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Fully Magnetic Attitude Control Subsystem for Picosat
Platforms

Andrea Colagrossi⇤, Michèle Lavagna

Aerospace Science and Technology Department, Politecnico di Milano,

Via La Masa, 34, 20156, Milan, Italy

Abstract

In this paper, the design of a fully magnetic attitude control subsystem
for a picosat platform is discussed. The developed control law is based
on a simple and reliable architecture, which can be easily implemented on
small spacecrafts for de-tumbling and three-axis stabilization purposes. The
subsystem design follows a practical engineering approach, exploiting global
optimization methods, which lead to an integral actuation compliant with
typical pointing accuracy requirements for picosat missions. Performance
of the proposed attitude control subsystem is demonstrated by numerical
simulations.

Keywords: Active Attitude Control, Magnetorquer, Picosat, Integral
Actuation, Global Optimization Methods

1. Introduction

Small spacecraft missions are experiencing an increasing interest from the
space community, since their capability to reduce the cost of space access
while performing operations only possible in the past with larger and heavier
satellites. In particular, miniaturization of spacecraft components nowadays
allows to integrate fully operational spacecrafts weighing less than a kilogram,
which are usually referred to as picosatellites or picosats.

⇤
Corresponding author

Email addresses: andrea.colagrossi@polimi.it (Andrea Colagrossi),

michelle.lavagna@polimi.it (Michèle Lavagna)
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These small space systems obviously require to be de-tumbled immediately
after the release from the orbital deployer, and to be often stabilized or con-
trolled in attitude. However, their low inertia compared to the high density of
electronics that strongly interacts with the Earth’s magnetic field, determines
their chaotic attitude motion and makes di�cult to exploit gravity gradient
or spinning stabilization techniques (Inamori et al., 2011). For these reasons,
an active attitude control subsystem is frequently needed to de-tumble, sta-
bilize and control small spacecrafts. Despite many possible approaches to
the control of attitude dynamics have been developed through the years, a
particularly e↵ective and reliable one is constituted using electromagnetic
actuators. This control strategy is especially suitable for picosatellites, since
they are usually operated in low Earth orbits (LEOs), where a strong geomag-
netic field is present. Moreover, it helps to save overall power, weight, cost
and complexity compared to other techniques based on thrusters or moving
parts (e.g. reaction wheels). Furthermore, the simplicity of magnetic control
allows to reduce the risk of failure and, therefore, the entire space system is
more reliable. Certainly, the magnetic control can be either active or passive,
but the latter does not allow to have many degrees of freedom for attitude
control and spacecraft maneuvers. For all these reasons, a fully magnetic
active attitude control subsystem for picosats is presented in this paper.

Electromagnetic actuators constitute the distinctive element of any mag-
netic attitude control subsystem. They are essentially electromagnetic coils
generating an asymmetric time-variable magnetic field. That field is con-
trolled by varying the input currents of the electromagnets, according to the
implemented closed-loop feedback control law. The coil can be wound around
a ferromagnetic core, usually shaped as a rod and denoted as magnetic torque
rod, or it can be a simple thin coil that can be also embedded in the electronic
board (e.g. Printed Circuit Board - PCB). In this last situation, the actua-
tor is typically called air-core coil, but in general all these electromagnetic
actuators are indicated as magnetorquers.

The spacecraft attitude is controlled thanks to the interaction between
the magnetic dipole moment, d, generated by a set of three orthogonal
magnetorquers and the Earth’s magnetic field, b. The control torque is
therefore simply obtained as tmag = d⇥b (Wertz, 1978). From this equation,
it is evident the main drawback of the magnetic attitude control technique:
the control torque is always constrained to lie in the plane orthogonal to
the local geomagnetic field vector. Therefore, a spacecraft controlled with
electromagnetic actuators would be always a locally under-actuated system

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(Sidi, 1997; Markley and Crassidis, 2014). In spite of this, if the spacecraft
operational orbit is inclined enough with respect to the geomagnetic equator,
the Earth’s magnetic field vector has a periodic motion with respect to the
orbital reference frame and, consequently, it is possible to apply torques, in
average over one orbital period, in any direction and, thus, the spacecraft can
be stabilized (Bhat and Dham, 2003).

The application of magnetic attitude control has been deeply investigated
since the early stages of astronautics (White et al., 1961), both for attitude
control and for reaction wheels’ momentum dumping. Nevertheless, until the
last decade of the 20th century, only approximate solutions of the control
with magnetorquers were existing in literature (Stickler and Alfriend, 1976;
Musser and Ebert, 1989). Just in the first decade of the new millennium,
with the explosion of small satellites missions, the interest of the international
space community was directed toward magnetic actuators for spacecraft
attitude control (Wísniewski and Blanke, 1999; Lovera et al., 2002; Lovera
and Astolfi, 2004; Silani and Lovera, 2005). Both linear and non-linear attitude
control problems have been investigated, considering LQ control techniques,
Lyapunov methods, model predictive approaches and many theorems for
attitude stability.

As a result, if closed-loop dynamics is su�ciently slow, conventional pro-
portional derivative control law can be applied. However, if large rotations or
high angular rates (e.g. initial satellite de-tumbling), high nonlinearities are
involved and nonlinear control techniques are needed (Cubas et al., 2015). In
particular, it should be noted that one of the most used nonlinear strategies is
the well-known B-dot control law (Stickler, 1972; Stickler and Alfriend, 1976),
which is characterized by its simplicity and is very e↵ective to dump the
spacecraft’s angular velocity (Flatley et al., 1997). In fact, with this nonlinear
control law, the commanded magnetorquers dipole is proportional to the
derivative of the geomagnetic field, and this results in a dissipative e↵ect that
decreases the kinetic energy of the spacecraft. But, using this control law, the
angular velocity of the satellite cannot be stabilized at a particular chosen
value, and the B-dot strategy lacks of control regarding the final attitude of
the satellite. In recent years, some studies have been conducted and improved
versions of the B-dot control law have been presented (Avanzini and Giulietti,
2012).

