
 

Permanent link to this version 

http://hdl.handle.net/11311/979317 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
L. Dozio, L. Alimonti 
Variable Kinematic Finite Element Models of Multilayered Composite Plates Coupled with 
Acoustic Fluid 
Mechanics of Advanced Materials and Structures, Vol. 23, N. 9, 2016, p. 981-996 
doi:10.1080/15376494.2015.1121558 
 
 
 
 
 
This is an Accepted Manuscript of an article published by Taylor & Francis in Mechanics of 
Advanced Materials and Structures, Vol. 23, N. 9, 2016, p. 981-996 on 08 december 2015, 
available online: http://www.tandfonline.com/10.1080/15376494.2015.1121558. 
 
Access to the published version may require subscription. 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
 



Variable kinematic finite element models of
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Abstract

This paper presents a novel and advanced finite element formulation of the structural-

acoustic problem involving thin and thick multilayered composite plates coupled with a

cavity. Exploiting the Carrera’s unified formulation, many plate and fluid-structure in-

terface elements based on different kinematic models including higher-order equivalent

single-layer and layerwise theories are developed within a single mathematical framework.

Accordingly, a large number of vibro-acoustic models can be easily obtained and selected

according to the accuracy requirements of the application. In particular, it is shown that

refined models can be adopted in those cases where models relying on traditional or low-

order plate theories fail in providing the correct estimation of the fluid-structure coupling.

The proposed formulation is also validated with respect to some reference cases available

in the literature.

∗currently at GAUS, Department of Mechanical Engineering, University of Sherbrooke, CA.
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1 Introduction

It is well known that, whenever a flexible structure is in contact with a fluid, a so-called fluid-

structure coupling interaction arises, such that the structure is subjected to a force loading due

to the fluid pressure along the fluid-structure interface, and, at the same time, the pressure

field in the fluid is affected by the motion of the elastic structural boundary [1]. In this work,

the case when the structure undergoes linear vibrations and the fluid can be assumed to be

compressible and inviscid is considered. The corresponding problem is known as structural-

acoustic problem or coupled vibro-acoustic problem [2]. In particular, the system under study

in this paper involves an enclosure completely filled with air and surrounded by a structure

which can be elastic or perfectly rigid.

Over the last three decades, research on numerical modeling and analysis of structural-

acoustic systems has been very active, especially in the automotive and aeronautical engineer-

ing fields [3, 4]. Indeed, increasing customer demand for improved comfort environments

have prompted researchers into studying the fundamental phenomena governing the structural-

acoustic coupling [5], with the aim of designing quieter vehicles and investigating novel tech-

niques to reduce cabin interior noise levels [6, 7, 8].

Many numerical methods can be adopted to model structural-acoustic problems [9]. The

approach used in this work is the finite-element (FE) method [10], which is also the most com-

mon technique in engineering practice, especially in the low-frequency range, where structural

and acoustic wavelengths are long and the response spectra exhibit strong and regular modal

behavior. Since both the structural and acoustic domains are modeled through finite elements,

the corresponding formulation is denoted as FE/FE vibro-acoustic model [11].

The structural FE formulation is naturally based on the displacement field as the indepen-

dent variable. On the contrary, there are multiple choices of the independent variable for the

description of the fluid response, e.g., fluid displacement, pressure, velocity potential, displace-

ment potential and combination of thereof [12, 13]. The most common approach, which is also

adopted here, is to develop acoustic elements based on the scalar fluid pressure. The combina-

tion of displacement-based structural elements and pressure-based acoustic elements is known

as (u, p) formulation of the structural-acoustic problem. This formulation has the drawback
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of yielding non-symmetric matrices of the coupled system. In order to avoid non-symmetric

solvers and reduce at the same time the model size, a modal coupling solution as described

below is implemented [14, 15, 16].

Among interior structural-acoustic problems, one case of great interest involves an acoustic

cavity with one or more faces consisting of flexible plates. A huge amount of work has been

done in the past on the modeling and analysis of plate-cavity systems [17, 5, 18, 19, 20, 21]. The

most important physical aspects and effects due to their coupling have been extensively pre-

sented and discussed. However, almost all the numerical studies available in the literature are

limited to thin isotropic plates, which are discretized using finite elements based on traditional

two-dimensional (2-D) plate theories, like classical plate theory (CPT) and first-order shear

deformation theory (FSDT). Even when multilayered composite plates were considered, FE

formulations of the elastic structure have been still restricted to FSDT models [22], which are

viewed as equivalent single-layer (ESL) models of the laminate with appropriate average stiff-

ness and mass properties. This choice is probably due to the need of working with relatively

simple and economical structural models or to the availability of commercial finite element

softwares where only FSDT-based elements are generally implemented.

The application of composite materials in the aerospace and automotive field has grown

rapidly in the last decades. As a consequence, the coupling of composite structures with acous-

tic fluid represents an expanding research area. Indeed, multilayered composite plates can offer

many advantages with respect to classical metallic constructions. It is also noted that interior

cabin panels of modern vehicles are made of multiple layers of different materials for sound-

proofing requirements. However, some complicating effects arise in the accurate modeling of

multilayered plates, which are related to the large difference in the mechanical properties of

the layers in the thickness direction [23, 24, 25, 26]. In particular, mechanical variables exhibit

a so-called zig-zag distribution through the thickness, with strong variation of the local slope

at each layer interface. Furthermore, anisotropic multilayered constructions are typically char-

acterized by higher shear and normal deformability than isotropic one-layer structures. Such

effects are amplified when the thickness ratio gets larger, the degree of orthotropy is high and

shorter wavelengths are considered. CPT and FSDT are based on simplifying a priori assump-
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tions which make them rather ineffective in accurately capturing the above effects. As a result,

the corresponding finite element models can show great difficulties in providing the correct

estimation of the dynamic behavior of the multilayered composite plate and, as a consequence,

the accurate prediction of the coupled vibro-acoustic response.

Instead of resorting to a full three-dimensional (3-D) model of the structural field, which

typically involves an unacceptable computational burden, the FE/FE vibro-acoustic model, if

needed, can rely on plate and structural-acoustic interface elements based on refinements of

classical 2-D plate theories. Broadly speaking, two main categories of refined plate theories

can be envisaged [27, 28]. The first approach relies on enriching the FSDT model with higher-

order terms as series expansion of the thickness coordinate. The highest power of the expansion

is called order of the theory. In the second approach, a local independent first- or higher-order

2-D displacement field is postulated in each layer, and appropriate continuity conditions are en-

forced at layer interfaces. The first category encompasses so-called higher-order ESL theories,

whereas models falling in the second category are denoted as layerwise (LW) or discrete-layer

theories.

The main goal of this work is to present an advanced FE (u, p) formulation of the structural-

acoustic problem involving both thin and thick multilayered composite plates modeled accord-

ing to the refined theories mentioned so far. In this way, the resulting refined models can provide

a more accurate approximation of the vibro-acoustic coupling than classical models based on

CPT or FSDT. The proposed technique can be considered as an extension of the Carrera’s uni-

fied formulation (CUF) to coupled plate-cavity systems. As originally presented in [29] and

developed in many other papers (see, e.g., [30, 31, 32, 33, 34]), CUF is a powerful technique

capable of handling, within the same mathematical framework, ESL and LW theories of vari-

able order. Accordingly, a large number of refined models can be implemented without the

need of writing from scratch a new mathematical formulation and a new numerical code each

time an improved kinematic model is required. As a result, refined plate and fluid-structure

interface elements based on different kinematic theories, called in the following variable kine-

matic elements, are developed. Through an extensive use of indicial notations, small invariant

nodal-, layer- and order-independent mass, stiffness and structural-acoustic coupling matrices
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are first derived. Such matrices, called fundamental nuclei of the present (u, p) formulation,

represent the building blocks to obtain the finite element matrices of the coupled vibro-acoustic

problem as shown in the following.

The paper is organized as follows. Section 2 gives an overview of the general equations

describing the structural-acoustic problem under study and the corresponding variational for-

mulation. Following the CUF approach, the variational formulation is discretized in Section 3

with variable kinematic finite elements and the final form of governing equations is presented.

