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Refined 2-D theories for free vibration analysis of annu-
lar plates: unified Ritz formulation and numerical as-
sessment

Lorenzo Dozio

Department of Aerospace Engineering

Politecnico di Milano

via La Masa, 34, 20156, Milan, Italy

Abstract

This paper presents a unified Ritz-based method for computation of modal properties

of both thick and thin, circular and annular isotropic plates with different boundary
conditions. The solution is based on an appropriate and simple formulation capable

of handling in an unified way a large variety of two-dimensional higher-order plate
theories. The formulation is also invariant with respect to the set of Ritz admissible
functions. In this work, accurate upper-bound vibration solutions are presented by

using kinematic models up to sixth order and products of Chebyshev polynomials and
boundary-compliant functions. Considering the circumferential symmetry of annular
plates and the 2-D nature of underlying theories, the present method is also compu-

tationally efficient since only single series of trial functions in the radial direction are
required.

Keywords: free vibration analysis, circular and annular plates, higher-order plate

theories, variable-kinematic Ritz method.

1 Introduction

Circular and annular plates are widely adopted as structural elements in many engi-
neering fields. Therefore, reliable mathematical models capable of predicting with

high accuracy their dynamic behaviour can be of great importance in the design pro-
cess.

It is known that the accuracy in the computation of natural frequencies and mode
shapes of plate structures can strongly depend on the kinematics assumed to represent

their deformation. Modelling approaches range from fully three-dimensional (3-D)
models, without any simplifying assumption on the kinematics of deformation, to
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traditional plate theories, like classical plate theory (CPT) and first-order shear de-
formation theory (FSDT), based on a reduction of the 3-D problem to simple and

economical two-dimensional (2-D) models [1]. Many attempts lying in the middle
have also appeared in the last three decades. They fall into the category of so-called

refined or higher-order plate theories, where the conventional kinematics of FSDT is
enriched with various higher-order terms as power series expansion of the thickness
coordinate [2, 3, 4, 5, 6, 7, 8]. The aim of such refined theories is twofold. Firstly, to

preserve the 2-D nature of the model and thus avoid the complexity and computational
inefficiency of 3-D elasticity solutions. Secondly, to improve, compared to classical
theories, the capability of estimating the correct mechanical behaviour of the plate

when thickness-to-length ratio increases, accurate through-the-thickness distribution
of displacements and stresses is sought or discrete medium-to-high frequency analysis

is required.

In contrast to CPT and FSDT, plate theories of high order typically involve com-
plicated mathematical formulations. Derivation and computer implementation of the
corresponding models would be less cumbersome with the availability of appropriate

techniques capable of handling in an easy and efficient way arbitrary refinements of
classical theories. Furthermore, it would be highly desirable to rely on an unified mod-

elling framework giving the ability of performing comparisons of different theories of
increasing complexity without the need of a new modelling effort each time.

In view of the above remarks, this paper presents a unified Ritz-based formulation
based on an entire class of 2-D higher-order theories for free vibration analysis of

both thick and thin isotropic annular plates with different combinations of classical
boundary conditions. The novelty of the present work is twofold.

Firstly, a comprehensive assessment of refined plate theories against free vibration
of annular plates of any thickness is presented for the first time. Indeed, most of the

past investigations on free vibration of circular and annular plates performed an exact
or numerical analysis on the basis of CPT and FSDT (see, e.g., [9, 10, 11, 12, 13]). A

satisfactory number of papers that carried out a 3-D vibration analysis are also avail-
able [14, 15, 16, 17, 18]. Conversely, probably due to the mathematical and computa-
tional complexities mentioned above, higher-order plate theories were employed only

in very few works [19, 20, 21]. In particular, remarkable exact closed-form frequency
solutions are obtained in [20] and [21] using Reddy’s third-order shear deformation
theory (TSDT). However, since TSDT discards thickness-stretching effects, which are

increasingly important as the thickness-to-radius increases, their analysis is limited to
moderately thick plates. The current study aims at evaluating how accurate natural

frequencies of higher-order 2-D theories would be in representing a 3-D problem.

Secondly, all previous works on free vibration of circular and annular plates mod-
elled according to 2-D theories suffer from a common shortcoming: they rely on ax-
iomatic models with a fixed kinematic theory. As a result, the development of a refined

theory of a certain order requires each time a new mathematical effort along with the
related code implementation. This process can be cumbersome and prone to errors.

The powerful yet simple method presented in the following overcomes the above de-
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ficiency.