In this paper, a fully magnetic attitude control subsystem, which makes
use of the conventional proportional derivative (PD) control together with
a modified B-dot control, is presented. The method has been developed to
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be implemented on picosatellites, having in mind the idea to maintain the
attitude control subsystem as simple and reliable as possible. Obviously,
the method increases the complexity of the classical B-dot control, because
the on-board computer has to store additional information (e.g. the Earth’s
magnetic field model) and has to estimate the position and the orientation
of the spacecraft, allowing an attitude control logic capable to de-tumble,
stabilize and control a picosatellite in LEO.

The subsystem design has followed a practical engineering approach, which
had to be robust and easily applicable to di↵erent small satellite missions. The
method has been developed directly exploiting a high-fidelity dynamical model,
including the perturbations relevant for a selected operative environment.
This approach obviously provided less general results, but considering the
method which has been used to implement it, the outcomes can be easily
applied to any other similar scenario. Furthermore, in this way, the attitude
subsystem is immediately available for testing and integration on real systems.

Global optimization methods have been used to tune the subsystem pa-
rameters on a particular mission scheme. The paper accurately describes the
tuning process, which is part of the presented method, to obtain the actuation
logic of the magnetorquers that is able to guarantee integral performances over
one orbital period, compliant with typical requirements for picosat missions.

The design of the attitude control subsystem (ACS) has been carried out
in parallel with the design of the attitude determination subsystem (ADS), in
order to have a global overview on the mutual requirements and constraints
between the two subsystems. In this paper, the focus is on the ACS and the
ADS is just briefly introduced to have an idea on the quantities that are used
to control the attitude of the picosatellite.

2. Dynamical Model

The dynamical model that is used to develop the attitude control sub-
system is based on Euler’s equation for rigid spacecrafts, expressed in the
body reference frame, B. The attitude of the spacecraft is referenced to an
Earth-centered inertial (ECI) frame, I, through a direction cosine matrix, A.
Moreover, since small satellites often carry out Earth missions, the attitude
is also referenced to a local-vertical-local-horizontal (LVLH) frame, LV H ,
through a rotation matrix, P.

As shown in fig. 1, the inertial reference frame has the origin, O, coinciding
with the center of the Earth, x̂ pointing toward Vernal equinox, ẑ parallel

4
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Figure 1: Earth-centered inertial (ECI), local-vertical-local-horizontal (LVLH) and body-

fixed reference frames.

to the Earth’s rotational axis pointing toward north and ŷ completing the
right-hand Cartesian frame. The center of mass of the spacecraft, OB, can be
univocally positioned in I by the radius vector, r, which is also defining the
origin of the two other reference frames. In fact, the LVLH frame is centered
in OB, it has the first axis, x̂L aligned with the vector r, the second axis,
ẑL, along the orbit normal and the third axis, ŷL, completing the right-hand
triad in the horizontal direction. The body-fixed frame B is centered at the
center of mass of the spacecraft, OB, and it is aligned with the body principal
inertia directions, b̂1, b̂2 and b̂3.

The position vector is initialized considering the starting position on the
selected operational orbit. Then, it is propagated in time integrating the
perturbed equation of two-body motion. This allow to know the position
of the spacecraft with respect to the Earth at any instant of time. The

5
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perturbations are directly inserted in the equations of motion and, from the
resulting acceleration on the spacecraft, the orbital path is found: Cowell’s
method (Bate et al., 1971). Further details on the perturbations used in
the simulations will be discussed later in the paper. The position of the
spacecraft is needed to gather information on the expected geomagnetic field
from the models and to obtain other kinematic data to be used in the attitude
determination process.

As already said, the attitude dynamics is propagated in time using the
Euler’s equation of rigid body motion:

I!̇ = �! ⇥ I! + tmag + td, (1)

where ! = [!1,!2,!3]T is the vector of spacecraft angular velocity, expressed
in body frame, I is the inertia matrix, tmag is the vector of magnetic control
torque and td is the vector of external disturbance torques.

The disturbance phenomena that are considered in the simulations a↵ects
both the orbital and the attitude dynamics, in a way that the fidelity of the
simulations is high enough for ACS design purposes. The orbital perturbations
used in the model include the irregularities in the gravitational potential due
to non-spherical distribution of Earth’s mass, the presence of the Moon and
the Sun as third and fourth bodies, the e↵ect of the solar radiation pressure
(SRP) and the atmospheric drag. For what concern the disturbance related
with the rotational dynamics, td is composed by the gravity gradient torque
exerted by the Earth, the Moon and the Sun on the small spacecraft, the
geomagnetic field interaction with the spurious dipole of the satellite, the
SRP torque and the atmospheric drag torque. The Earth gravitational model
is the NGA/EGM2008, used with harmonics up to the fourth degree and
order. The third and fourth body contributions are computed considering the
ephemeris positions of the Moon and the Sun contained in the SPICE Toolkit
by NASA / JPL. The force that is generated by the solar radiation pressure
interaction is computed for each face of the picosat, considering its real shape.
Then, the global force can be found summing all over the single contributions,
which are evaluated using the expression for the radiation pressure on a flat
surface. The torque generated by the SRP is easily obtained knowing the
o↵set of the faces with respect to the center of mass OB. The SRP e↵ect is
evaluated exploiting the ephemeris position of the Sun. Similarly to the SRP,
the aerodynamic disturbance is computed for any face of the spacecraft. In
fact, knowing the orbital velocity of the spacecraft and its angular velocity,

6
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Figure 2: Earth’s magnetic field model (IGRF-12) at 500 km of altitude.

the relative velocity of the faces of the satellite with respect to the airflow
can be obtained. Then, the atmospheric drag force and torque are computed
summing the contribution of each single planar face. The Jacchia Reference
Atmosphere is used as atmospheric model. The Earth’s magnetic field is
obtained from the 12th edition of the International Geomagnetic Reference
Field (IGRF-12). The series expansion is computed with all the harmonics
available in the model, and the local value of the geomagnetic field is evaluated
knowing the position of the spacecraft. Figure 2 shows the Earth’s magnetic
field model at 500 km of altitude. The internal dipole of the spacecraft is
represented according to guidelines described in literature (Schalkowsky and
Harris, 1969). Notwithstanding, considering the importance of this quantity,
the performances of the ACS presented in this paper have been analyzed
considering di↵erent internal dipole characteristics, as will be explained in the
following. The perturbations have been modelled with the purpose to have
the highest possible accuracy, and refined models of the environment and of
the spacecraft have been used. With this method, the design parameters of
the ACS were immediately available for the relevant operative environment.
However, it is important to note that the simulations are not free from
modeling errors, and higher order perturbations may lead to losses in the
accuracy of the results. For this reason, sensitivity analyses have to be carried
out during the test phase in order to check that the system meets the design
requirements in any case.

