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1. Introduction

Even the recent earthquake that occurred in Italy in May 2012
indicated that historical buildings, essentially constituted by ma-
sonry structures, are scarcely resistant to horizontal loads and
therefore highly vulnerable to seismic actions. Such behavior is a
common issue of masonry buildings in many countries worldwide
and is essentially due to the low strength of the mortar joints when
loaded out-of-plane.

Conventional retrofitting techniques, such as external reinforce-
ment with steel plates, surface concrete coating and welded steel
meshes, have proven to be complex, time expensive and add con-
siderable mass to the structure which may increase the inertia
forces induced by an earthquake.

Therefore, the use of FRP (Fiber-Reinforced Polymers) strips as
reinforcements instead of conventional methods seems a suitable
solution for the seismic upgrading, thanks to the limited invasive-
ness, speed of execution, and good performance at failure [1–7].
The FRP strengthening technique entails however several draw-
backs, as for instance low vapor permeability, poor behavior at ele-
vated temperatures, incompatibility of resins on different substrate
materials, relative high cost of epoxy resins, no reversibility of the
installation [8].

The use of inorganic matrices is a valid alternative to these
problems [7]. It is well known, however, that cement based
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Nomenclature

AL perimeter of the yarn
AFRP transversal area of a single yarn
cI peak strength of the interface between yarn and mortar
cII residual strength between yarn and mortar
d displacement
e eccentricity of the load, 150 mm anchorage length
e0 prescribed eccentricity in the numerical models (1D and

3D)
EFRP Young modulus of Glass Fiber grid
f tangential unitary force between yarn and mortar (N/

mm)
F force
Fi forces in the single yarns
Fu ultimate strength
Fu2 residual strength of the overall system
fu-FRP ultimate value of stress in a yarn
L distance between two contiguous yarns
Lb length of the bonded region
Lu length of the unbounded region
L2–3 length of an interface finite element between nodes 2

and 3
nel number of elements
nin number of interfaces
ny number of yarns
kn axial elastic stiffness of the yarn
kt Tangential elastic stiffness of yarn–mortar interface
Kel assembled elastic stiffness matrix
Kep interfaces hardening moduli matrix
KT stiffness of the mechanical system
ui displacement of the single yarn
uE

x , uE
y , uE

z kinematic variables: three centroid displacements
uEi

t absolute displacement along t of element Ei

t direction versor
Db1 yarn–mortar interface, slip value corresponding to the

first strength drop
Db2 yarn–mortar interface, slip value corresponding to the

second strength drop
DLu overall displacement due to the unbounded part
DLb overall displacement of the bonded part
DsP1 tangential slip of point P1
Dse displacement at the elastic limit
Dsu1 displacement value reached when the tangential force

shifts from peak to residual value
Dsu2 displacement value reached in correspondence of a drop

of tangential force from the residual value to zero
DF vector of elements force and moment increments
DUel vector of elements displacement and rotation incre-

ments
Dk+ and Dk- assembled plastic multiplier increment vectors
eu ultimate axial strain of the GFRP yarn
ee elastic axial strain of the GFRP yarn
en continuum strain
k parameter entering in the elastic equation of the yarn–

mortar interface
n geometric parameter entering in the elastic equation of

the yarn–mortar interface
# rotation of the rigid device connecting perpendicularly

the three yarns in correspondence of their extremes free
to translate

r tensile stress
s tangential stress
UE

x , UE
y , UE

z kinematic variables: three rotations around the cen-
troid
materials have low tensile strength and must be reinforced with
tensile resistant components. Typically, steel bars are used in the
conventional reinforced concrete (RC). In the last two decades
innovative types of reinforcements have been introduced: short fi-
bers (FRC, Fiber Reinforced Concrete [9]) and continuous fibers in a
fabric form (TRC, Textile Reinforced Concrete). Typical applications
are cladding panels, exterior sidings, shells, roofing or flooring tiles.
Fabric Reinforced Cementitiuos Matrix (FRCM) composites repre-
sent a particular type of TRC [10] where a dry-fiber fabric is applied
to a structure through a cementitious mortar enriched with short
fibers. And they are specifically used for strengthening of struc-
tures. The mechanical properties of FRCMs depend on the bond be-
tween the fibers and the matrix and may vary if the yarns of the
fabrics are pre impregnated with resin [11,12]. FRCM are often
used to repair and strengthen existing structures as an alternative
to FRP composites [13]. When compared with FRP composites,
FRCM exhibits several advantages, as a greater resistance to high
temperatures and ultraviolet radiations, as well as a better com-
patibility with the substrates [14].

On the other hand, FRCM composites have some drawbacks, as
for instance the lower levels of adhesion between the yarns and the
matrix and the fact that they must be made either with alkaline
resistant glass fibers or the yarns must be protected with suitable
coatings.

The typical failure mode of FRP is the debonding of the rein-
forcement from the substrate with a brittle behavior [8,15,16],
while FRCM materials can present more complex failure modes.
The typical stress–strain behavior of a FRCM is a tri-linear curve,
with a first phase that increases linearly according to the Young’s
modulus of the mortar, a second phase where the cracks in the
mortar start to grow, and a last phase in which the mortar is fully
cracked and the curve assumes the same slope of the stiffness of
the fabric [17].

