Quadratic
Regulator (LQR) and a linearised model of the CR3BP dynamics for the chaser
[4]. The relative distance between chaser and center of mass of the target is re-
ported in fig. 12, as a function of the time of flight in the mating phase, which
last for approximately 3 hours and brings the chaser few meters away from the
docking port. In fig. 13, the evolution of the relative velocity in this phase is
presented as a function of the target-chaser distance. In table 3, time of flight
and �vs during the proximity operations are reported. Hence, remembering
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Fig. 11: Mating phase in LVLH Frame, x-z view.
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Fig. 12: Relative distance during mating phase.

the data in table 2, the analysed rendezvous lasts for 29.5 d and requires a
total �v of 165.93m/s.

5 Flexible Orbit-Attitude Analysis

In the previous analyses, the coupled orbit-attitude model has been used to
simulate the dynamics of the large space flexible infrastructure (target). How-
ever, the e↵ects of this refined model are not so evident from the previously
shown results. This section reports some analyses that have been conducted

Table 3: Proximity operations parameters.

tproximity [d] �v4 [m/s] �v5 [m/s] �v51 [m/s] �v6 [m/s] �vproximity [m/s]

3.36 1.27 3.41 2.52 0.44 7.64
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Fig. 13: Relative velocity during mating phase as a function of relative distance.
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Fig. 14: Orbit-Attitude motion on Halo orbit with Az = 30 000 km.

to preliminarily study the e↵ects of the flexible extended structure on the
dynamics in non-keplerian orbits.

In fig. 14 the attitude evolution of the rod infrastructure is reported. The
attitude motion that has been examined in this analysis is set to be quasi-
periodic with the orbital period: the space station performs almost one rotation
in the first orbital period.

An interesting analysis is reported in fig. 15 and fig. 16, where the motion is
propagated along 4 di↵erent Halo orbits, which are di↵erent in Az. In this way,
the influence between the orbital frequencies and the spring-mass frequencies
is highlighted and some preliminary considerations are possible. The spring
mass systems have e!i = 50 [nd]. The most elongated orbits have a particular
influence on the oscillations of the Bryant angles, while more the orbit is
close to be planar more the variations are evident in ⌦?. This results can
be explained considering that in the limit of planar orbits all the torques are
exerted along û3.
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A di↵erent preliminary study is targeted to point out the influence of the
natural frequencies of the structure on the orbital motion. The di↵erence in x,
y and z of the coupled flexible model with respect to the point-mass CR3BP
model is shown in fig. 17. However, in this case, a unique trend does not exist
among the di↵erent components and the di↵erent Halo orbits. Each orbit has
its peculiar frequency in each spatial direction, and the influence on flexible
systems with di↵erent natural frequency must be analysed isolating each single
e↵ect and coupling term.
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Fig. 17: Di↵erence with respect to the point-mass CR3BP dynamics.

6 Conclusions

This paper presented an example of a possible rendezvous scenario with a very
large and flexible space infrastructure in a EML2 Halo orbit. The example has
been used to show a dynamical analysis tool that is being developed by the
authors. Moreover, some reference parameters for such a rendezvous have been
presented, and they can be exploited to assess the feasibility of a cyclic mission
between two di↵erent Halo orbits, when the cargo has to pass on the Earth
side of the Moon.

At this point, as introduced in section 2, it is relevant to note that in a dif-
ferent research work of the authors[3] an additional model has been developed
and exploited to represent and study the dynamics of large and flexible space
structures in non-Keplerian orbits. The other dynamical model resulted in a
more e�cient and adaptable way to study this kind of space systems. In fact,
that dynamical representation can be easily integrated with more complex
structural model, such as distributed parameters semi-analytical techniques,
or with additional control devices, such as dual-spinning rotors. For these
reasons, the future research will be addressed with that formulation. Notwith-
standing, what has been presented in this paper, gave to the authors many
information on orbit-attitude-flexible couplings and on rendezvous and dock-
ing operations; the extensions and the refinements of the additional modelling
approach cannot overlook the present results.
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Future works will increase the fidelity of the simulations, including some
perturbing phenomena in the rendezvous analyses and enhancing the mod-
elling approach with the aforementioned additional developed model. An ex-
tensive study on the possible couplings between the structural frequencies of
the space infrastructure and the control action is needed. This is because,
the higher frequencies associated with an active control system can be more
dangerous with respect to possible resonances of the flexible system. Finally,
further investigations on the entire system configuration and on the proposed
assembly strategies are necessary to highlight some drivers for the whole lunar
infrastructure design.
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