The resulting system is then solved in Section 4 through a modal coupling technique. The prop-

erties and capabilities of the proposed modeling tool are presented and discussed in Section 5

using some illustrative examples. Some conclusions are finally drawn in Section 6.

2 Structural-acoustic coupled problem

Ωf

Ωs

ΓD
s

ΓN

f

ΓN
s

Γfs

ns

ns

nf

f

Rigid

boundary

Elastic

structure

Figure 1: The structural-acoustic coupled problem under study.

The internal structural-acoustic coupled problem under study is represented in Figure 1. An

elastic structure occupying the domain Ωs is in contact with a compressible inviscid acoustic

fluid occupying the domain Ωf . The fluid-structure interface is denoted by Γfs and ns
i and

nf
i are the unit normals external to Ωs and Ωf , respectively. The fluid can also have a rigid

boundary where the condition of zero normal pressure gradient is imposed. The structure is

subjected to a prescribed surface force density fi on a part ΓN
s of its external boundary and to

null displacements on the complementary part ΓD
s .
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2.1 Local equations

The 3-D local equations describing the dynamic behavior of the elastic structure are given by

σij,j = ρs
∂2ui

∂t2
in Ωs (1a)

σijn
s
j = fi on ΓN

s (1b)

ui = 0 on ΓD
s (1c)

σijn
s
j = p nf

i on Γfs (1d)

where ρs is the mass density and a comma subscript denotes partial derivative. Note that the

usual summation convention for repeated indices has been adopted. Eq. (1a) is the classical

equation of elastodynamics in terms of the stress tensor σij and the displacement field com-

ponents ui, Eqs. (1b) and (1c) represent the prescribed Neumann and Dirichlet mechanical

boundary conditions on ΓN
s and ΓD

s , respectively, and Eq. (1d) arises from the pressure p of the

fluid acting on the elastic structure in correspondence with the fluid-structure interface. The

elastic structure is supposed to have a linear elastic behavior. Accordingly, the stress tensor is

related to the small strain tensor εij by the constitutive law

σij = Cijklεkl (2)

where Cijkl denotes the material stiffness coefficient. The strain components are in turn related

to the displacement components by the following gradient relations

εij =
1

2
(ui,j + uj,i) (3)

Since the internal fluid is assumed to be inviscid, its motion can be described by using the

pressure scalar field p. In absence of acoustic sources, the response of the fluid to a prescribed

arbitrary normal motion of the fluid-structure interface is governed by the following set of
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equations

p,ii =
1

c2f

∂2p

∂t2
in Ωf (4a)

p,in
f
i = −ρf

∂2ui

∂t2
nf
i on Γfs (4b)

p,in
f
i = 0 on ΓN

f (4c)

where ρf is the mass density of the fluid and cf is the constant speed of sound in the fluid. The

last equation (4c) expresses the zero normal pressure gradient on the rigid walled boundary ΓN
f .

2.2 Variational formulation

The (u, p) variational formulation associated with the previous local equations can be obtained

by the test-function method.

Considering first the elastodynamic problem, Eq. (1a) is multiplied by an arbitrary test-

function δui belonging to the space of sufficiently regular functions ui defined in Ωs such that

ui = 0 on ΓD
s . After integrating over the structural domain and applying the Green’s formula,

we obtain

∫

Ωs

δεijσij dv +

∫

Ωs

δuiρs
∂2ui

∂t2
dv =

∫

ΓN
s

δuifi ds+

∫

Γfs

δuipn
f
i ds (5)

where the right-hand side takes into account the boundary conditions in Eq. (1b) and (1d).

The same procedure is applied to the acoustic problem in Eqs. (4a-4c). Multiplying the

acoustic wave equation by an arbitrary test-function δp belonging to the space of sufficiently

regular functions p defined in Ωf , applying Green’s formula and taking into account Eq. (4b)

yields
∫

Ωf

δp,ip,i dv +
1

c2f

∫

Ωf

δp
∂2p

∂t2
dv = −

∫

Γfs

δp ρf
∂2ui

∂t2
nf
i ds (6)
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3 Finite element discretization

The above variational formulation can be discretized by the finite element method. In this sec-

tion, the discretization procedure is specifically applied to an elastic structure consisting of a

plate made of Nℓ layers of orthotropic material. Without any loss of generality, the plate is

assumed to be in contact with the acoustic fluid at its bottom surface and the layers are num-

bered starting from the bottom layer of the laminate. The following mathematical formulation

encompasses both thin to thick multilayered plates which are modeled according to advanced

2-D kinematic theories, as explained below.

3.1 Vector form of the variational formulation

First, the 3-D displacement vector uk =
{

uk vk wk
}T

of the k-th layer is introduced, where u

and v denote in-plane displacements along x and y direction of the plate, respectively, and w

is the displacement in the thickness direction z. Assuming an arbitrary load vector f acting on

the plane Γk
s at coordinate z̄ of layer ℓ of the plate (ℓ = 1, . . . , Nℓ), Eq. (5) can be written in

vector form as follows

Nℓ
∑

k=1

∫

Ωk
s

(

δεk
T

p σ
k
p + δεk

T

n σ
k
n

)

dv +

Nℓ
∑

k=1

∫

Ωk
s

δukT

ρs
∂2uk

∂t2
dv =

Nℓ
∑

k=1

δkℓ

∫

Γk
s

δukT

(z̄) fds+

Nℓ
∑

k=1

δk1

∫

Γfs

δukT

(zfs) pn ds

(7)

where Ωk
s is the domain of k-th layer, zfs is the coordinate of the fluid-structure interface, i.e.,

the bottom of the plate, δkℓ is the Kronecker delta which is non null only if k = ℓ, and δk1 is the

Kronecker delta which is non null only for the bottom layer of the plate (k = 1). The stress and

strain vectors have been split into in-plane and out-of-plane (normal) components as follows

σ
k
p =























σk
xx

σk
yy

σk
xy























, σ
k
n =























σk
xz

σk
yz

σk
zz























, ǫ
k
p =























ǫkxx

ǫkyy

γk
xy























, ǫ
k
n =























γk
xz

γk
yz

ǫkzz























(8)
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Therefore, the constitutive law of the k-th layer is written as

σ
k
p = Ck

ppε
k
p +Ck

pnε
k
n

σ
k
n = Ck

npε
k
p +Ck

nnε
k
n

(9)

where the matrices of stiffness coefficients are expressed in the plate reference system through

a proper coordinate transformation, if needed, from the corresponding coefficients in the layer

reference system [35].

Similarly, the vector form of the fluid problem in Eq. (6) is written as follows

∫

Ωf

δ∇pT∇p dv +
1

c2f

∫

Ωf

δp
∂2p

∂t2
dv +

Nℓ
∑

k=1

δk1

∫

Γfs

δp ρf n
T∂

2uk

∂t2
(zfs) ds = 0 (10)

3.2 Variable kinematic models of the multilayered plate

According to the formulation proposed by Carrera [29], an entire class of 2-D refined LW plate

theories (see Figure 2(a)) can be employed by expressing the mechanical displacement vector

uk through the following notation

uk(x, y, ζk, t) = Fα(ζk)u
k
α(x, y, t) (11)

where α is the so-called theory-related index, Fα(ζk) are thickness functions defined with re-

spect to the local layer coordinate ζk, and uk
α(x, y, t) =

{

uk
α(x, y, t) v

k
α(x, y, t) w

k
α(x, y, t)

}T

is the vector of 2-D generalized kinematic coordinates involved in the assumed displacement

model corresponding to index α. An infinite number of theories of different order can be im-

plemented by selecting in Eq. (11) the set of thickness functions and the range values of α. A

family of layer-wise theories of variable order N is here considered by assuming α = t, b, r

(r = 2, . . . , N) and selecting

Ft(ζk) =
1 + ζk

2
; Fb(ζk) =

1− ζk
2

; Fr(ζk) = Pr(ζk)− Pr−2(ζk) (12)
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layer k − 1

(x, y)

layer k

layer top

layer bottom

zk layer k + 1

zk = −1

zk = 1

plane

(a) Layerwise model

z

z = h
2

z = −

h
2

(x, y)

layer k − 1

layer k

layer k + 1

plate top

plate bottom

plane

(b) Equivalent single-layer model

Figure 2: Example of through-the-thickness distribution of displacements in case of higher-

order layerwise and equivalent single-layer plate theories.

where Pr(ζk) is the Legendre polynomial of r-th order. Accordingly, the displacement variables

uk
b and uk

t are the values at the bottom and top surfaces of k-th layer, respectively, and the inter-

laminar displacement continuity can be easily imposed as uk
t = uk+1

b for k = 1, 2, . . . , Nℓ − 1.