Despite the great importance and the increasing diffusion of
such innovative strengthening technique, at present no numerical
models devoted to the prediction of the behavior or FRCM masonry
reinforced specimens or structural elements are at disposal and
limited experimental data are available. In this context, the present
work studies in detail the strengthening of masonry structures
with FRCM from both an experimental and numerical point of
view. The experimental investigation, partially presented in [18],
includes various activities, starting from the characterization of
the Glass Fiber (GF) grid and two types of mortars (a cementitious
and a lime based mortar). Similar series of tests were performed on
FRP reinforced specimens by other authors to evaluate the capabil-
ities of the strengthening system, including (1) push–pull tests on
double lap reinforcements applied to a single brick [15,19], (2) a
series of tensile tests on the reinforcement applied to a pillar
[20] and (3) pull-out tests on single yarns immersed in a mortar
block, performed to have an insight into the interface behavior.
When dealing with the reinforced single brick, three anchorage
lengths are analyzed, equal respectively to 50 mm, 100 mm and
150 mm.

The numerical investigation is aimed at simulating the experi-
ments on the reinforced single brick and the masonry pillar. The fi-
nal objective is to provide a validated tool for the design and the
assessment of these reinforcement systems. Two complementary
tools are proposed: a simplified analytical–numerical approach to
model the specific interaction of the grids with the mortar by
means of interfacial tangential stresses and a sophisticated fully



3D numerical model including materials exhibiting softening
[21,22]. For both models, the interface behavior between mortar
and grid is based on the slip–stress curves deduced from experi-
ment data. In both cases, quite satisfactory results are found, with
a promising agreement with experimental data both in terms of
global load–displacement behavior and deformed shapes near col-
lapse. Within the full 3D numerical approach, for all cases ana-
lyzed, a debonding of the GF grid from the mortar is experienced,
which reproduces well the experimental evidences.

The analytical–numerical approach appears particularly attrac-
tive for design purposes as preliminary tool, since it provides a
quick estimate of the non-linear behavior of the single reinforced
specimens subjected to standard Push–pull tests, and the most sig-
nificant parameters (loads, eccentricities, boundary conditions,
mechanical properties of the constituent materials, etc.) to be fur-
ther used in more complex 3D FEM simulations.

2. Experimental investigation

In this section, the results of a wide experimental program car-
ried out at the Materials Testing Laboratory of the Politecnico di
Milano (Laboratorio Prove Materiali) are presented. The section is
subdivided in four parts, representing the phases followed during
the experimental program. In the first part, the mechanical charac-
terizations of the constituent materials are presented (i.e. the glass
fiber grid, the cementitious and lime base mortars, and the bricks),
while in the two following sections the results of the tests con-
ducted on the reinforced single bricks and the masonry pillar for
different bond lengths for the grids are reported. Finally, the
behavior of the interface between GF grid and mortar is experi-
mentally determined. In particular, a single yarn immersed into a
Table 1
Characterization of the GF grid.

Tensile tests Average failure
load (kN)

CoV of
strength (%)

Roving in the warp direction 1.11 2.7
Roving in the weft direction 1.03 1.7
Grid strip of width 5 cm (3 rovings in the

warp direction)
3.36 1.3

Grid strip of width 5 cm (4 rovings in the
weft direction)

4.24 2.8

Table 2
Characterization of mortar compressive and flexural strength.

Test type Average compression
strength (N/mm2)

Mean flexural
strength (N/mm2)

Cementitious mortar ‘‘Sika�

MonoTop – 722 Mur’’
27.13 8.38

Lime based mortar ‘‘Sika�

R-I-Z’’
2.75 1.03

Table 3
Mechanical properties of the bricks.

Test type Elastic modulus (GPa) Compression strength (N/mm2)

Standard EN 14580 EN 772-1
Historical bricks – 22.32 (12)
Standard deviation – 2.57
Modern bricks 12.33 (4) 68.87 (12)
Standard deviation 6.18 4.23

Note: within brackets # of samples.
Cw, s: coefficient of water absorption.
small block of mortar and subjected to an increasing tensile load
up to failure is tested with the aim of evaluating the typical curve
representing the bond slip against shear load occurring at the
interface. This latter study was of particular interest to calibrate
the behavior of the interface in the numerical model.

2.1. Constituent materials mechanical characterization

The results of the characterization of the reinforcement compo-
nents, namely the GF grid (SikaWrap�-350G Grid), the cementi-
tious mortar (Sika� MonoTop-722 Mur), the lime based mortar
(Sika� R-I-Z) and the brick, are here presented.

2.1.1. Glass Fiber grid
Tensile tests were performed according to EN ISO 10618/2005

[23] on a single roving (GF grid protected with Styrene Butadiene
Rubber) in the warp and weft directions (5 specimens were tested
in each direction). The GF unbalanced grid had size equal to
17 � 12 mm, the yarn in the warp direction was characterized by
2308 Tex (g/km) and a section of 0.92 mm2, the yarn in the weft
direction was characterized by 2226 Tex (g/km) and a section of
0.90 mm2. The woven exhibited a crimped shape in both directions.

Tensile tests were also performed on a 5 cm wide grid, even in
this case in both warp and weft directions (5 specimens in each
direction). Tests were carried out using two different testing ma-
chines with maximum capacities of 2 kN and 100 kN. It is worth
noting that the testing machine with capacity 2 kN was used exclu-
sively to perform tensile tests on single yarns, whereas the testing
machine with 100 kN capacity was used for the remaining tests. In
order to avoid local damage of the specimens during the tensile
tests, special fiberglass tabs were used. The experimental results
are summarized in Table 1.