7
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The attitude of the spacecraft has been parametrized using the well-known
Euler parameters, or quaternions, which lead to the following representation
for the attitude kinematics:

q̇ =
1

2
W(!)q, (2)

where q = [q1, q2, q3, q4]T is the unit norm four components vector of Euler
parameters and the matrix of angular velocity components, W(!) is expressed
as:

W(!) =

2

664

0 !3 �!2 !1

�!3 0 !1 !2

!2 �!1 0 !3

�!1 �!2 �!3 0

3

775 . (3)

From the Euler parameters, the direction cosine matrix A can be obtained
immediately. As well as the rotation matrix P, which ca be easily computed
from A and the position of the spacecraft along the operational orbit, ex-
pressed in terms of Keplerian parameters. Remember that A and P relate the
body-fixed frame to the inertial frame and to the LVLH frame, respectively.

3. Attitude Control Subsystem

A fully magnetic attitude control system is actuated by a set of three
magnetorquers, aligned with the spacecraft principal axes, which generate
torques according to:

tmag = d⇥ b = B(b)d, (4)

where d is magnetic dipole vector generated by the set of magnetorquers, b
is the vector with components, b1, b2 and b3, of the local geomagnetic field
expressed in the body-fixed reference frame and the matrix B(b) is defined
as:

B(b) =

2

4
0 b3 �b2

�b3 0 b1

b2 �b1 0

3

5 . (5)

The dipole generated by the magnetorquers is the control variable that
the attitude control logic has to evaluate at any instant of time in order
to correctly control the picosatellite. The dipole d is a vector in body
reference frame and, in general, it has components along any principal inertia
direction: d = [d1, d2, d3]T. Each magnetorquer produces a dipole moment in

8
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a direction perpendicular to the plane of the coil and, since the three magnetic
actuators are aligned with the principal inertia axes of the spacecraft, each
electromagnetic coil generates a single component of the requested magnetic
dipole moment. The magnitude of the dipole components can be obtained
knowing the characteristics of each magnetorquer, in fact:

di = ki Ai Ii = ki Ai

Vi

Ri

, with i = 1, 2, 3, (6)

where Ai is the area of the i�th coil, Ii is the current intensity sent to the
magnetorquer and ki is a coe�cient dependent from the number of windings
of the coil, the magnetic permeability of the core and other parameters related
with shape and construction of the magnetorquer. Since the coil is often
connected to a pulse-width modulation (PWM) voltage regulator, eq. (6) is
more conveniently expressed in terms of coil voltage, Vi, and coil resistance,
Ri. The latter is a constant parameter for a given electromagnetic actuator,
while the former is the actual control variable to be computed from the
attitude control logic for the PWM voltage regulator to correctly command
the magnetorquers. In fact, once the required dipole is known the voltage for
the magnetorquers, V1, V2 and V3 are:

Vi =
Ri

ki Ai

di, with i = 1, 2, 3. (7)

However, this is the last step of the picosatellite attitude control logic,
which is working in the loop immediately after the attitude determination
process. The developed attitude determination system for picosatellites, which
will be presented in a di↵erent publication, is based on simple sensors (e.g.
Sun sensors, magnetometers, Inertial Measurements Units - IMU) and it
makes available for the ACS the estimated orbital position, r̃, the estimated
angular velocity in B, !̃, and the estimated rotation matrices, Ã and P̃.
These quantities are used in the first part of the guidance section to evaluate
the errors with respect to the imposed target dynamics.

The complete target attitude is composed by two orthogonal directions to
be aligned with two orthogonal body-fixed axes and a desired spinning axis
and rate. With a proper choice of these three conditions it possible to actuate
a three-axis control strategy, obviously, the target must be formulated in a
way that the di↵erent conditions are physically possible (e.g. spinning rate
compatible with the target directions motion). Moreover, if one or two target

9
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conditions are not needed, they can be removed from the ACS logic that is
able to control the spacecraft also along a less constrained target dynamics
(e.g. spinning axis and rate without imposed target directions).

In general, the target is expressed in body-fixed frame as:

vB

T1
= ↵1b̂1 + ↵2b̂2 + ↵3b̂3 (8)

vB

T2
= �1b̂1 + �2b̂2 + �3b̂3 (9)

!B

T
= !T (�1b̂1 + �2b̂2 + �3b̂3), (10)

where the coe�cients ↵i, �i and �i with i = 1, 2, 3 allow to have a target
direction which is a linear combination of the body frame axes. The quantity
!T is the desired angular rate.

The target is associated with a particular physical direction which is usually
defined and available from the models in the inertial reference frame (e.g.
Sun direction, Earth center direction, orbital velocity direction). The output
of the attitude determination is therefore used to evaluate the actual target
directions and angular velocity in body frame as:

v̆B

T1
= ÃvI

1 = P̃vLV H

1 (11)

v̆B

T2
= ÃvI

2 = P̃vLV H

2 (12)

!̆B

T
= !̃, (13)

where vI

1, v
I

2 and vLV H

1 and vLV H

2 are the target physical directions respectively
in inertial and LVLH frame, Ã and P̃ are the estimated rotation matrices
and !̃ is the estimated satellite’s angular velocity in B.

The attitude control subsystem goal consists in having the actual target
directions and angular velocity aligned with the desired target vectors in
principal inertia axes. Therefore, the guidance law is defined to maneuver
the spacecraft to obtain:

v̆B

T1
�! vB

T1
(14)

v̆B

T2
�! vB

T2
(15)

!̆B

T
�! !B

T
. (16)

The previous expressions mean that the actual physical quantities, v̆B

T1
, v̆B

T2
,

!̆B

T
have to be progressively aligned in body reference frame such that their

vector components in B are equal to the right-hand side of eqs. (8) to (10).