Following the CUF nomenclature, each member of the family is shortly denoted here by

the acronym LDN , which stands for (L)ayer-wise (D)isplacement-based theory of order N .

The number of kinematic degrees of freedom associated with the theory LDN is given by

3(N + 1)Nℓ − 3(Nℓ − 1).

The formal approach adopted in Eq. (11) can be also used to define a class of ESL plate

theories (see Figure 2(b)). Since in this case the kinematics is layer-independent, the k index

in Eq. (11) is dropped and a set of global thickness functions Fα is selected. The classical z

expansion is here adopted in terms of Taylor polynomials by assuming

Fα = zα (13)
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where now t = 0 and b = 1. The related N-order ESL theory is denoted by the acronym EDN ,

which stands for (E)quivalent single-layer (D)isplacement-based theory of order N . As such,

the number of degrees of freedom for a EDN theory is 3(N + 1).

Inserting the assumed displacement field of Eq. (11) into the gradient relations in Eq. (3),

the in-plane and normal strains can be expressed as follows

ε
k
p = FαDpu

k
α

ε
k
n = FαDnu

k
α +

∂

∂z
Fαu

k
α

(14)

where

Dp =













∂/∂x 0 0

0 ∂/∂y 0

∂/∂y ∂/∂x 0













, Dn =













0 0 ∂/∂x

0 0 ∂/∂y

0 0 0













3.3 Nodal coordinates and shape functions

According to the previous plate modeling, a 2-D finite element discretization of the elastic

domain is employed by expressing the mechanical kinematic coordinates uk
α related to the

selected theory in terms of generalized nodal coordinates dk
αi as follows

uk
α(x, y, t) = N s

i (x, y)d
k
αi(t) (i = 1, . . . , N s

n) (15)

where N s
n is the number of nodes in the 2-D structural element and N s

i are appropriate shape

functions for the structural part. Note that the summation convention is also introduced in

Eq. (15) on the index i. Four-node (N s
n = 4) quadrilateral plate elements [10] are implemented

in this work with the following linear interpolating functions



































N s
1

N s
2

N s
3

N s
4



































=
1

4



































(1− ξ)(1− η)

(1 + ξ)(1− η)

(1 + ξ)(1 + η)

(1− ξ)(1 + η)
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expressed in terms of the element coordinates ξ and η varying from −1 to +1.

The fluid domain is discretized by 3-D acoustic elements [11]. The pressure p inside each

element is expressed in terms of nodal pressures pm as follows

p(x, y, z, t) = Na
m(x, y, z)pm(t) (m = 1, . . . , Na

n) (16)

where Na
n is the number of nodes and Na

m are the shape functions for the acoustic part. Eight-

nodes (Na
n = 8) hexahedral elements are implemented with the following linear shape functions

Na
m =

1

8
(1 + ξmξ)(1 + ηmη)(1 + ζmζ)

in which ξm, ηm and ζm denote the local corner coordinates of the hexahedron.

3.4 Nodal equations at layer level

The indicial framework introduced thus far yields a set of finite element equations which can

be expressed in terms of layer-level invariant matrices, called fundamental nuclei of the formu-

lation [23], related to those quantities in the variational forms (7) and (10) which involve the

mechanical displacements.

Let’s first consider the structural problem. After inserting Eqs. (9) into Eq. (7), expressing

the strains through Eq. (14) and using the finite element approximations in Eq. (15) and (16), the

arbitrariness of the virtual variation of the mechanical nodal coordinates leads to the following

set of nodal equations for each layer k of the plate

δdk
αi : Mk

αβij

d2dk
βj

dt2
+Kk

αβijd
k
βj − Sk

αinpn = f kαi (17)

where

Mk
αβij = Ek

αβ

∫

Γk
e

ρksN
s
iN

s
j I3 dA (18)
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is called nucleus of the structural mass,

Kk
αβij = Ek

αβ

∫

Γk
e

[

(DpN
s
i )

T
Ck

pp

(

DpN
s
j

)

+ (DpN
s
i )

T
Ck

pn

(

DnN
s
j

)

+ (DnN
s
i )

T
Ck

np

(

DpN
s
j

)

+ (DnN
s
i )

T
Ck

nn

(

DnN
s
j

)

]

dA

+ Ek
α,zβ

∫

Γk
e

[

N s
iC

k
np

(

DpN
s
j

)

+N s
iC

k
nn

(

DnN
s
j

)

]

dA

+ Ek
αβ,z

∫

Γk
e

[

(DpN
s
i )

T
Ck

pnN
s
j + (DnN

s
i )

T
Ck

nnN
s
j

]

dA

+ Ek
α,zβ,z

∫

Γk
e

N s
iC

k
nnN

s
jdA

(19)

is called nucleus of the structural stiffness,

Sk
αin = δk1Fα(zfs)

∫

Γfs

N s
iN

a
n(zfs)n dA (20)

is the nucleus of the structural-acoustic coupling, and

f kαi = δkℓFα(z̄)

∫

Γk
e

N s
i f dA (21)

is the nucleus related to the generalized mechanical load applied onto the plate. In the above

definitions, I3 is the 3 × 3 identity matrix and the following thickness integrals have been

introduced for each layer k

Ek
αβ =

∫ zk+1

zk

FαFβ dz Ek
α,zβ

=

∫ zk+1

zk

Fα,zFβ dz

Ek
αβ,z

=

∫ zk+1

zk

FαFβ,z dz Ek
α,zβ,z

=

∫ zk+1

zk

Fα,zFβ,z dz

Note that the mass and stiffness nuclei Mk
αβij and Kk

αβij are 3 × 3 matrices written in

compact form for each layer k, each pair (α, β) of theory-related indices, and each nodal pair

(i, j). Therefore, they are invariant with respect to the number of layers of the laminated plate,

the order N of the assumed plate theory and the number of nodes of the element. The same

invariance property is also true for the 3 × 1 nucleus of the structural-acoustic coupling Sk
αin

and the 3× 1 nucleus f kαi related to the applied load.
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It is also noted that the indicial form of Eq. (17) implies summation for repeated indices,

which gives rise to the governing equations of the plate and fluid-structure interface element

expressed through the related finite element matrices. However, the extended form of Eq. (17) is

never explicitly written down since a direct expansion and assembly-like procedure of the nuclei

is carried out. This procedure, as explained in the next section, fully exploits the invariance of

the fundamental nuclei and allows building in an unified formulation different plate elements

having variable kinematics capability.

Similarly to what done for the structural problem, the discretization of the acoustic problem

can be expressed by the following nodal equations in indicial form

δpm : Qmn

d2pn
dt2

+Hmnpn + ρfR
k
mβj

d2dk
βj

dt2
= 0 (22)

where

Qmn =
1

c2a

∫

Ωe
f

Na
mN

a
n dV (23)

can be considered as the scalar nucleus related to the acoustic mass,

Hmn =

∫

Ωe
f

Na
m,lN

a
n,l dV (l = x, y, z) (24)

is the scalar nucleus related to the acoustic stiffness, and

Rk
mβj = δk1Fβ(zfs)

∫

Γfs

nTNa
m(zfs)N

s
j dA (25)

is the 1× 3 nucleus of the acoustic-structural coupling.