The present study can be considered as an extension to annular plates of the variable-
kinematic Ritz method developed in [22, 23, 24], which were focused on straight-sided

quadrilateral plates. The formulation has some attractive properties. It is invariant with
respect to both the specific plate theory and the set of admissible functions. In other

words, a unified modelling framework is derived in terms of simple modelling ker-
nels, called Ritz fundamental nuclei, which are properly expanded to yield the mass
and stiffness matrices of the model. Considering the circumferential symmetry of cir-

cular plates and the 2-D nature of the underlying theories, the present method is also
computationally efficient since only single series of trial functions in the radial di-
rection are required. In addition, relying on a global approximation, the method has a

high spectral accuracy and converges faster than local methods such as finite elements.
As a result, the formulation derived in this work is accurate in providing benchmark

values yet efficient to be used for design purposes and parametric analysis.

The current paper is an extended version of the conference paper [25] and includes
a more complete numerical analysis with new comparison studies for plates with dif-
ferent thickness-to-radius ratios and boundary conditions. The paper is organised as

follows. Section 2 contains the mathematical derivation of the method. Details about
the Ritz trial set adopted in this study are also given. The convergence and numerical

stability properties of the current approach are presented in Section 3. Upper-bound
vibration solutions based on various higher-order 2-D models are shown in Section
4. In-depth discussion is provided by comparison the frequency parameters obtained

by the current method with various results available in the literature. Finally, some
concluding remarks are drawn in Section 5.

2 Theoretical formulation

An annular isotropic plate of outer radius Ro and inner radius Ri is considered as

shown in Figure 1. The plate has uniform thickness h. An orthogonal cylindrical
coordinate system is defined with radial direction r (Ri ≤ r ≤ Ro), circumferential
direction θ (0 ≤ θ ≤ 2π) and thickness direction z (−h/2 ≤ z ≤ h/2).

For generality and convenience, the present formulation is derived using a dimen-

sionless coordinate ξ (−1 ≤ ξ ≤ 1) for the radial direction defined as follows

ξ =
r

γ
− δ (1)

where

γ =
Ro − Ri

2
(2)

δ =
Ro +Ri

Ro −Ri
(3)
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Figure 1: Geometry of an annular plate.

The displacement vector u = u(ξ, θ, z, t) of a generic point of the plate is given by

u(ξ, θ, z, t) =

⎧

⎨

⎩

uξ(ξ, θ, z, t)
uθ(ξ, θ, z, t)
uz(ξ, θ, z, t)

⎫

⎬

⎭

(4)

Strain components can be grouped into an in-plane strain vector εp and out-of-plane

(normal) strain vector εn as follows

εp =

⎧

⎨

⎩

εξξ
εθθ
γξθ

⎫

⎬

⎭

εn =

⎧

⎨

⎩

γξz
γθz
εzz

⎫

⎬

⎭

(5)

Within the framework of linear, small strain, elasticity theory, strain vectors are related

to displacements through the following equations

εp = Dpu (6)

εn = Dnu+Dzu (7)

where

Dp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

1

γ

)

∂

∂ξ
0 0

(

1

γ

)

1

ξ + δ

(

1

γ

)

1

ξ + δ

∂

∂θ
0

(

1

γ

)

1

ξ + δ

∂

∂θ

(

1

γ

)[

∂

∂ξ
−

1

ξ + δ

]

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)
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Dn =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

(

1

γ

)

∂

∂ξ

0 0

(

1

γ

)

1

ξ + δ

∂

∂θ

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

and

Dz = diag

[

∂

∂z

]

(10)

Accordingly, the stress vector can be partitioned into in-plane σp and out-of-plane

σn components. Using Eqs. (6) and (7), the three-dimensional Hooke’s law can be
written as

σp = CppDpu+CpnDnu+CpnDzu

σn = CnpDpu+CnnDnu+CnnDzu
(11)

where the following matrices of stiffness coefficients are introduced:

Cpp =

⎡

⎣

C11 C12 0
C12 C22 0
0 0 C66

⎤

⎦ , Cpn =

⎡

⎣

0 0 C13

0 0 C23

0 0 0

⎤

⎦

Cnp =

⎡

⎣

0 0 0
0 0 0
C13 C23 0

⎤

⎦ , Cnn =

⎡

⎣

C55 0 0
0 C44 0
0 0 C33

⎤

⎦

(12)

In the case of isotropic materials, the elastic coefficients are given by

C11 = C22 = C33 =
E(1− ν)

(1 + ν)(1− 2ν)

C12 = C13 = C23 =
Eν

(1 + ν)(1− 2ν)

C44 = C55 = C66 = G =
E

2(1 + ν)

(13)

in which E is the Young’s modulus, ν is the Poisson’s ratio, and G is the shear modu-

lus.