10
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Therefore, since v̆B

T1
, v̆B

T2
, !̆B

T
and vB

T1
, vB

T2
, !B

T
are in general not aligned, it

is possible to define some error quantities that are used to define the guidance
law. The error in target directions is defined as an error axis and angle in a
way that, if the spacecraft is rotated around the error axis for an angle equal
to the error angle, the actual target direction is aligned with the desired one.
Basically, the algorithm evaluates the axis-angle representation of the rotation
between the actual and the desired target direction, and then converts it in
an error rotation matrix exploiting the Rodrigues’ rotation formula.

The algorithm to compute the error in i�th target direction begins com-
puting the error axis, êi, and angle, ✓ei :

ê1 =
v̆B

T1
⇥ vB

T1��v̆B

T1
⇥ vB

T1

�� , ✓e1 = arccos

 
v̆B

T1��v̆B

T1

�� ·
vB

T1��vB

T1

��

!
(17)

ê2 =
v̆B

T2
⇥ vB

T2��v̆B

T2
⇥ vB

T2

�� , ✓e2 = arccos

 
v̆B

T2��v̆B

T2

�� ·
vB

T2��vB

T2

��

!
. (18)

Then, the error matrix, Ei, is simply obtained as:

E1 = I3⇥3 + sin ✓e1 [ê1⇥] + (1� cos ✓e1) [ê1⇥]2 (19)

E2 = I3⇥3 + sin ✓e2 [ê2⇥] + (1� cos ✓e2) [ê2⇥]2 , (20)

where I3⇥3 is the 3⇥ 3 identity matrix and [êi⇥] is the cross-product matrix
for the i�th error axis:

[êi⇥] =

2

4
0 �e3i e2i

e3i 0 �e1i

�e2i e1i 0

3

5 . (21)

When the two vectors are aligned the error matrix is equal to the identity
matrix, as well as when they are opposite. However, this last situation is
unstable for the designed ACS and, practically, the singular condition is
avoided. In fact, in the case the two vectors are opposite, a small deviation
from that singular condition (i.e. Ei = I3⇥3 and ✓ei = ⇡ rad) determines a
departure of the controlled system toward an error angle equal to zero. This
behavior has been assessed and verified with the simulation studies conducted
to design the attitude control subsystem.

The error in target angular velocity is simply defined as the vector di↵erence
between the actual angular velocity and the target one as:

e! = !̆B

T
� !B

T
, (22)
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where, being !̆B

T
equal to !̃, the actual angular velocity, !̆B

T
, is directly the

output of the ADS.
At this point, each error measure is directly converted in a control parameter

that is used to generate the required control torque. From any single error
quantity, three control coe�cients can be obtained, which are relative to
the three orthogonal body axes, since the error quantities are evaluated in
B. From the error matrices E1 and E2 two sets of control coe�cients are
obtained directly using the matrix elements, E1(i, j) and E2(i, j):

c1 = [E1(2, 3)� E1(3, 2),E1(3, 1)� E1(1, 3),E1(1, 2)� E1(2, 1)]
T (23)

c2 = [E2(2, 3)� E2(3, 2),E2(3, 1)� E2(1, 3),E2(1, 2)� E2(2, 1)]
T
. (24)

Each coe�cient is proportional to a component of the error axis generating
the attitude error matrix (e.g. E1(2, 3) � E1(3, 2) is proportional to the
x component), in a way that the control tries to get the satellite rotating
around the error axis to reduce the error angle. To better explain, if the error
angles are small, the error matrices may be linearized into skew-symmetric
matrices (Kane et al., 1983), whose o↵-diagonal components are the small
rotation angles evaluated in B, which are directly represented by the control
coe�cients in eqs. (23) and (24). The control coe�cients are passed by
the control algorithm through a fourth-order Butterworth low-pass filter
to smooth the control action. In this way, the control logic neglects high
frequency error fluctuations that cannot be related with the real dynamics of
the system and might be due to the noise produced by attitude determination
subsystem. The cuto↵ frequency must be chosen in a way that is safely higher
than a characteristic frequency of the dynamics (i.e. the orbital frequency for
a Nadir pointing attitude), but also lower than the noise frequency processed
by the ADS.

The control action related with the error in target directions are then
simply obtained multiplying each component of the control coe�cient by a
dedicated gain, kij > 0:

t1 = [k11c11 , k12c12 , k13c13 ]
T (25)

t2 = [k21c21 , k22c22 , k23c23 ]
T
, (26)

where c1i and c2i are respectively the elements of c1 and c2. In this way, the
control action is proportional to the error with respect to the target direction,
producing an e↵ect that rotates the spacecraft until the error angle is equal
to zero (i.e. proportional action for the attitude control).

12
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The control action associated with the error in angular velocity has been
formulated according to the work of Avanzini et al. (2013), and it is able
to drive the spacecraft toward a desired spinning condition (Note that the
desired spinning condition can be also the one with all the angular rates of
the satellite equal to zero). The proposed B-dot-like control law has been
proven to be exponentially stable and it is particularly interesting for small
satellite missions because of its simplicity and robustness to the uncertainties.
Moreover, it does not require additional data with respect to those already
available to be implemented. Remembering the Earth’s magnetic field, which
is estimated in body reference frame from the ADS as b̃ = [b̃1, b̃2, b̃3]T, it is
possible to compute it as:

t! = �k!

0

B@I3⇥3 � b̃b̃T

���b̃
���
2

1

CA e!, (27)

where k! > 0 is the gain associated with the control in angular velocity. Note
that in this case no filtering action is performed to obtain t!. The proposed
control action is proportional to the error in angular velocity, e!. However, it
behaves like a derivative action for the attitude control law and, therefore,
the presented fully magnetic ACS has the characteristics of a proportional
derivative (PD) control system.

Finally, the overall control action, which is composed by the proportional
contributions (eqs. (25) and (26)) and the derivative one (eq. (27)), is simply
obtained as:

tc = t1 + t2 + t!. (28)

The output of the previous equation, if directly applied to the dynamics of
the system, would ideally drive the spacecraft along the path determined by
the guidance law defined in eqs. (14) to (16).

In general, the required control action tc is not perpendicular to b and
the available control torque may be di↵erent from tc. For this reason, the
final goal of the ACS is just to compute a dipole moment able to generate a
control torque, tmag, as equal as possible to the required control action. This
is done exploiting again the estimated Earth’s magnetic field b̃ as:

d =
b̃⇥ tc���b̃
���
2 . (29)
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The voltage to command the magnetorquers are immediately available from
eq. (7) and the ACS logic is completed.