2.1.2. Cementitious and lime based mortars
Two types of mortars were considered, a cementitious and a

lime based mortar. The first is more suitable for structural
strengthening of existing structures, whereas the latter is usually
adopted for historical buildings, mainly due to compatibility issues
with the substrate. In both cases, the compressive and flexural
strengths were experimentally determined according to EN 1015-
11 [24] (see Table 2). Six specimens were tested for both cementi-
tious and lime based mortar.

It is evident that the cementitious matrix presents much higher
strength values approximately one order of magnitude higher. This
was expected and indicates that lime mortars can be used only in
particular applications.

2.1.3. Bricks mechanical characterization
Two types of bricks were considered, labeled as ‘‘historical

block’’ and ‘‘standard modern’’ bricks respectively. The first type
is more porous and less resistant. Both of them have dimensions
equal to 250 � 55 � 120 mm (length � height � thickness). The fol-
lowing quantities were experimentally determined: compression
strength through standard compression tests, elastic modulus
Tensile strength (N/mm2) Cw, s (kg/m2 min) Pull-off strength (MPa)

EN 12390-6 EN 772-11 EN 1542
1.81 (3) – –
0.35 – –
6.24 (3) 1.37 (6) 3.07 (12)
0.84 0.37 0.23



Table 4
Layout of the experimental tests.

Brick
type

Reinf.
type

Mortar
type

Bond length
(cm)

Reinf. width
(cm)

# Tests

Modern GF grid Cement 5–10–15 5 5 per
type

Historical GF grid Lime 10–15 5 3 per
type
through direct determination into the uniaxial compression stress–
strain diagram, water absorption and indirect tensile strength
according to the Standards reported in Table 3. The experimental
results are summarized in Table 3. These were then used in the
numerical simulations described in the following sections.

2.2. Single brick reinforcements

Experimental tests were performed on push–pull double lap
joints realized with a GF grid bonded to two opposite sides of a sin-
gle brick, see Fig. 1. The specimens included the two types of clay
bricks described above, ‘‘historic’’ and ‘‘modern’’. Modern bricks
exhibited an extremely high compressive strength (68.87 MPa).
These bricks were specifically selected to create specimens where
the failure of the reinforcement was expected. The number and
typology of tests, with information of bond length and mortar type
are summarized in Table 4, both for historical and modern bricks.

Different bond lengths (50, 100 and 150 mm) were considered
in order to investigate the effect of these parameters on the deb-
onding strength. The reinforcement width was 50 mm, and the
thickness of the mortar layer was 8 mm.

An MTS testing machine with the ultimate capacity of 250 kN
was used and a special test rig was designed and realized to per-
form the double shear lap debonding test (see Fig. 1).

The main features characterizing the experimental response of
the reinforced bricks (namely average initial stiffness and average
failure load with their respective standard deviation, as well as ob-
served failure mechanisms) are summarized in Table 5 for the sake
of clearness.

2.2.1. Specimens with GF grid and cementitious mortar
It is known that in these types of applications the bond length

has an influence both on the failure load and the failure
Fig. 1. Experimental set-up for debonding tests on single bricks. (a) The rig in
mechanism. The failure load increased with the bond length and
shorter reinforcements (5 cm and 10 cm) showed grid slippage at
loads smaller than the tensile failure of the GF grid. On the con-
trary, for longer reinforcements a tensile failure of the GF grid
without slippage (see Fig. 2) was experienced. No debonding of
the reinforcement from the substrate was achieved for all the spec-
imens with an anchorage length equal to 15 cm. The optimum
bond length among those that were tested seems to be 15 cm with
a mean failure load equal to 4.06 kN. The experimental load–dis-
placement graphs obtained for the different bond lengths are sum-
marized in Figs. 3–5 for specimens with anchorage length equal to
5, 10 and 15 cm respectively. It is evident that the ultimate
strengths for 5 cm of anchorage length suffer for greater scatter,
while the results in Figs. 4 and 5 are less dispersed. In these two
last cases the coefficient of variation CoV of strength was equal
to 6.6% and 13.6% respectively.

Finally, in Fig. 6, a comparison among experimental load dis-
placement curves obtained at different bond lengths (5 replicates
for each bond length) is represented. It is pretty evident both the
increase of the ultimate load of the reinforced system when the
anchorage length is increased, as well as the low ductility of the
specimens with the longest reinforcement, as a consequence of
the yarns rupture.
the testing machine and (b) details of the testing rig (dimensions in mm).



Fig. 2. GF grid embedded in the cementitious mortar. (a) Experimental failure mode for anchorage length of 50 mm, grid slippage and (b) tensile failure of the grid for
anchorage length of 150 mm.
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Fig. 3. Single bricks, 5 cm anchorage. Force displacement experimentally obtained
curves. Comparison with numerical predictions.
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Fig. 4. Single bricks, 10 cm anchorage. Force displacement experimentally obtained
curves. Comparison with numerical predictions.

Table 5
Main features of the experimentally tested reinforced bricks.