3.5 Assembly from nuclei to element matrices

As outlined in the previous section, the fundamental nuclei are the building blocks to obtain the

finite element matrices of the structural-acoustic problem. The procedure involves the follow-

ing steps:

1. The 3 × 3 nuclei Mk
αβij and Kk

αβij are expanded by varying the indices α, β over the
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prescribed range according to the selected order N of the theory. The following 3(N +

1)× 3(N + 1) layer-level nodal matrices are obtained

Mk
ij =













Mk
ttij Mk

trij Mk
tbij

Mk
rtij Mk

rrij Mk
rbij

Mk
btij Mk

brij Mk
bbij













Kk
ij =













Kk
ttij Kk

trij Kk
tbij

Kk
rtij Kk

rrij Kk
rbij

Kk
btij Kk

brij Kk
bbij













(26)

where r = 2, . . . , N .

2. The 3 × 1 nuclei Sk
αin and f kαi and the 1 × 3 nucleus Rk

mβj are expanded accordingly

by varying the index α and the index β, respectively, to obtain the following layer-level

structural-acoustic coupling nodal matrices and load vector

Sk
in =













Sk
tin

Sk
rin

Sk
bin













Rk
mj =

[

Rk
mtj Rk

mrj Rk
mbj

]

fki =













fkti

fkri

fkbi













(27)

3. Resulting matrices are assembled from layer to multilayer level according to the typology

of the plate theory.

(a) In the case of ESL theories, since the mechanical displacements are layer-independent,

the layer-level matrices are simply accumulated layer by layer to give the following

multilayer nodal matrices

Mij =

Nℓ
∑

k=1

Mk
ij Kij =

Nℓ
∑

k=1

Kk
ij Sin =

Nℓ
∑

k=1

Sk
in Rmj =

Nℓ
∑

k=1

Rk
mj (28)

and multilayer nodal load vector

fi =

Nℓ
∑

k=1

fki (29)

(b) In the case of LW theories, according to the assumed discrete-layer kinematics, the

matrices are assembled by enforcing the interlaminar continuity condition uk
t =
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uk+1
b . For example, the multilayer nodal mass matrix is assembled as follows

Mij =

























. . .

Mk+1
rtij Mk+1

rrij Mk+1
rbij

Mk+1
btij Mk+1

brij Mk+1
bbij +Mk

ttij Mk
trij Mk

tbij

Mk
rtij Mk

rrij Mk
rbij

. . .

























(30)

The same is done for the multilayer stiffness matrix. The assembly-like procedure

for the matrices expressing the structural-acoustic coupling yields

Sin =

























...

Sk+1
rin

Sk+1
bin + Sk

tin

Sk
rin

...

























(31)

and

Rmj =

[

. . . Rk+1
mbj +Rk

mtj Rk
mrj Rk

mbj +Rk−1
mtj . . .

]

(32)

4. A final expansion is performed on the previous multilayer nodal matrices by varying

the indices i, j from one to the number of nodes N s
n of the structural element and the

indices m,n from one to the number of nodes N f
n of the fluid element. According to the

quadrilateral and hexahedral elements used in this work, the following element matrices

are obtained

M =













M11 . . . M14

...
...

M41 . . . M44













K =













K11 . . . K14

...
...

K41 . . . K44













(33)
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S =













S11 . . . S18

...
...

S41 . . . M48













f =













f1

...

f4













R =













R11 . . . R14

...
...

R81 . . . R84













(34)

It is noted that R = ST and the structural mass and stiffness matrices are symmetric. An

example involving the overall procedure to obtain the stiffness matrix of the quadrilateral

plate element for a two-layered (Nℓ = 2) plate modeled using a second-order layerwise

theory (LD2) is sketchily depicted in Figure 3.

5. By varying the indices m,n, the symmetric acoustic mass and stiffness matrices Q and

H of the fluid element are also obtained.

3.6 Final form of governing equations

Once the element matrices are obtained as shown above, they can be assembled in the classical

way according to 2-D structural and 3-D acoustic meshes. As a result, the global structural-

acoustic coupled problem is described by the following set of equations













M 0

ρfS
T Q
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dt2

d2p

dt2























+













K −S

0 H



































d

p























=























f

0























(35)

where d is the vector of nodal displacement variables and p is the vector of nodal pressure

variables.

It is noted that the final set of governing equations exhibits the classical (u, p) form of

coupled FE/FE vibro-acoustic problems and, in contrast with the uncoupled structural finite

element model, the matrices of the plate coupled with the fluid are no longer symmetric. This is

due to the fact that the force loading of the fluid on the structure is proportional to the pressure,

resulting in a cross-coupling matrix S in the coupled stiffness matrix, while the force loading

of the structure on the fluid is proportional to the acceleration, resulting in a cross-coupling

matrix ρfS
T in the coupled mass matrix.
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Figure 3: Example of the assembly procedure from the 3× 3 stiffness nucleus to element level.
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Note also that, for practical calculation, the coupled model in Eq. (35) is here computed

with compatible acoustic and structural meshes, i.e., the nodes of the acoustic and the structural

meshes at the fluid-structure coupling interface coincide. If not, the structural nodal displace-

ment variables must be related to the acoustic nodal pressure variables along the fluid-structure

interface through some geometrical transfer matrices.

4 Modal coupling solution

A direct time- or frequency-domain solution of the coupled equations (35) is computationally

inefficient. This is due to the following reasons.

• The finite element matrices can be quite large, in particular when plates with many layers

are modeled using layerwise theories of high order. Indeed, the 2-D higher-order kine-

matic models introduced in Section 3.2 can be substantially more accurate than classical

plate models in approximating the true 3-D deformation field of the multilayered com-

posite plate. However, refined models are obtained with 2-D elements which can have

many more structural degrees of freedom per node than common plate elements relying

on CPT or FSDT.

• The banded, sparsely populated and symmetric nature of the matrices in the uncoupled

problem is lost due to the cross-coupling terms of the coupled finite element model. As a

result, efficient solvers for sparse symmetric matrices must be replaced by non-symmetric

solvers, which are more time expensive.

The computational effort can be highly reduced by using appropriate model order reduc-

tion techniques. The technique adopted in this work relies on a modal coupling solution [15].

According to this approach, the system is decomposed into two subsystems, i.e., the elastic

multilayered plate and the acoustic fluid domain. The structural degrees of freedom are ex-

panded in terms of a set of ns in vacuo modes of the plate, i.e., the modes of the plate without

the loading of the acoustic pressure, which are calculated by solving the structural symmetric

eigenvalue problem

(

K− ω2M
)

d = 0 (36)
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Similarly, the acoustic degrees of freedom are expanded in terms of na rigid acoustic modes,

i.e., the modes of the fluid domain with the fluid-structure interface assumed to be perfectly

rigid, which are calculated by solving the acoustic symmetric eigenvalue problem

(

H− ω2Q
)

p = 0 (37)

Accordingly, we can write











d

p











=







Us 0

0 Ua

















qs

qa











(38)

which is the relationship describing the transformation from the physical basis of nodal dis-

placement and pressure coordinates to the modal basis of modal coordinates qs and qa through

the structural and acoustic modal matrices Us and Ua. Substituting Eq. (38) into Eq. (35) and

pre-multiplying the resulting equation with the transpose of the structural and acoustic modal

matrices, the following model is obtained













Is 0

ρfU
T
a S

TUs Ia



































d2qs

dt2

d2qa

dt2
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Λs −UT
s SUa

0 Λs
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qa























=























UT
s f

0























(39)

where Λs = diag (. . . , ω2
si, . . . ) and Λa = diag (. . . , ω2

ai, . . . ) contain the uncoupled natural

frequencies of the structural and acoustic domain ωsi and ωai, respectively, and the structural

and acoustic modal vectors are assumed to be normalized with respect to their corresponding

mass matrices, i.e., UT
s MUs = Is and UT

aQUa = Ia.