4. Subsystem Design

The attitude control subsystem design has followed a practical engineering
approach, which had to be robust and easily applicable to di↵erent small
satellite missions. The method has been developed directly exploiting the
high-fidelity dynamical model presented in section 2, and it was intended to
be ready for application on real picosatellite missions. It allows to obtain
optimized performances for any mission phase, without any modification in
the design process. In fact, dedicated controller gains can be computed with
di↵erent optimization simulations; then, they are available on-board and they
can be activated to switch between di↵erent control modes, according to
mission requirements and plans.

Global optimization methods have been used to optimize the controller
gains, kij and k!, which guarantee the best performances for the di↵erent
mission phases (e.g. de-tumbling and nominal attitude acquisition mode,
maneuvering mode or nominal attitude changing mode). For example, nom-
inal attitude acquisition mode has been optimized to have a fast attitude
stabilization and to maintain the nominal pointing with good integral perfor-
mances over one orbital period. It should be remembered that the system
considered in this paper is subject to large disturbances and intrinsically
locally under-actuated: only the variation of the geomagnetic field direction
with respect to the orbital reference, if the orbit is su�ciently inclined, allows
to apply orbit average torques in any direction.

The design method is based on heuristic global optimization strategies.
In particular, the class of evolutionary algorithms has been selected and the
genetic algorithm has proven to work well. The focus has not been directed
on the particular optimization technique to be used, and no comparison
between di↵erent heuristic optimization techniques has been carried out. The
genetic algorithm is a method based on natural selection: an initial population
composed by a random set of feasible solutions is generated and, at each
optimization step, it is randomly modified keeping only the best individ-
ual solutions. The algorithm naturally evolves toward an optimal solution,
following some optimization rules and satisfying the imposed constraints.

The developed method initializes the simulation with previously defined
orbital and attitude initial conditions, according to the mission phases that

14
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has to be optimized (e.g. optimization of the mission phase from random
spinning attitude to initial attitude acquisition mode). All the parameters
of the spacecraft, such as shape, dimensions, inertia or components data are
initialized at the beginning as well. The only parameters that have to be
optimized are, as already discussed, 7 controller gains: k11 , k12 , k13 , k21 , k22 ,
k23 and k!. Any set of 7 gains greater than zero forms an individual solution.
In fact, the only constraint enforced on the individual solutions to create a
feasible population is that all the gains must be greater than 0.

The optimization of the controller gains is formulated to achieve a long-
term horizon controllability in integral sense. Thus, the fitness function,
fm

�
kij , k!

�
, is defined as the integral of the errors in eqs. (17), (18) and (22)

over a number of n orbits:

fm

�
kij , k!

�
=

Z
nT

0

(�e1✓e1 + �e2✓e2 + �! ke!k) dt, (30)

where T is the orbital period, while �e1 , �e2 and �! are integral weights, which
are defined to nondimensionalize the integrand and to weight di↵erently the
target errors. The value of the weights is first defined according to the mission
requirements, if one or two targets are more stringent than the others. Note
that if any target condition is not defined, the related integrand is neglected
and the optimization is performed using only one or two integrand terms.
Additionally, all the integrated quantities are always positive and the absolute
value is not needed.

The optimization algorithm runs a simulation for any feasible set of gains in
the population and minimizes the value of fm

�
kij , k!

�
after n orbital periods.

The controller gains associated to the minimum of the fitness function are
a single-run optimal solution. To speed up the optimization process, some
simulations can be interrupted in advance if certain requirements are not
satisfied (e.g. pointing error is too large, de-tumbling is too slow). In this case,
the cost function is heavily penalized to remove those individual solutions
from the search space. To assess the robustness of a single-run solution and
check its validity, the optimization is run several times with slightly di↵erent
orbital and attitude initial conditions. Every time, the previously found
single-run optimal solution is reinserted in the genetic algorithm and the new
best solution must remain in the vicinity of the previous one. The search for
the optimal set of controller gains is stopped when the di↵erence between two
successive single-run best solutions is below a certain threshold.
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The feasible population is composed by 100 elements, it is initially generated
with uniform distribution and, between two consecutive generations, 5 best
individuals are maintained. The maximum number of allowed generations
is 700 and the stopping criteria are met when there are 50 stall generations
(e.g. best solution not improving for 50 iterations). On a 2.5GHz quad
core processor that runs the optimization algorithms in parallel, a single-run
optimization needs less than 1 hour. The complete search and verification
of the best solution may take up to 3 to 4 hours. Usually, a single mission
phase tuning needs 1 or 2 days, including both computing time and operator
work to set all the parameters and the validation steps.

The optimization simulations make use of the dynamical model in section 2,
together with an accurate model of the major subsystems and components
of a picosatellite, in order to simulate not only the spacecraft dynamics, but
also the complete system. In this way, the simulations can be performed
using the real data and parameters of the on-board hardware and software
to practically design, test and operate the spacecraft. For example, all
the magnetorquer specifications, which are available from data-sheets or
experimental measurements, are inserted in the system model to have accurate
values for the requested dipole and voltage, from eq. (7) and eq. (29). Then,
they are exploited in the actuator model to compute the commands for the
PWM voltage regulator. This step considers the saturation limits for the
voltage, the quantization errors, the discrete-time signals, the delay and
the noise in the command actuation. The current intensity is evaluated
from the electric characteristics of the magnetorquers and this information is
used to compute the generated practical magnetic dipole, d̃, considering the
non-linearity and saturation errors, the residual magnetic moment and the
transient time of the electromagnetic actuators. Therefore, the real control
torque inserted in the Euler’s eq. (1) is t̃mag, and it is obtained from eq. (4)
as:

t̃mag = B(b)d̃, (31)

where, obviously, b is not the estimated geomagnetic field, but it is the real
local one.

5. Reference Mission Scenario

The presented ACS has been intended for simple picosatellite missions,
which are nowadays increasingly common to be launched in low Earth orbit.
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These space missions are typically characterized by limited budget and not
so stringent requirements that can be satisfied without excessively increasing
the complexity and the cost of the spacecraft. Therefore, even if in principle
the validity of the proposed control system is general, its performances aim to
stabilize the spacecraft, acquire the nominal attitude within few orbits from
the deployment and have a pointing accuracy in the order of 10�. Moreover,
the power consumption and computing load for the on-board computer are
targeted to be extremely limited, since the available resources are in the class
of those typical for a picosatellite (e.g. < 5W, < 10DMIPS - Dhrystone
Million Instructions Per Second).