Brick type Mortar
type

Bond length
(cm)

Initial stiffness (N/mm) Failure load (kN) Failure mode

Average Standard
deviation

Average Standard
deviation

Modern brick Cement 5 679 63.7 1.06 0.17 Slippage of GFRP grid
10 644 17.2 2.63 0.17 Slippage and tensile failure of GFRP grid
15 670 64.4 4.06 0.55 Tensile failure of GFRP grid

Historical
brick

Lime 10 396 36.9 1.50 0.23 Debonding of the reinforcement from the
substrate

15 407 11.5 1.73 0.81 Failure of mortar layer
2.2.2. Specimens with GF grid and lime based mortar
The specimens with lime based mortars were prepared using

historical clay bricks with irregular surfaces. This was done consid-
ering that this particular type of mortar is intended for historical
buildings where the cementitious matrices are often not accepted
by the ‘‘Sovrintendenza ai Beni culturali’’ (Commission for the
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Fig. 5. Single bricks, 15 cm anchorage. Force displacement experimentally obtained
curves. Comparison with numerical predictions.
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Architectural and Landscape Heritage), because considered
invasive.

The experienced failure mode (see Fig. 7) was a debonding of
the reinforcement from the substrate for a bond length equal to
100 mm, and tensile failure of the mortar layer for a bond length
of 150 mm.

Also in this case the optimum value of the bond length seems to
be 15 cm, but the corresponding failure load found is equal to
1.73 kN, sensibly lower (45%) than that found for the reinforcing
system with cementitious mortar.

2.3. Reinforced masonry pillars

Tensile tests were performed on specimens realized with a GF
grid and cementitious mortar bonded to both vertical sides of
two masonry pillars, each one consisting of two mortar joints be-
tween three bricks (see Fig. 8a and b). The reinforcement width
was 10 cm (corresponding to a strip of fabric with 6 yarns),
whereas the bond length was 30 cm. The experimental failure
mechanism observed was a cracking of the mortar followed by a
tensile failure of the GF grid, see Fig. 8c. Debonding of the rein-
forcement from the substrate was never achieved (Fig. 8c). The
load–displacement graphs of three replicates are shown in Fig. 9.

2.4. GFRP–mortar interface bonding behavior

In order to investigate the interface behavior between the GF
grid and the cementitious mortar, three ad hoc pull-out tests were
prepared.

The specimens were composed by a single yarn (extracted from
the GFRP grid) included into a mortar parallelepiped with dimen-
sions 100 � 20 � 10 mm, as shown in Fig. 10. Tests were carried
out using an Instron testing machine with a capacity of 2 kN. In or-
der to avoid local damage of the GF grid during the tensile tests,
special fiberglass tabs with thickness of about 2 mm were used.

Test results show common features, with load–displacement
curves exhibiting an elastic phase followed by a sudden decrease
of the strength (at the same mutual displacement between mortar
and yarn) immediately followed by a slippage of the grid at a con-
stant strength. Only in one case (test #2) failure of the GFRP grid
(Fig. 11) was observed.
Historical
brick

Lime mortar 

GF grid 

(b)
ths (a) of 100 mm, debonding of mortar–GF grid system from the support and (b)



Fig. 8. Experimental set-up for debonding tests on masonry pillars. (a) The specimens during a test, (b) geometry of the specimens, and (c) detail of a reinforcement failure.
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Fig. 9. Small pillar. Experimental force–displacement curves compared to numer-
ical predictions and simplified model. Fig. 10. Specimen to determine the mortar–GF grid interface behavior: (A) during

testing and (B) specimen geometry (dimensions in mm).
3. Simplified model for FRCM composites

A simplified analytical assessment is proposed in this section,
assuming that all the deformability and the failure mechanism oc-
curs in the system constituted by the grid and the mortar.

Within the simplified model proposed, the following assump-
tions are made:

(1) A mechanism composed by two non-linear springs disposed
in series and constituted by the unbounded and bonded grid.
The total deformation of the system is therefore due to the
sum of the axial deformation of the unbounded GFRP grid
and the contribution of the pure sliding of the grid within
the surrounding mortar. For the sake of simplicity, it is
assumed that the yarn undergoes axial deformation only in
the unbounded region. Its length is reasonably assumed
equal to Lu = 150 mm. The number of yarns is indicated with
the symbol ny.
(2) An elastic perfectly plastic behavior of the interface between
grid and mortar, exhibiting an idealized stepped stress–slip
behavior as in Fig. 11. In Fig. 11, kt indicates the elastic tan-
gential stiffness of the yarn–mortar interface, whereas cI and
cII the peak and residual strength. The bonded region is indi-
cated with the symbol Lb.

(3) An elastic–perfectly plastic behavior with infinite ductility of
the FRP yarn, see Fig. 12, having elastic stiffness equal to
kn = EFRPAFRP and ultimate strength equal to Fu = fu-FRPAFRP,
where EFRP = 70000 MPa is the yarn modulus, fu-FRP = 1200 -
MPa is the yarn ultimate strength and A

FRP
is the transversal

area of the single yarn.