The size of the modal model in Eq. (39) is substantially smaller than the model in Eq. (35)

when a small truncated set of ns structural and na acoustic modes yields a level of accuracy

in the approximation of the dynamic response close to the one of the much larger original FE

model. However, the efficiency of the modal coupling solution in reducing the size of the

problem is typically rather poor since the uncoupled acoustic modes, which are calculated with

rigid wall boundary condition at the plate interface, violate the related displacement continuity
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condition. This yields an inaccurate representation of the near-field pressure effects in the

vicinity of the fluid-plate coupling interface, which are usually associated with the displacement

continuity. As shown below, the accuracy of the approximation can be improved by retaining a

larger number of acoustic modes in the modal basis.

5 Numerical examples

In this section some illustrative numerical examples are presented and discussed to show the

capabilities of the previous formulation.

5.1 Convergence of the structural model

First, the convergence properties of the uncoupled structural FE model are presented by consid-

ering a square laminated plate with clamped (C) edge conditions and having stacking sequence

[0◦/90◦/0◦]. The orthotropic material properties of the layers are the following: E1/E2 = 40,

E3 = E2, G12 = G13 = 0.6E2, G23 = 0.5E2 and ν12 = ν13 = ν23 = 0.25, where Ei is the

Young’s modulus along i-th direction, and Gij and νij are the corresponding shear modulus

and Poisson’s ratio, respectively. Each layer is assumed to be of equal thickness and mass den-

sity ρ. The first twelve non-dimensional frequency parameters λ = ωb
√

ρ/E2, where b is the

side length of the plate, are listed in Table 1 and Table 2 corresponding to a thin (h/b = 0.01)

and a moderately thick (h/b = 0.1) plate, respectively. Results are computed with models

based on both ED and LD theories and are tabulated for increasing values of the order N of

the theory and for increasing number (Nx, Ny) of 2-D four-node square elements along x and

y directions. The total number of degrees of freedom ndof corresponding to each model is also

reported. Note that a selective reduced integration is employed to overcome the classical shear

locking phenomenon [32].

It can be observed that, in both cases, the convergence is monotonic from above as the 2-D

mesh is refined and the convergence rate is similar for ED and LD theories. Furthermore, well

converged in vacuo frequency values are obtained when Nx = Ny = 60 for both thin and thick

plates. It can be argued that the convergence rate is not significantly affected by the typology
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and order of the assumed kinematic theory and by the thickness ratio h/b of the plate. This

property has been also observed on plates having other boundary conditions and lamination

layouts. It is also worth noting from Tables 1 and 2 that FE solutions yield different converged

upper-bound values of the natural frequencies if different kinematic theories are selected. In

particular, lower values are attained by increasing the order of the ED or LD theory and, for

the same order N , ED theories yield higher frequency parameters than LD theories. Such

differences are more marked as the thickness ratio of the plate increases and higher modes

are considered. As shown in the next section, the typology of the kinematic theory, if layer

independent or dependent, and the corresponding order N can strongly affect the accuracy of

the solution.

5.2 Validation study

The FE models arising from the formulation described in Sections 3 and 4 are here validated

against some reference studies available in the literature. Four cases are presented. The first

three examples involve the validation of the in vacuo FE models by considering the free vibra-

tion analysis of rectangular thin and thick isotropic, laminated composite and sandwich plates

with various boundary conditions. The last case study, instead, is related to the validation of

the structural-acoustic response of an aluminum plate backed by an air-filled rigid-walled cubic

cavity computed through the modal coupling solution.

The first case study involves a rectangular a × b isotropic plate with two opposite edges

clamped (C) and the other two edges free (F). Two aspect ratios a/b = 1 and a/b = 2 are

considered. For each aspect ratio, the in vacuo natural frequencies of plates with thickness

ratio h/b = 0.1 and h/b = 0.2 are computed. Table 3 lists the first three frequency parameters

λ = ω(b2/π2)
√

ρh/D, where D is the bending stiffness of the plate and ν is taken equal to 0.3,

corresponding to symmetric-symmetric (SS), symmetric-antisymmetric (SA), antisymmetric-

symmetric (AS), and antisymmetric-antisymmetric (AA) modes. Present values are computed

with a mesh of 60 × 60 elements based on ED4 theory and are compared with Ritz solutions

obtained by Liew et al. [36] through a fully 3-D vibration analysis. It can be observed that the

present higher-order 2-D finite elements provide an excellent agreement with 3-D analysis in
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Table 1: Convergence analysis of the first 12 modes of a CCCC square laminated plate with h/b = 0.01 and stacking sequence [0◦/90◦/0◦].

mode number

theory N (Nx ×Ny) ndof 1 2 3 4 5 6 7 8 9 10 11 12

ED 2 (10× 10) 1089 0.4255 0.5221 0.7846 1.1755 1.2240 1.2900 1.3722 1.7301 2.1578 2.4156 2.4442 2.4634

2 (20× 20) 3969 0.4159 0.5031 0.7138 1.0638 1.1057 1.1523 1.2745 1.5174 1.5569 1.9151 2.1484 2.1807

2 (30× 30) 8649 0.4141 0.4997 0.7023 1.0305 1.0935 1.1397 1.2578 1.4785 1.4850 1.8436 2.0451 2.1042

2 (40× 40) 15129 0.4135 0.4985 0.6983 1.0192 1.0893 1.1354 1.2521 1.4527 1.4740 1.8200 1.9936 2.0891

2 (50× 50) 23409 0.4132 0.4980 0.6965 1.0141 1.0873 1.1334 1.2494 1.4410 1.4690 1.8093 1.9705 2.0822

2 (60× 60) 33489 0.4131 0.4977 0.6955 1.0113 1.0863 1.1323 1.2480 1.4347 1.4663 1.8036 1.9582 2.0784

3 (60× 60) 44652 0.4119 0.4964 0.6938 1.0083 1.0792 1.1252 1.2408 1.4291 1.4586 1.7941 1.9481 2.0563

4 (60× 60) 55815 0.4119 0.4964 0.6938 1.0083 1.0792 1.1252 1.2408 1.4291 1.4586 1.7941 1.9480 2.0563

LD 1 (10× 10) 1452 0.4248 0.5214 0.7831 1.1705 1.2190 1.2843 1.3668 1.7215 2.1383 2.3970 2.4251 2.4422

1 (20× 20) 5292 0.4153 0.5025 0.7129 1.0613 1.1015 1.1482 1.2704 1.5124 1.5504 1.9069 2.1347 2.1669

1 (30× 30) 11532 0.4135 0.4992 0.7015 1.0283 1.0895 1.1358 1.2540 1.4731 1.4805 1.8366 2.0336 2.0912

1 (40× 40) 20172 0.4129 0.4980 0.6976 1.0172 1.0853 1.1315 1.2483 1.4477 1.4696 1.8134 1.9831 2.0764

1 (50× 50) 31212 0.4126 0.4975 0.6958 1.0122 1.0834 1.1296 1.2457 1.4362 1.4647 1.8029 1.9605 2.0695

1 (60× 60) 44652 0.4125 0.4972 0.6948 1.0094 1.0824 1.1285 1.2442 1.4300 1.4620 1.7972 1.9483 2.0658

2 (60× 60) 78141 0.4118 0.4963 0.6935 1.0075 1.0792 1.1251 1.2406 1.4272 1.4580 1.7926 1.9445 2.0562

3 (60× 60) 111630 0.4118 0.4963 0.6932 1.0067 1.0791 1.1250 1.2404 1.4254 1.4573 1.7911 1.9411 2.0560

4 (60× 60) 148840 0.4118 0.4963 0.6932 1.0067 1.0791 1.1250 1.2404 1.4254 1.4573 1.7911 1.9411 2.0560
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Table 2: Convergence analysis of the first 12 modes of a CCCC square laminated plate with h/b = 0.1 and stacking sequence [0◦/90◦/0◦].

mode number

theory N (Nx ×Ny) ndof 1 2 3 4 5 6 7 8 9 10 11 12

ED 2 (10× 10) 1089 2.2765 3.2248 4.3823 4.9301 5.0171 6.2124 6.9552 7.2637 7.4552 8.0989 8.2364 9.5974

2 (20× 20) 3969 2.2590 3.1410 4.3115 4.7117 4.8514 6.0000 6.7227 6.7371 7.0913 7.6820 7.9101 9.0256