For what concern the orbital environment in which this ACS can be applied,
the constraints come from the limit of the purely magnetic actuation. In
fact, the inclination of the orbit must be large enough to have variation of
the geomagnetic field direction in orbital reference, which is fundamental for
the correct operation of such control system. Ideally, best performances are
obtained in polar or nearly-polar orbits. Furthermore, the altitude is bounded
from the maximum torque of the implemented magnetorquers. In fact, at
low altitudes the aerodynamic torque imposes the limits for the actuator
sizing, while at high altitude the weak intensity of the geomagnetic field is the
limiting factor. Considering the magnetorquers that can be installed on board
of a generic picosatellite, these limits correspond to a operational altitude
bounded between 400 and 750 km.

The natural reference mission scenario to test the proposed ACS is therefore
the one of Earth observation missions in Sun-synchronous orbit (SSO), which
are typically at altitudes of 500� 800 km, with periods in the 90� 100 minute
range, and inclinations of around 98�. These orbits are remarkably interesting
for the class of picosatellites, allowing a nearly global coverage, a constant Sun
aspect angle and a great variety of launch available for small satellites. The
typical nominal attitude pointing mode in these kind of missions is the Nadir
pointing one, and it is used as reference case to evaluate the performances of
the control system.

Obviously, di↵erent nominal attitude modes can be simply obtained by
varying target directions and target angular velocity previously defined. For
example, an elementary Sun pointing can be achieved enforcing only one
target direction, defined by the position of the Sun, to be aligned with one
axis of the spacecraft (e.g. the solar panels normal). If the nominal attitude
definition is not excessively di↵erent and the mission environment is similar
no additional tuning of the controller gains is required.
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The test case that is investigated in this paper considers a picosatellite
with dimensions 10cm⇥10cm⇥3cm and mass of 350 g. The attitude determi-
nation subsystem is composed by an IMU, a magnetometer and a Sun sensor
capable to estimate the attitude within ⇠ 0.5 deg of accuracy on each axis
and ⇠ 0.01 rad/s of precision on the angular rates. The 3 PCB-embedded
magnetorquers are 9cm ⇥ 9cm or 9cm ⇥ 2.5cm coils, composed by 6 layers
of 25 turns each. The larger one is mounted on the 10cm⇥ 10cm face and
is able to produce at maximum 1.5⇥ 10�3 mNm of torque in polar region
and 7.5⇥ 10�4 mNm at the equator. The smaller ones are installed on the
10cm⇥ 3cm faces and their maximum torque at the poles is 5⇥ 10�4 mNm,
while at the equator is 2.5⇥ 10�4 mNm. The expected disturbances in a
600 km SSO for a picosatellite of the size considered in this work, generate
torques below 2.5⇥ 10�5 mNm. Hence, the assumed magnetorquers are fully
su�cient to control the small spacecraft. The disturbances are computed
assuming coe�cient of solar radiation absorption ca = 0.8 and reflection
cr = 0.2; drag coe�cient Cd = 2.2 and internal residual dipole in the order
of 5⇥ 10�4 Am2. However, this last parameter will be discussed with more
detail in the next section.

The nominal attitude can be defined, with reference to fig. 3, as the one
with one small face (b̂3) pointed to Earth and a large face (b̂1) aligned with
the horizontal direction, in order to be almost aligned with the velocity vector
reducing the natural decay time. The spinning axis to maintain the Nadir
pointing must be parallel to the normal to the remaining small face (b̂2) and
the spinning rate must be defined to perform one rotation per orbit: the
angular rate of the spacecraft should be equal to the orbital angular rate
with spinning axis aligned with the LVLH third axis, ẑL. Therefore, the first
target direction is the LVLH vertical axis, x̂L, while the second direction is
defined as the LVLH horizontal axis, ŷL.

The actual target directions are therefore evaluated, from eqs. (11) and (12),
as:

v̆B

T1
= P̃x̂L (32)

v̆B

T2
= P̃ŷL. (33)
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b1ˆ
b2ˆ

b3ˆ
Nadir

Spinning Axis

Figure 3: Body-fixed frame and nominal attitude.

Moreover, the target definitions in eqs. (8) to (10) become:

vB

T1
= �b̂3 (34)

vB

T2
= �b̂1 (35)

!B

T
= ✓̇ b̂2, (36)

where ✓̇ is the orbital angular velocity, which is constant only for a circular
orbit. Thus, eq. (36) is variable in time for elliptic orbits and the ADS has to
determine the orbital rate according to the orbital position.

The reference mission scenario has been used to tune the attitude control
subsystem once. All the simulations that will be discussed next have been
obtained with an optimal set of controller gains, which have been computed
and validated with 12 runs of the optimization algorithm.
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Figure 4: Nadir error angle, ✓eN , in uncontrolled attitude dynamics.

6. Simulation Results

The simulations presented here refer to the test reference mission scenario
described in the previous section. This paper focalizes its attention on this
single mission scenario because it has been extensively tested and verified,
together with the ADS logic, for the implementation of a real picosatellite
mission to be launched in-orbit. Details on the practical and hardware imple-
mentation of the ACS currently discussed, which is still on-going and not yet
completed at time of writing, will be presented in a dedicated publication.
Nevertheless, the presented attitude control subsystem logic and design tech-
nique have been preliminarily assessed also on di↵erent mission environments,
with di↵erent targets and spacecraft characteristics. In all the situations, the
obtained results agree with those that are discussed in this section, leading to
analogous overall conclusions and remarks with general validity and relevance.

The natural dynamics to be controlled by the developed attitude control
subsystem is in general extremely chaotic and strongly dependent from the
interaction between the internal residual dipole and the geomagnetic field.
This is evident from the uncontrolled attitude dynamics reported in fig. 4,
where it is shown the error angle, ✓eN , computed with respect to the Nadir
target direction. In this simulation, the spacecraft is initially single spin and
its axes are aligned as described in section 5 (i.e. errors equal to 0 at t = 0).
These conditions should lead to a gravity gradient stabilized attitude dynamics.
However, this is not the case for a picosatellite, whose inertia properties are
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Figure 5: Nadir error angle, ✓eN , in controlled attitude dynamics.

low compared to the magnetic density due to the on-board electronics, and the
resulting dynamics is an erratic motion useless for picosatellite applications.