The transversal area of the single yarn may be evaluated
experimentally, once fu-FRP is known, from direct tensile tests
performed on a single yarn and conducted within the pres-
ent research. It is worth noting that, while the behavior of
the GF is brittle, i.e. the transmitted tensile stress vanishes
when the rupture strength fu-FRP is reached, little differences
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occur assuming either an elastic–perfectly plastic or damag-
ing behavior for the yarns. Indeed, rupture of the yarn is
experienced experimentally only for an anchorage length equal
to 150 mm, whereas in all the other cases GF grid tensile
stress remains under the elastic limit. For the specimen with
anchorage length equal to 150 mm, only one external yarn
breaks, and this physical evidence is reproduced numerically
adding a small eccentricity of the external applied load. In
this latter case, the only difference between the assumption
of an elastic–perfectly plastic and a brittle behavior for GF
grid is that, when fu-FRP is reached in one yarn, in the first
case the mechanical system fails (i.e. a mechanism activates)
with external force applied equal to the peak load, whereas
in the second the same failure mechanism occurs, but with
an external force vanishing. Let us indicate with F the exter-
nal load applied, with Fi the forces acting on the ith yarn,
with e the external load eccentricity and with L the distance
between two contiguous yarns. Translational and rotational
equilibrium equations require that:

F ¼ F1 þ F2 þ F3

Fe ¼ F1L� F3L
ð1Þ
Compatibility conditions for the yarns, assuming an elastic

behavior read:

ui ¼ DLu
Fi

AFRPEFRP

u1 � u3 ¼ 2#L

u ¼ u2 ¼
u1 þ u3

2

ð2Þ
where ui is the displacement of the ith yarn in correspondence
of its extreme free to translate, DLu is the unbounded part of the
grid and # is the rotation of the rigid part connecting perpendic-
ularly the three yarns in correspondence of their extremes free
to translate. Equation system (1) + (2) is a 7 equations system
with 7 unknowns (ui, Fi and #) which may be solved at increas-
ing values of the external load F.
From Eq. (1), it appears evident that, when one of the yarns, say
the first, reaches an ultimate strength equal to Fu = fu-FRPAFRP, the
system is univocally determined, so that F3 = �Fe/L + Fu and
F2 ¼ F 1þ e

L

� �
� 2Fu. In presence of an elastic–perfectly plastic

material, an increase of the external load is still possible until
F2 = Fu. In this latter case, the specimen fails, with F3 = �Fe/
L + Fu and with a failure load equal to 3Fu � Fe/L. Conversely,
when a brittle behavior is assumed for the yarn, immediately
after that the first yarns reaches its limit strength, the second
Eq. (1) would require a negative external load F = �F3L/e, which
is clearly impossible considering also that yarns are assumed
unable to withstand compressive stresses.

(4) As it can be easily shown, for the mechanical system consti-
tuted by the three yarns disposed in parallel in presence of
load eccentricity, when one of the three yarns fails and the
material is brittle (F1=0), equilibrium is still possible only if
F drops to zero.

(5) A negligible deformation of the brick and masonry pillar,
which appears reasonable considering that cracks occur
almost exclusively in the mortar.

By means of the aforementioned hypotheses, it can be easily
shown that the stiffness of the mechanical system constituted by
the unbounded and bonded part is:

KT ¼ ðLu þ LbÞ
EFRPnyAFRP

Lu
þ nykt

� �
DLu þ DLb

Lu þ Lb
ð3Þ

where DLu is the overall displacement due to the unbounded part
and DLb is the overall displacement of the bonded part.

The peak load is evaluated as follows (if larger values for the
ultimate load associated to tensile failure of the grid are obtained):

Fu1 ¼ nycILb ð4Þ

The displacement value at the elastic limit is:

Dse ¼ Fu1
Lu þ Lb

KT
ð5Þ

The displacement value reached when the tangential force at
the interface between yarn and mortar shifts from peak to residual
value is the following:

Dsu1 ¼ DLu1 þ Db1 ð6Þ

Where DLu1 = Fu1Lu/(EFRPnyAFRP) and Db1 is defined in Fig. 11 and
corresponds to a slip where the interface strength drops from the
peak to the residual load.

Similarly, the residual strength of the overall system is evalu-
ated as:

Fu2 ¼ nycIILb ð7Þ

The displacement value reached in correspondence of a drop of
the tangential force from the residual value to zero is:



Dsu2 ¼ DLu2 þ Db2 ð8Þ

where DLu2 = Fu2Lu/(EFRPnyAFRP) and Db2, see Fig. 11, corresponds to a
slip where the interface strength drops from the residual load to zero.

Conversely, if the failure is associated to an axial stress in a yarn
reaching the ultimate value fu-FRP, then the failure load is:

Fu ¼ nyAFRPfu-FRP ð9Þ

Authors experienced that, both numerically and experimen-
tally, this last situation never occurs, i.e. failure is due to sliding
of the bonded part of the grid.

As it is possible to note from the force–displacement curves re-
ported in Figs. 3–5 for anchorage lengths respectively equal to 50,
100 and 150 mm, and where the response obtained using the sim-
plified analytical model proposed in this section is also represented
and indicated with the label ‘‘simplified analytical model’’, very
accurate predictions of both deformability and strength of the
specimens is obtained.