2 (30× 30) 8649 2.2557 3.1260 4.2984 4.6584 4.8366 5.9618 6.5964 6.6968 7.0581 7.5846 7.8720 8.7838

2 (40× 40) 15129 2.2545 3.1208 4.2938 4.6400 4.8314 5.9485 6.5529 6.6826 7.0463 7.5509 7.8584 8.7008

2 (50× 50) 23409 2.2540 3.1184 4.2917 4.6315 4.8290 5.9423 6.5329 6.6761 7.0409 7.5353 7.8521 8.6626

2 (60× 60) 33489 2.2537 3.1171 4.2905 4.6269 4.8277 5.9390 6.5220 6.6726 7.0379 7.5269 7.8487 8.6420

3 (60× 60) 44652 2.1334 2.9349 4.0661 4.2872 4.5670 5.5596 5.9527 6.3362 6.6791 6.9463 7.4030 7.7963

4 (60× 60) 55815 2.1329 2.9335 4.0651 4.2830 4.5651 5.5550 5.9428 6.3344 6.6765 6.9360 7.3977 7.7765

5 (60× 60) 66978 2.1271 2.9049 4.0560 4.2166 4.5426 5.5025 5.8354 6.3159 6.6499 6.8452 7.3497 7.6324

6 (60× 60) 78141 2.1271 2.9048 4.0560 4.2163 4.5425 5.5023 5.8347 6.3158 6.6498 6.8447 7.3495 7.6310

7 (60× 60) 89304 2.1238 2.8902 4.0512 4.1842 4.5308 5.4766 5.7853 6.3076 6.6371 6.8023 7.3263 7.5677

LD 1 (10× 10) 1452 2.1956 3.0360 4.2496 4.5834 4.7305 5.8140 6.6908 6.7699 7.0365 7.5301 7.7229 8.9588

1 (20× 20) 5292 2.1797 2.9686 4.1786 4.3370 4.6607 5.6482 6.0746 6.5451 6.8615 7.0792 7.5594 8.0670

1 (30× 30) 11532 2.1767 2.9565 4.1654 4.2940 4.6475 5.6181 5.9698 6.5038 6.8282 7.0012 7.5259 7.8594

1 (40× 40) 20172 2.1757 2.9523 4.1608 4.2791 4.6428 5.6075 5.9338 6.4894 6.8165 6.9743 7.5140 7.7885

1 (50× 50) 31212 2.1752 2.9503 4.1587 4.2723 4.6407 5.6027 5.9172 6.4827 6.8110 6.9619 7.5085 7.7561

1 (60× 60) 44652 2.1749 2.9493 4.1575 4.2686 4.6395 5.6000 5.9082 6.4791 6.8081 6.9551 7.5054 7.7385

2 (60× 60) 78141 2.1307 2.9088 4.0693 4.2221 4.5553 5.5153 5.8436 6.3440 6.6770 6.8594 7.3759 7.6442

3 (60× 60) 111630 2.1221 2.8822 4.0504 4.1672 4.5259 5.4640 5.7599 6.3077 6.6345 6.7815 7.3177 7.5367

4 (60× 60) 148840 2.1217 2.8818 4.0490 4.1667 4.5246 5.4628 5.7594 6.3047 6.6316 6.7803 7.3151 7.5359
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all cases.

The second comparison study is referred to a square laminated [0◦/90◦/0◦] plate with h/b =

0.1 and three different Lévy-type boundary conditions with at least two opposite edges simply-

supported. The three layers of equal thickness have the following dimensionless material prop-

erties: E1/E2 = 40, E3 = E2, G12 = G13 = 0.6E2, G23 = 0.5E2 and ν12 = ν13 = ν23 = 0.25.

The fundamental frequency parameter λ = (ωb2/h)
√

ρ/E2 is shown in Table 4 for modes

having m = 1, 2, 3 half waves in the y direction. Present results are reported when the plate is

modeled using 40 × 40 structural elements based on ED7 and LD4 theories and are compared

to those computed using a semi-analytical 3-D approach [37] and the exact Lévy method [38].

It is noted that FE models based on LD4 provide natural frequencies very close to reference

3-D and exact values even when m = 3. The fundamental frequency is slightly overestimated

by ED7 models and it can be observed that the error increases at higher m values. This is a

general behavior and is due to the fact that higher order modes of laminated plates are more

and more characterized by a C0 zig-zag form of the displacements in the thickness direction,

which is not accurately captured by ESL theories.

In the last uncoupled structural example, a fully simply-supported square sandwich plate

with soft-core is presented. The plate has a [0o/90o/core/0o/90o] layup with material properties

of the faces and the core listed in Table 5. The thickness of the core is assumed to be ten times

the thickness of the face sheets. For the sake of comparison with results provided in [39],

both thin (h/b = 0.01) and moderately thick (h/b = 0.1) plates are considered. In vacuo

free vibration results are shown in Table 6 in terms of the non-dimensional frequency λ =

(ωb2/h)
√

ρ/E2 for some modes with (m,n) half waves along x and y direction, respectively.

FE solutions obtained by the present formulation with a mesh of 60×60 elements are computed

using a third-order ESL theory and four layerwise theories of increasing order. Table 6 clearly

shows that models based on ED3 grossly overestimate the natural frequencies in comparison

with models based on LD theories both for thin and moderately thick plates. This is due to the

large difference in the stiffness between the skins and the core. Indeed, in this example the face-

to-core-stiffness ratio (FCSR) E1/Ec is approximately equal to 104. In the case of a flexible

or soft-core (for example, a foam core) sandwich plate, difficulties are known in capturing the

25



Table 3: Frequency parameters of an isotropic plate with CFCF boundary conditions.

mode

a/b h/b Solution method SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AS-1 AS-2 AS-3 AA-1 AA-2 AA-3

1 0.1 Present – ED4 2.1043 3.9229 9.7328 5.3864 7.3583 10.634 2.4481 5.9498 6.9693 5.8276 10.072 10.963

3-D Ritz [36] 2.1050 3.9234 9.7276 5.3859 7.3581 10.636 2.4489 5.9500 6.9678 5.8272 10.070 10.961

0.2 Present – ED4 1.8007 3.1922 5.8794 4.1108 5.3319 5.4665 2.0375 2.9770 5.4346 4.4128 5.4834 6.5934

3-D Ritz [36] 1.7996 3.1909 5.8790 4.1062 5.3313 5.4625 2.0363 2.9770 5.4325 4.4084 5.4824 6.5929

2 0.1 Present – ED4 0.5486 2.6073 2.8295 1.4803 3.6565 4.5353 0.8670 2.6554 3.3588 1.9563 5.0729 5.2170

3-D Ritz [36] 0.5492 2.6076 2.8300 1.4811 3.6575 4.5324 0.8677 2.6560 3.3596 1.9573 5.0707 5.2162

0.2 Present – ED4 0.5222 2.3072 2.4187 1.3369 2.6553 3.0723 0.7885 1.3289 2.8102 1.7136 2.6088 4.0499

3-D Ritz [36] 0.5224 2.3071 2.4174 1.3367 2.6556 3.0720 0.7884 1.3291 2.8090 1.7135 2.6083 4.0462
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Table 4: Fundamental frequency for modes having m half waves along y direction of a

[0◦/90◦/0◦] SSSS square laminated plate with h/b = 0.1.