The performances of the designed and tuned ACS are evident in fig. 5.
They are achieved by using an optimal set of gains, result of the design
method described in section 4, and they are applied to the reference mission
scenario previously defined. The simulation is initialized with random attitude
dynamics at t = 0. In particular, the spacecraft has an initial Nadir error
angle of ⇠ 120 deg and is tumbling. The ACS is able to de-tumble the
spacecraft in ⇠ 1 orbital period and correctly align the Nadir face with an
error angle, ✓eN , in the order of 10 deg. The figure shows only the error angle
and not the error axis, because this is the sizing quantity to be assessed to
check the performances of the control system. The evolution of the error axis
is strongly dependent from the initial error axis and it is almost constant
when the associated error angle is large enough (i.e. control system rotates
the spacecraft around a single axis to reduce the large proportional error in a
small time). Obviously, the error axis starts to have a chaotic evolution when
the error angle is small and the controller command torques in any direction
to stabilize the motion about the nominal condition. The dynamics shown
in figs. 4 and 5 has been simulated in a 600 km circular SSO (Local Time
of the Ascending Node - LTAN = 12.00) for ⇠ 8 orbital periods. In these
simulations, the internal residual dipole of the spacecraft has been assumed
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Figure 6: Error angular velocity, e!, during de-tumbling in controlled attitude dynamics.

constant in time, in a random direction mainly aligned with b̂1 (fig. 3) and
with magnitude 5⇥ 10�4 Am2.

The de-tumbling phase is more evident in fig. 6, where the spacecraft
is started in an extremely chaotic tumbling motion, compatible with the
worst-case release specifications from typical picosatellite orbital deployer
(P-POD). The simulation environment is again a 600 km circular SSO with
LTAN = 12.00 and the simulation time is ⇠ 60 orbital periods. The
de-tumbling of the spacecraft and the acquisition of the desired spinning
condition is completed in less than 1 day (⇠ 15 orbital periods), then the
desired motion is maintained within ⇠ 0.005 rad/s in any body axis. The
ripples in the angular velocity error are due to the fact that, in this case, the
controller is continuously trying to enforce three di↵erent target conditions.
Moreover, the higher error periods at t ' 50 h and t ' 75 h are a particular
feature of this type of attitude control subsystem.

This feature can be analyzed and discussed looking at fig. 7, where the
orbital dynamics and all the spacecraft parameters are initialized as in the
previous cases. The rotational motion has random initial attitude and spin-
ning conditions, simulating again the release from the P-POD. The three
plots report all the three errors from the target conditions in eqs. (34) to (36),
and the simulation runs for ⇠ 4 d. In this case, the attitude control subsys-
tem de-tumbles the spacecraft in about 5 h and acquires nominal pointing
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(a) Nadir error angle, ✓eN .
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(b) Horizontal error angle, ✓eH .
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Figure 7: Controlled attitude dynamics.
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approximately in 10 h. The attitude tuning has been performed considering a
higher priority for the Nadir target direction with respect to the horizontal
target, as can be realized comparing fig. 7a with respect to fig. 7b.

The nominal nadir pointing is lost 3 times in this simulation, and the loss
of precision repeats every 24 h. This behavior is unavoidable and character-
izes the designed ACS with this peculiar feature, which can be explained
considering the physics of the problem. In fact, the picosatellite is controlled
in average along one orbit by an under-actuated control system which in
some cases may be not e↵ective to counteract the system departure from
the desired state. Moreover, an increase in disturbance sensitivity at high
frequency is present and the closed-loop system interaction with the Earth’s
magnetic field is a↵ected by the higher order harmonics of the geomagnetic
field.

For example, with reference to the case presented in fig. 7, the loss in
control authority happens above an Earth’s region where the magnetic field
in body reference, b, has a larger component b2 while in nominal attitude.
Since the required control torque is mainly around b̂2, looking at the explicit
expression of the magnetorquer control action in eq. (4):

tmag = [b3d2 � b2d3, b1d3 � b3d1, b2d1 � b1d2]
T
, (37)

the generated dipole has component primarily along b̂1, d1, and along b̂3,
d3. Hence, the generated dipole and the local direction of b determine large
spurious torques around the body axes 1 and 3, which leads to the departure
from the nominal pointing mode. From this fact, the limitations of a purely
magnetic ACS are evident: when the requested control torque is aligned with
the Earth’s magnetic field, the system cannot be completely controlled. In
addition to this, the higher harmonics of b determines a resonance condition
that explodes when the system is not controllable. In fact, the same simulation
with a dipole model of the geomagnetic field results in similar loss of pointing
periods, but the peaks are lower than those in fig. 7a. Both the critical
magnetic field orientation, associated with the under-actuation of magnetic
control, and the small variations of the magnetic disturbances, associated with
the increase in disturbance sensitivity, contributes to the resulting dynamics
of the system.

The overall behavior is dependent from the close-loop dynamics that has
been tuned minimizing the error on simulations time span t > 24 h, in order
to catch the periodicity in the disturbances and reduce resonances. Thus, the
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Figure 8: Nadir error angle, ✓eN , in controlled attitude dynamics for a simulation time

equal to the nominal picosatellite’s lifetime, t ' 14d.

system is stable in average over the period of the disturbances, and the loss
of pointing is necessary to control the system for large time periods. In fact,
the ACS is always able to recover from the n of control authority and come
back to nominal operation guaranteeing a period of good pointing accuracy,
within the requirements of typical picosatellite missions (10 deg-15 deg).

These performances have been assessed also with long time simulations, like
the one reported in fig. 8. In this case, the nominal lifetime of the picosatellite
(⇠ 14d) has been simulated and the behavior of the system is always the
same: a loss of pointing every ⇠ 24 h when the spacecraft is over a certain
region of the Earth. The precise region depends from orbit inclination, LTAN
and nominal attitude pointing. For the spacecraft presented in this paper,
the region associated with the begin of the loss of pointing period is the one
above eastern Russia, Korea and Japan. Obviously, the spacecraft is correctly
pointed for several orbits before the next misalignment phase occurs. The
closed-loop cycle dynamics is basically a series of continuous de-tumbling and
nominal attitude acquisition phases.