In order to reproduce the actual experimental behavior of the
reinforced specimen having an anchorage length equal to
150 mm, where a tensile failure of one of the yarns is experienced,
an elasto-plastic FE beam analysis as in Fig. 13 is performed. Only
the grid is modeled by means of beam elements. When dealing
with the part of the grid embedded in the mortar, two different
typologies of elements are utilized, hereafter called A1 and A2,
depending if they are part of a yarn or of the transversal grid
respectively. When dealing with an element belonging to a longi-
tudinal yarn (A1), each element is kinematically characterized by
the longitudinal displacement field u. From longitudinal equilib-
rium equation involving FRP tensile stress r and tangential actions
s due to sliding between yarn and surrounding mortar, the follow-
ing differential equation may be written:

dr
dx
¼ s AL

AFRP
¼ sn ð10Þ

where AL is the perimeter of the yarn and AFRP is the transversal area
of a single yarn (hereafter assumed equal to 0.9 mm2) and AL

AFRP
¼ n.

From Hooke’s law of the yarn and imposing an elastic relation-
ship between tangential actions and yarn/mortar slip, it is also pos-
sible to write the following relations:

r ¼ EFRP
du
dx

s ¼ ktu
ð11Þ
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Fig. 13. FE beam element utilized for the simpli
where kt is the yarn/mortar interface elastic shear modulus, that can
be deduced from the experimental stress–slip relation depicted in
Fig. 11.

From Eqs. (10) and (11), we obtain the following second order
differential equation for the axial displacement field of the yarn:

d2u

dx2 � u
kt

EFRP
n ¼ 0 ð12Þ

Each element belonging to longitudinal yarns obeys Eq. (12),
therefore the (exact) interpolation of the displacement field
adopted is the following:

uðxÞ ¼ A0e�kx þ B0ekx ð13Þ

Having indicated with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkt=EFRP

p
.

Eq. (13) may be re-written in terms of end nodes displacements
u2 and u3 (see Fig. 13) as:

uðxÞ ¼ u2 � u3ekL2-3

e�kL2-3 � ekL2-3
e�kx þ u3e�kL2-3 � u2

e�kL2-3 � ekL2-3
ekx ð14Þ

When dealing with elements belonging to the transversal yarns,
a common Winkler element is utilized with rotational end releases,
Fig. 13.

A linear elastic software (developed in Matlab environment) is
utilized to reproduce the experimental behavior of the specimen.
Since it was found experimentally that only 1 yarn per glued grid
collapses when it reaches an ultimate tensile stress equal to
fu-FRP, a small eccentricity e was applied to the end section force,
Fig. 13, in order to simulate an experimental imperfection that
can cause a rigid rotation of the end section where the external
force is applied. The exact value adopted for e in the simulations
can be found by means of an iterative trial and error strategy
where the objective is to equate the maximum tensile stress
reached in one of the yarns to the ultimate stress of the fiber. It
is found that fu-FRP is reached in one of the external yarns for a force
acting of about 4 kN (approximately equal to the experimental fail-
ure load applied to the specimen, see Fig. 5) with an eccentricity
equal to 1.98 mm.

In Fig. 14a, the deformed shape of the FE model with F = 3.5 kN
is represented, with the corresponding value of distribution of tan-
gential actions on yarns–mortar interface tangential stress
(Fig. 14b) and yarns tensile stresses Fig. 14c. Values are normalized
with the ultimate strength values, so that values lower than 1 indi-
cate that the interface (or the yarn) are in the elastic regime.
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The value of the external load selected corresponds to the first
plasticization of yarn #1–mortar interfaces, near the boundary of
the brick, as can be easily noticed from the normalized plot of tan-
gential stresses represented in Fig. 14b. In addition, from Fig. 14c, it
can be noted that all wires exhibit values of tensile stress lower
that the maximum allowable, meaning that they are still in elastic
phase.

When the load is increased up to 4 kN, which corresponds to the
failure of yarn #1 for a tensile stress reaching fu-FRP, the tangential
actions increase on all yarns, undergoing diffused plasticization for
yarn #1, see Fig. 15a. A plasticization of the interface in its initial
stage may be also noted for the second yarn. Normalized tensile
stresses are finally represented in Fig. 15b, where it is clearly
shown that yarn #1 reaches its ultimate resistance value.

The load displacement curve found with the 1D FE model is fi-
nally compared with experimental evidences in Fig. 5, again exhib-
iting a satisfactory agreement and a quasi linear behavior up to the
tensile failure of one of the yarns (the slight deviation from linear-
ity is obviously associated to the diffusion of plasticization inside
the GF grid –mortar interface).

4. Full 3D-FEM non-linear approach

The non-linear FEM approach adopted in this paper and used to
fit previously discussed experimental data is basically an extension
of the procedure originally adopted in Milani and Lourenço [21]
and, before but with different FEs, in Milani and Tralli [22].

The FE model is constituted by a discretization with 3D rigid
and infinitely resistant eight-noded elements. Between continuous
elements, quadrilateral non-linear interfaces are present.

Because of the fact that elements are rigid and infinitely
resistant, all deformation (linear and non-linear) is lumped on



interfaces. In this way, a reduction of the optimization variables is
obtained.

Kinematic variables are centroid displacements uE
x ; u

E
y;u

E
z

� �
and

rotations around the centroid UE
x ;U

E
y;U

E
z

� �
, see Fig. 16. Jump of dis-

placements on interfaces is linear.
To further simplify the calculations, three translational and

three rotational non-linear springs are utilized for each interface,
Fig. 16. As well known, for brittle materials bending behavior of
the interfaces may have a dependence on in-plane compression
and such feature is taken into account in the code by means of
the approximate procedure described in detail in [21,22], where
the reader is referred to for further details.