Boundary conditions

m Solution method CSCS CSSS CSFS

1 Present – ED7 19.830 17.213 7.304

Present – LD4 19.820 17.205 7.299

3-D DQ [37] 19.809 17.195 7.256

2-D Exact [38] 19.811 17.197 7.297

2 Present – ED7 25.152 23.362 17.068

Present – LD4 25.109 23.319 17.015

3-D DQ [37] 25.085 23.289 16.998

2-D Exact [38] 25.086 23.292 16.977

3 Present – ED7 37.182 36.162 32.225

Present – LD4 37.033 36.011 32.057

3-D DQ [37] 36.908 35.877 31.929

2-D Exact [38] 36.909 35.878 31.901

correct dynamic behavior with simple kinematic models [40, 41]. The numerical study shows

that layerwise kinematics are required for sandwich plates with very soft core irrespective of the

thickness-to-length ratio. It is also observed that a slight improvement in accuracy of natural

frequencies is obtained by LD2 compared to LD1 theory, whereas no further improvement is

detected by using a layerwise model of higher order.

Table 5: Material properties of the sandwich plate discussed in Section 5.2.

Component Elastic modulus (GPa) Poisson’s ratio Shear modulus (GPa) Density (kg/m3)

Face sheets E1 = 131 ν12 = 0.22 G12 = 6.895 ρ = 1627
E2 = 10.34 ν13 = 0.22 G13 = 6.205
E3 = 10.34 ν23 = 0.49 G23 = 6.895

Core Ec = 6.89× 10−3 νc = 0 Gc = 3.45× 10−3 ρc = 97

As a final validation study of the present formulation, a coupled structural-acoustic case is

now considered. The system consists of a cubic cavity of dimensions 1× 1× 1m3, completely

filled with air (speed of sound cf = 343m/s, mass density ρf = 1.2Kg/m3). Five walls of

the cavity are assumed to be perfectly rigid. The top one is a simply-supported 1 × 1 m2

flexible aluminium plate with thickness h = 0.01m. The mechanical properties of the plate are

the following: Young’s modulus E = 70GPa, mass density ρs = 2700Kg/m3 and Poisson’s
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Table 6: Nondimensional frequency parameters of a simply-supported square sandwich plate

with material properties listed in Table 5.

Present FE models

h/b m n ED3 LD1 LD2 LD3 LD4 Ref. [39]

0.01 1 1 15.5502 11.9484 11.9479 11.9479 11.9479 11.9401

1 2 39.2996 23.4278 23.4259 23.4259 23.4259 23.4017

1 3 73.6409 36.2093 36.2033 36.2033 36.2033 36.1434

2 2 55.1923 30.9735 30.9694 30.9694 30.9694 30.9432

2 3 84.4155 41.5039 41.4951 41.4951 41.4951 41.4475

3 3 106.736 49.8233 49.8090 49.8090 49.8090 49.7622

0.1 1 1 4.9620 1.8543 1.8492 1.8492 1.8492 1.8480

1 2 8.1952 3.2402 3.2233 3.2233 3.2233 3.2196

1 3 11.997 5.2730 5.2363 5.2360 5.2360 5.2234

2 2 10.520 4.3252 4.2946 4.2945 4.2945 4.2894

2 3 13.759 6.1582 6.1075 6.1071 6.1071 6.0942

3 3 16.467 7.7670 7.6964 7.6959 7.6959 7.6762

ratio ν = 0.35. A transverse force of amplitude 1N over the frequency range [0, 300] Hz is

applied on the plate at coordinates (0.25m, 0.35m). Assuming no damping in the structural

and acoustic domain, the frequency response of the system under study is computed through

the modal coupling solution described in Section 4 by solving the following set of equations
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(40)

In particular, the following quantities are evaluated:

• the acoustic pressure inside the cavity at coordinates (0.75m, 0.25m, 0.75m), denoted

as point A;

• the acoustic pressure inside the cavity at coordinates (0.75m, 0.25m, 0.95m), denoted

as point B;

• the specific kinetic energy of the plate defined as

Ekin =
1

2

ω2

Ωs

∫

Ωs

ρs|s|
2 dv =

1

2

ω2

Ωs

q∗

sqs (41)
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where ∗ denotes the complex conjugate operator;

• the acoustic mean-square pressure defined as

Ep =
1

2

1

Ωf

∫

Ωf

|p|2 dv =
1

2

c2f
Ωf

q∗

aqa (42)

Concerning the finite element discretization, structural and acoustic meshes compatible at the

interface are used with 20 elements along each side. Since the plate is thin and isotropic, ac-

curate solutions can be obtained with plate elements based on a low-order ESL theory. Results

are shown in the following with ED2 models, which yield the same response of models of

higher order in the frequency range under study. The convergence and accuracy of the modal

coupling solution are studied by increasing the number of uncoupled structural ns and acoustic

na modes retained in the reduced modal basis and comparing the present response with the full

direct solution available in [42].
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(a) ns = 6, na = 8
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(b) ns = 10, na = 20

Figure 4: Pressure response at point A. Convergence of the modal coupling solution and com-

parison with the full order solution in [42].

Figure 4(a) shows the pressure response at point A with ns = 6 and na = 8, corresponding

to structural and acoustic modes falling within the frequency range of interest [0, 300] Hz. Fig-

ure 4(b) shows the same response when ns = 10 structural modes and na = 20 acoustic modes

up to 450Hz are included in the modal expansion. The dashed line represents the full-order ref-

erence solution used to validate the present model. It can be observed that the resonance peaks
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of the pressure response are estimated with good accuracy even when only the modes below

300Hz are considered, whereas the convergence of the anti-resonances appears to be slower

and more modes should be retained in the reduced model to achieve an acceptable approxi-

mation. Note also that, as expected, low-frequency modes converge first than high-frequency

modes. The converged result shows an excellent agreement with the reference solution and

enables us to check the validity of the proposed fluid-structure coupling formulation.
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Figure 5: Pressure response at point B. Convergence of the modal coupling solution with

respect to a modal solution with ns = 20 and na = 60.

Figure 5 shows the convergence of the pressure response at point B, which is close to the

plate-fluid interface. No reference solution is available for this response, so the convergence is

evaluated with respect to a modal solution comprising ns = 20 and na = 60 modes. It is noted

that, as expected, the convergence now appears slightly slower than the previous case, since

more acoustic modes are required to achieve an accurate local description in the vicinity of the

structural-acoustic interface.

Finally, in Figure 6 the convergence of the structural and acoustic energy parameters in-

troduced in Eq. (41) and (42) is shown. It is clear that the plate kinetic energy and the fluid

potential energy converge faster than the previous pressure responses. This is expected since

global quantities are typically estimated more accurately and efficiently than local quantities

with the modal coupling technique.
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Figure 6: Response in terms of energy parameters. Convergence of the modal coupling solution

with respect to a modal solution with ns = 20 and na = 60.

5.3 Frequency response of a sandwich plate coupled with an acoustic cav-

ity

In this last section, a coupled structural-acoustic system consisting of a rectangular sandwich

plate backed by a rigid cubic cavity is considered (see Figure 7). The example is aimed at show-

ing the power and versatility of the present formulation in easily selecting the most appropriate

structural model according to the accuracy requirements of the vibro-acoustic problem. In par-

ticular, a sandwich plate with a thick soft core is presented in order to highlight the advantages

of higher-order kinematic models in improving the accuracy of the dynamic response.

Table 7: Properties of the sandwich plate discussed in Section 5.3.

Component Parameter Value

Plate Length (a) 0.6m

Width (b) 0.4m

Boundary conditions CCCC
Layout [face/core/face]

h/a 0.01
Faces Young’s modulus (Ef ) 73GPa

Poisson’s ratio (νf ) 0.34

Density (ρf ) 2800 kg/m3

Core Young’s modulus (Ec) variable

Poisson’s ratio (νc) 0.01
Density (ρc) 30 kg/m3

Thickness (tc) 10 tf
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Figure 7: The plate-cavity system under study in Section 5.3.

The three-layered plate has the properties listed in Table 7. The faces are made of alu-

minum and the isotropic core has a variable Young’s modulus Ec = Ef/FCSR. Two cases are

considered:

1. a sandwich plate with a relatively soft core having FCSR = 103 (case 1);

2. a sandwich plate with a very soft core having FCSR = 105 (case 2).

Even if this way of reducing mechanical properties is not physically sound, it appears to be

reasonable within the framework and aim of this analysis.