The validation campaign has been conducted over SSO with di↵erent
altitudes, eccentricities and LTAN. The system has proven to be robust also
to di↵erent attitude injection conditions: the ACS is able to de-tumble the
spacecraft within few orbital periods from any initial attitude and spinning
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Figure 9: Nadir error angle, ✓eN , in controlled attitude dynamics starting from nominal

attitude initial conditions.

condition (e.g. de-tumble time between 2 h and 15 h). Also the ideal case of
correct injection of the spacecraft in nominal attitude dynamics, reported
in fig. 9, shows the peculiar behavior of the presented ACS. Di↵erent orbit
inclination, eccentricity and LTAN do not a↵ect the overall performances of
the ACS. Only the position of the area associated with the begin of the loss
of pointing period is a↵ected by these orbital parameters. The altitude of the
orbit is another factor that is not relevant for system’s controllability, as long
as the altitude boundaries are within the tolerances imposed by typical error
injection performances of common launchers. In fact, no significant loss of
ACS precision is observed if the altitude is in the order of ±200 km from the
nominal one. Nevertheless, the results of the simulation campaign showed
that the orbit’s perigee must be above ⇠ 300 km. Below such threshold, drag
torque cannot be compensated with the designed control law and the nominal
magnetorquers; thus, the dynamics is completely chaotic and influenced by
the strong aerodynamic torques.

Another important aspect to be assessed is the dependence of the designed
ACS from the internal residual dipole of the spacecraft. This parameter is
indeed very di�cult to estimate and is greatly influenced from the internal
electronics. Thus, a sensitivity analysis is very useful to validate the results
of the algorithms. As already mentioned, the internal residual dipole of a
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(a) Constant dres, mainly aligned with

principal axis b̂1.
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(b) Constant dres, aligned with a casual
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(c) Variable dres, mainly aligned with

principal axis b̂1.
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Figure 10: Internal residual dipole comparison: kdresk = 5⇥ 10
�4

Am
2
.

picosatellite, dres, is in the order of 5⇥ 10�4 Am2 and it is typically mainly
aligned with the normal to face containing the most electric loops (e.g. the
face where the electronic boards are mounted). The sensitivity analysis
has been carried out with respect to the dipole magnitude, direction and
variability. The first parameter has proven to be not so relevant within the
values that are reasonable for such a small spacecraft. In fact, as long as
the magnetorquers are correctly sized, the di↵erent magnitudes of dres are
completely manageable. Instead, the sensitivity to the other parameters
is more interesting to be tested. In fig. 10, representative simulations for
di↵erent typologies of internal residual dipoles are shown. For the considered
case in fig. 3, the dipole is probably aligned with b̂1, since the electronic
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boards are mounted normally to that principal axis. Therefore, cases in which
the dipole is mainly aligned with that direction (fig. 10a and fig. 10c) are
compared to situations where the dipole is in a completely random direction
(fig. 10b and fig. 10d). Moreover, a dipole that is constant in time (fig. 10a
and fig. 10b) is compared also with one that is time variable (fig. 10c and
fig. 10d). Just for clarification, the dipole that is variable in time and it is
also mainly aligned with b̂1 can be represented as a dipole that varies within
a cone aligned with the first principal direction of the spacecraft.

The results of the simulations reported in these pictures can be used to
draw general consideration on the di↵erent typologies of dres. In fact, the
dipole aligned in a random direction determines worse performances of the
ACS, since this has been sized considering the dipole mainly aligned with
b̂1. Hence, the developed method must be tuned on the engineering model of
the spacecraft to have a ready to fly ACS in a fast and very practical way.
Moreover, the variable dipole cases are more di�cult to be managed, but the
performances are anyway within the imposed design requirements. In general,
the proposed ACS has proven to be robust to any class of internal residual
dipole, being able to de-tumble and control a picosatellite in any situation.

7. Final Remarks

This paper was intended to present the control logic and the design method
to develop a fully magnetic attitude control subsystem for picosatellites. Many
simulations, for di↵erent mission scenarios and di↵erent nominal attitude
dynamics, have been carried out to test and verify the obtained control
algorithms. The performances are always compatible with those presented
in this paper, which have been obtained by using the optimal gains for the
selected reference mission.

The necessity of an active attitude control subsystem is resulted to be real to
achieve su�cient stabilization and pointing performances with a picosatellite.
Passive gravity gradient or spinning stabilization techniques proven to be
not su�cient for such small low inertia satellites. Fully magnetic actuation
has been selected for simplicity and reliability. Furthermore, thrusters and
reaction wheels could not be used due to size and mass constraints.

The proposed control logic is robust enough and it can be implemented
on-board within memory and processor constraints. The design method
follows a practical engineering approach that is easily scalable to any kind
of small satellite mission. Moreover, the tuning of the control subsystem is
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directly performed on the high-fidelity dynamical and systems models through
a heuristic global optimization method. In this way, the controller parameters
can immediately be implemented for testing and integration on real hardware.

The fully magnetic attitude control subsystem has been developed together
with a dedicated e�cient and e↵ective attitude determination subsystem for
picosat. At time of writing, the whole attitude determination and control
logic is currently being implemented on the real hardware. Future works will
conduct an extensive hardware-in-the-loop verification of the control logic
and the system actuation will be tested on ground.

From the analyses carried out with simulated system and dynamics, the
fully magnetic ACS satisfies the imposed constraints and achieves the goals
for typical picosatellite missions. Pointing accuracy is low, but within the
constraints of typical picosatellites payloads (10 deg-15 deg). Closed loop
dynamics is stable and, even if a loss of pointing is expected and periodic, the
ACS is always able to fully recover the nominal attitude. For a single optimal
set of the controller gains, the system proved to be robust to uncertainties in
orbital parameters, system deployment and injection, spacecraft characteristics
and internal residual dipole typologies.

Finally, it is significant to mention that, in terms of power consumption,
the proposed ACS is very suitable for picosatellites, as the magnetorquers
absorb at maximum 1⇥ 10�3 W - 1⇥ 10�2 W of electric power, while typical
picosatellites can produce in average 5⇥ 10�1 W - 2.5W of power from body
mounted solar panels.
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