A Sequential Quadratic Programming scheme – SQP – is utilized
to deal with softening, approximating the actual stress–strain
behavior of the interfaces by means of a stepping function with a
priori fixed accuracy, as depicted in Fig. 17, where the stress–strain
behaviors in tension and compression adopted in the present re-
search to model the bricks and the mortar are represented.

The utilization of quadratic programming to deal with
elasto-plastic materials was first proposed in [25,26] and appears
nowadays quite interesting in light of the improvements in the
field of mathematical programming algorithms, obtained in the
last few years thanks also to the utilization of computers with
increased RAM. The sequential scheme is necessary when soften-
ing (or limited ductility) of the materials is present and was first
proposed in [22].

The stress–strain behavior of each interface is deduced either
from proper mechanical characterization or preliminary numerical
procedures. The relationship between continuum strains en and an
interface displacement is deduced by means of well-established
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the interface.

Being the model constituted by 6 elastic–plastic springs, Fig. 16,
and assuming that at each iteration the interfaces behave as they
were elastic–perfectly plastic, only 12 plastic multipliers for inter-
face (two for each spring, k+ and k�, one for a positive and one for a
negative displacement) add to the total optimization variables. To
summarize, optimization variables are the following: 12 plastic
multipliers for interface and 6 generalized displacements (includ-
ing rotations) per element.

In this framework, to achieve a step by step solution of the
discretized elasto-plastic problem, the following Quadratic
Programming – QP – has to be solved at each iteration, see
[21,22] – [25,26]:

min 1
2 ½ðDkþ � Dk�ÞT KepðDkþ � Dk�Þ
n

þDUT
elKelDUel� � DFTDUel

subject to : Dkþ P 0 Dk� P 0

8>>><
>>>:

ð15Þ

In Eq. (15) Kel represents the 6nel � 6nel assembled elastic stiff-
ness matrix, where nel is the number of elements, Dkþ and Dk� are
two 12nin vectors of the plastic multiplier increments of each non-
linear spring (e.g. flexure, shear, etc.), where nin is the number of
interfaces, Kep is a diagonal 12nin � 12nin matrix collecting inter-
faces hardening moduli, DUel is a 6nel vector of elements displace-
ment and rotation increments, DF is the 6nel vector of external
loads increments.

A detailed description of the features of the SQP scheme
adopted is provided in [22] and is not repeated here for the sake
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Fig. 17. Numerical uniaxial stress–strain relationships in tension and compression used for bricks and mortar.
of conciseness. However it is worth noting that the trial-and-error
step-length sizing strategy discussed above is generally quite
efficient but may become particularly burdensome in presence of
models with many interfaces and/or when the linear piecewise
constant approximation assumed for the interface springs is very
refined. This is an intrinsic limitation of the proposed procedure.
For these reasons, crude approximations of the non-linear behavior
of the springs are used.

4.1. FRP grid modeling: truss and 1D interface elements

A meaningful extension of the previously presented numerical
model was necessary to properly take into account the presence
of the GF grid, and especially the non-linear interfacial behavior
between single yearns and surrounding mortar material.

In particular, a single yarn, identified geometrically by the uni-
tary vector t parallel to the longitudinal direction of the yarn is
modeled by means of rigid infinitely resistant truss elements, as
schematically shown in Fig. 18. This hypothesis is acceptable since
the elastic modulus and the ultimate strength of the fibers are
much higher than in the mortar (at least two orders of magnitude).
Each element is therefore associated to 6 kinematic variables,

namely three centroid displacements uE ¼ uE
x ;u

E
y;u

E
z

� �
and three

rotations around centroid G UE ¼ UE
x ;U

E
y;U

E
z

� �
. Contiguous truss
elements are interconnected by a translational axial spring
disposed parallel to t, whereas jumps of displacement along tan-
gential directions are not allowed. Furthermore, rotation of the ele-
ments with axis parallel to t direction is set equal to zero.

The axial behavior of the yarn is assumed elastic perfectly plas-
tic, as shown schematically in Fig. 18, with ultimate strength cor-
responding to that of the GF grid.

The tangential stress–sliding relationship between the yarn and
surrounding mortar is assumed as in Fig. 11. Let us consider a truss
element E and four parallelepiped elements of the surrounding
mortar M, N, T and Q. Due to the rigid element kinematic assumed,
the slip function along a single truss element is linear. It is there-
fore sufficient to evaluate slip on the extreme nodes P1 and P2.
Focusing on P1 (the same considerations may be repeated for P2),
the absolute displacement along t of element E is uE1

t . uE1
t may be

easily evaluated when uE and UE vectors are known. The same con-
siderations hold for elements M, N, T and Q, so that uM1

t , uN1
t , uT1

t and
uQ1

t represent the displacement of each surrounding element (with
obvious meaning of the superscripts) along t direction in corre-
spondence of node P1.

The relative tangential slip may be therefore evaluated as
follows:

DsP1 ¼ uE1
t �

uM1
t þ uN1

t þ uT1
t þ uQ1

t

4
ð16Þ
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Fig. 19. Single brick reinforcement. Deformed shapes at peak provided by the non-linear FE code. (a) 50 mm anchorage, (b) 100 mm anchorage, and (c) 150 mm anchorage.