As shown above for the in vacuo free vibration response, sandwich plates with a high stiff-

ness ratio between the faces and the core (FCSR) require the use of layerwise kinematics to

obtain reliable structural models, even when small thickness ratios are considered. Therefore,

results are here shown with structural elements based only on LD theories. In particular, solu-

tions are reported in the following for LD1 and LD3 models. It has been checked that models

based on LD4 show no improvement compared to LD3 in the accuracy of the computations

involved in the present analysis.

Each sandwich plate case is coupled with an air-filled cubic acoustic cavity having the

other five faces assumed to be perfectly rigid. For case 1, the cavity has a depth of 0.5m,
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whereas a cavity of depth 2.1m is selected for case 2. Different cavities are considered since

the plate with softer core has natural frequency values much lower than the case with a stiffer

core. Consequently, with a larger cavity, some acoustic modes fall within the low-frequency

spectrum of the system involving plate case 2 and the effect of the structural-acoustic coupling

can be highlighted. Furthermore, case 1 is studied in the frequency range [0, 800] Hz, including

6 structural modes and 11 acoustic modes. Instead, the frequency range of case 2 is limited to

300Hz in order to have frequency response plots which are clearly readable without too many

structural modes close each other.

The system is induced to vibrate by a unit transverse force acting on the top skin of the

plate at coordinates (0.08m, 0.05m). The 2-D structural mesh involves 60 × 40 four-node

elements for both cases. The cavity of case 1 is modeled with 10 hexahedral elements along its

depth, whereas 20 elements are used for the cavity of case 2. The frequency-domain solution

is obtained through the modal coupling technique presented in Section 4 by adding a small

structural and acoustic modal damping as follows
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where

Cs = diag (. . . , 2ξsiωsi, . . . ) Ca = diag (. . . , 2ξaiωai, . . . ) (44)

The modal damping factors are assumed to be ξsi = ξai = 0.01.

First, the in vacuo frequency response of the two plate cases is presented in terms of kinetic

energy. Figure 8(a) is referred to case 1, whereas the vibration response of case 2 is represented

in Figure 8(b). The solid and dashed curves in each plot are obtained with LD1 and LD3

models, respectively. This preliminary in vacuo analysis is aimed at showing and explaining the

differences between the uncoupled response and the coupled vibro-acoustic response presented

in the following. It is observed that a first-order model is enough in estimating the correct

kinetic energy for case 1 over the entire frequency range of interest. Case 2 shows that a rather

accurate response is obtained by LD1 compared to LD3 model only in the very low-frequency
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Figure 8: In vacuo frequency response functions in terms of kinetic energy of the sandwich

plates.

portion of the spectrum, approximately below 100 Hz. Significant discrepancies are clearly

visible at higher frequencies with an increasing shift of the resonance peaks as the frequency

increases. A model based on LD3 is required for this case if good accuracy of the response is

needed up to 300Hz. However, it is also noted that the solid and dashed lines in Figure 8(b)

are qualitatively similar, i.e., there are no missing modal contributions and the only difference

is a shift of the modal peaks towards lower frequencies introduced by the LD3 model, which is

capable of contrasting the stiffening effect of the linear LD1 model by capturing the nonlinear

deformation field of the very soft core of the plate. This means that the modal participation

factors of the in vacuo structural response are substantially unaffected by the refinement of the

kinematic model.

The response of the system when the plate is coupled with the acoustic fluid in the cavity is

shown in Figures 9 and 10.

Let us focus first on the kinetic energies of plate case 1 and 2, which are plotted in Fig. 9(a)

and Fig. 10(a), respectively, using 2-D structural elements based on LD1 and LD3. First, it can

be observed that, as expected, the coupled response exhibits resonance peaks corresponding to

both plate-controlled modes and cavity-controlled modes. Plate-controlled modes are coupled

modes similar to in vacuo plate modes with a small perturbation induced by the effect of the

cavity pressure. Indeed, their natural frequencies are slightly lower than those of in vacuo
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Figure 9: Frequency response functions of the sandwich plate of case 1.
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Figure 10: Frequency response functions of the sandwich plate of case 2.
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modes due to the added-mass effect of the fluid. On the contrary, cavity-controlled modes

are coupled modes where the displacement of the plate is significantly distorted to match the

pressure distribution of the enclosure. They appear as new resonance peaks in Figures 9(a)-

10(a) compared to Figures 8(a)-8(b). It is also noted that no difference between LD1 and LD3

models is observed in the kinetic energy of the sandwich plate with stiffer core, whereas the

kinetic energy computed with the model based on LD1 is substantially inaccurate for case 2

over a large portion of the frequency range under study.

When a measure of the pressure field inside the cavity is of interest, we can see from Fig-

ures 9(b) and 10(b) that the inaccuracy of LD1 model can introduce large errors in the es-

timation of the acoustic response. Indeed, the solid and dashed curves in Fig. 10(b) show

unacceptable discrepancies above 150 Hz, in particular around 170, 250 and 290 Hz. This

can be explained with the aid of Table 8, which lists the natural frequencies corresponding to

coupled modes of case 2 up to 300 Hz computed with LD1 and LD3 models. The type of

each coupled mode, if cavity-controlled or plate-controlled, is also reported. It is observed that

the frequency regions where the difference between LD1 and LD3 curves is large correspond

to cavity-controlled modes of the coupled system. The estimation of the natural frequency

of such modes, which are dominated by the acoustic cavity, is only slightly affected by the

model refinement of the elastic structure. On the contrary, since the pressure field must be

compatible with the plate displacement at the fluid-structure interface, a wrong evaluation of

the structural modal contributions surrounding the cavity-controlled mode involves the lost of

spatial matching between the structural and the acoustic deformation patterns. As a result, the

acoustic response is badly estimated. Furthermore, the higher is the modal density around the

cavity-controlled modes, the higher is the error introduced by an inaccurate structural model.

6 Conclusions

In this work, the unified formulation introduced by Carrera has been extended to the numerical

modeling of coupled structural-acoustic systems. In particular, a powerful and versatile finite-

element tool for the accurate prediction of the low-frequency vibro-acoustic response of thin to
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Table 8: Natural frequencies [Hz] of the coupled system for case 2. Letter C indicates cavity-

controlled modes and letter P indicates plate-controlled modes.

LD1 LD3

mode number frequency mode type frequency mode type

1 0.00 C 0.00 C

2 48.87 P 47.61 P

3 70.46 P 67.88 P

4 85.80 C 85.16 C

5 97.06 P 92.38 P

6 101.72 P 97.57 P

7 113.14 P 107.23 P

8 137.03 P 129.11 P

9 138.50 P 130.32 P

10 157.24 P 14830 P

11 168.61 C 160.80 P

12 172.41 P 161.47 P

13 173.29 P 165.35 P

14 182.15 P 171.37 C

15 196.60 P 182.40 P

16 214.64 P 198.36 P

17 228.08 P 210.20 P

18 232.94 P 214.65 P

19 238.25 P 219.18 P

20 249.14 C 230.79 P

21 251.41 P 242.96 P

22 265.20 P 245.55 P

23 268.63 P 249.20 C

24 273.07 P 249.86 P

25 286.48 C 268.01 P

26 293.35 P 276.43 P

27 298.53 C 286.12 C

28 - - 288.86 P

29 - - 294.60 P

30 - - 298.21 C
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thick multilayered composite plates coupled with an acoustic fluid is developed. The main ad-

vantage of the proposed model relies in its invariant property with respect to the assumed plate

theory, such that variable kinematic plate and fluid-structure interface elements can be easily

obtained within a single mathematical framework. A large number of elements, based both

on higher-order equivalent single-layer and layerwise theories, have been derived and imple-

mented. The drawbacks related to the lack of symmetry of the adopted (u, p) formulation have

been partially overcome by a modal coupling solution technique. Some examples describing

the properties and capabilities of the proposed models have been discussed through the com-

parison with reference cases available in the literature. It has been also shown that refined plate

elements are needed in some cases in order to correctly estimate the fluid-structure coupling

and compute a reliable response of the vibro-acoustic system.
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