Fig. 20. Masonry pillar reinforcement. Deformed shapes at peak provided by the non-linear FE code.
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The numerical relationship of the interface utilized is again ide-
alized by means of a stepping constant function, see Fig. 11, so that
(15) may be again used to predict the non-linear behavior of the
reinforced specimens by means of mathematical programming.

5. Comparison between experimental and numerical results

The load–displacement curves obtained by means of the afore-
mentioned numerical approach are compared with the experimen-
tal data in Figs. 3–5 for the single brick reinforcement system
(anchorage lengths respectively equal to 50, 100 and 150 mm),
whereas numerical results for the masonry pillar are compared
with experimental data in Fig. 9.

As can be noted, a very promising agreement is found in the
evaluation of the peak load, initial undamaged state stiffness and
post-peak behavior.

Deformed shapes near failure obtained numerically are de-
picted respectively in Figs. 19 and 20 for the reinforced single brick
and the masonry pillar, respectively. In all the produced simula-
tions a debonding of the GF grid within mortar was detected. As
it can be noted, the agreement with experimental results is very
promising, exception made for the failure mechanism of the spec-
imen with anchorage length equal to 150 mm, Fig. 19c. In this lat-
ter case, indeed, tensile failure of one yarn was experimentally
experienced. The failure mechanism is not symmetric, meaning
that an accidental experimental imperfection causing a rotation
of the loaded pad, associated to different tensile stresses acting
on the yarns, was present. As it was shown in the previous section
within the simplified analytical–numerical model, the presence of
a lateral eccentricity of the applied load results into both a rotation
of the pad where the load is applied and an increase of the tensile
stress in one of the lateral yarns. The overload acting on one yarn
causes its premature rupture and is associated to the asymmetric
failure mechanisms observed experimentally. Authors experienced
the same behavior within the present numerical model applying an
eccentricity of the load equal to those calculated in the simplified
analytical–numerical model discussed in the previous section.

To further assess FE results, a sensitivity analysis on the brick
reinforced with the fabric exhibiting anchorage length equal to
150 mm is conducted by means of both the 1D and the full 3D
FE model, varying load eccentricity in a wide range and assuming
for the yarns, see Fig. 12, either an elastic–perfectly plastic behav-
ior with infinite ductility or an elastic–perfectly plastic model
where the resistance of the yarn vanishes after an axial deforma-
tion eu = 1.1ee, is reached being ee = fu-FRP/EFRP the elastic limit defor-
mation. This latter hypothesis approximates better the actual
behavior of a GF yarn.

Assuming as eccentricity e0 = 1.98 mm that was considered to
fit experimental data, numerical simulations are repeated with
eccentricities e = 0, 1/2e0, and 2e0 respectively. Results in terms
of global load–displacement curves are summarized in Fig. 21a.
As can be noticed, 1D and full 3D models provide very similar re-
sults. In addition, it is interesting to highlight that rupture of the



yarn is always experienced with eccentricities greater than 1/2e0.
Varying the eccentricity between 1/2e0 and e0 by means of a stan-
dard bisectional procedure, the authors found that the eccentrici-
ties activating yarn #1 rupture are equal to 0.91e0 and 0.85e0 for
the 1D and full 3D model respectively. The difference in assuming
an elastic–perfectly plastic behavior or a model with reduced duc-
tility (eu = 1.1ee) for the yarns is minimal, as can be observed in the
detail in Fig. 21b, where the behavior near failure of both models is
compared for an eccentricity equal to 2e0. This is obviously due to
the equilibrium constrains to be imposed in the yarns system, Eq.
(1), which results into an evaluation of very similar peak loads. The
only remarkable difference is connected to the overall ductility of
the system, which is obviously infinite for a model where materials
exhibit infinite ductility.

6. Conclusions

The paper analyzed the behavior of single bricks and small ma-
sonry pillars strengthened by means of fabric reinforced cementi-
tious matrix systems made with GF grids both from an
experimental and numerical standpoint.

The experimental activities included:

� The characterization of the constituent materials (GF grid,
mortar and bricks).

� A series of tests on single bricks with a double reinforce-
ments on two opposite sides.

� A series of small pillars of bricks again with double
reinforcements.

The experimental results showed that the ultimate strength de-
pends on the bonded surface and on the type of mortar.

Two complementary numerical tools were presented to simu-
late the experiments. In the first model, based on an analytical–
numerical approach, only the FRCM composite is considered and
modeled by means of 1D Finite Elements interacting with the sur-
rounding mortar by means of interfaces exhibiting a non-linear
stress–slip behavior deduced from experimental data.

The second model is a fully 3D Finite Element approach, based
on Sequential Quadratic Programming and uses 8-noded rigid ele-
ments interconnected by inelastic interfaces exhibiting softening.
The GF grid reinforcement is modeled through non-linear truss ele-
ments, interacting with surrounding mortar by means of non-lin-
ear interfacial tangential stresses.

Both models were able to fully simulate the experimental evi-
dences, exception made for the reinforced double lap single brick
with anchorage length equal to 150 mm. In this case, a tensile fail-
ure of the single yarns is experienced, which it is shown by the
analytical–numerical model to be a consequence of a small
unavoidable eccentricity of the load during the experiment. As a
conclusive remark, it can be stated that the proposed combined
approaches may be considered as references for design
considerations.
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