According to the approach developed by Carrera [26], an entire class of two-
dimensional higher-order plate theories can be compactly described through the fol-
lowing indicial notation:

u(ξ, θ, z, t) = Fτ (z)uτ (ξ, θ, t) (τ = 0, 1, . . . , N) (14)

where uτ (ξ, θ, t) is the displacement vector containing the unknown kinematic vari-
ables related to the specific plate theory, τ is an integer index related to the order N
of the theory and Fτ (z) are selected functions in the thickness direction. The summa-
tion convention on indices appearing twice is implied in Eq. (14). In this work, the z
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expansion is implemented via Taylor polynomials. For the sake of brevity, a higher-
order theory of order N will be indicated in the following by HOTN . For example,

HOT3 is a plate theory of order 3 based on the following assumed kinematic field:

uξ = uξ0 + zuξ1 + z2uξ2 + z3uξ3

uθ = uθ0 + zuθ1 + z2uθ2 + z3uθ3

uz = uz0 + zuz1 + z2uz2 + z3uz3

The total number of kinematic degrees of freedom for a given HOTN is 3 (N + 1).
Note that the consideration of higher-order terms in uz allows the inclusion in the

present formulation of thickness-stretching effects.

Assuming a harmonic motion and considering the circumferential symmetry of the
plate about the coordinate θ, the displacements can be expressed as

u(ξ, θ, z, t) = Fτ (z)

⎧

⎨

⎩

ûξτ(ξ) cos (nθ)
ûθτ (ξ) sin (nθ)
ûzτ (ξ) cos (nθ)

⎫

⎬

⎭

ejωt (15)

or, in matrix form,
u(ξ, θ, z, t) = Fτ (z)Θ(nθ)ûτ (ξ)e

jωt (16)

where û’s are amplitude functions of the dimensionless radial coordinate, n = 0, 1, 2, . . .
is the circumferential wavenumber and Θ(nθ) = diag(cosnθ, sin nθ, cosnθ). Note
that n = 0 in Eq. (15) yields axisymmetric vibration which involves only uξ and uz. A

complementary displacement field can be also used by replacing cos(nθ) by sin(nθ),
and conversely, in Eq. (15). In this case, torsional vibration modes are obtained when

n = 0.

A standard Ritz solution is sought for each component of the displacement vector
ûτ (ξ) as follows

ûξτ(ξ) = φξτ i(ξ)cξτ i
ûθτ (ξ) = φθτ i(ξ)cθτ i (i = 1, 2, . . . ,M) (17)

ûzτ(ξ) = φzτ i(ξ)czτ i

where M is the order of the Ritz expansion, cατ i (α = ξ, θ, z) are the unknown Ritz
coefficients, and φατ i are the corresponding Ritz trial functions. Note that, as before

for the theory-related index τ in Eq. (14), Ritz-related dummy index i in Eq. (17) im-
plies summation. The i-th admissible function φατ i(ξ) is chosen here as the product of
boundary-compliant functions and the one-dimensional Chebyshev polynomial [17]:

φατ i(ξ) = f inn
ατ (ξ)f

out
ατ (ξ) cos [(i− 1) arccos(ξ)] (18)

where f inn
ατ (ξ) and f out

ατ (ξ) enable the displacement component uατ to satisfy the ge-
ometric boundary conditions at the inner (ξ = −1) and outer (ξ = +1) edges of

the plate, respectively. The boundary functions corresponding to the most common
boundary conditions are reported in Table 1. It is clear that f inn

ατ (ξ) = 1 in the case
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Boundary condition f inn
ξτ f inn

θτ f inn
zτ f out

ξτ f out
θτ f out

zτ

Clamped 1 + ξ 1 + ξ 1 + ξ 1− ξ 1− ξ 1− ξ
Hard simply supported 1 1 + ξ 1 + ξ 1 1− ξ 1− ξ
Soft simply supported 1 1 1 + ξ 1 1 1− ξ
Free 1 1 1 1 1 1

Table 1: Boundary functions.

of a solid circular plate. Chebyshev polynomials form a complete and orthogonal set

in the interval [−1,+1]. As such, good convergence and numerical stability of the
method are expected.

For the sake of compact notation, Eq. (17) is rearranged in matrix form as follows

ûτ (ξ) = Φτ i(ξ)cτ i (19)

where Φτ i(ξ) = diag(φξτ i,φθτ i,φzτ i) and cτ i = {cξτ i cθτ i czτ i}
T . Therefore, the

displacement vector in Eq. (16) is given by

u(ξ, θ, z, t) = Fτ (z)Θ(nθ)Φτ i(ξ)cτ ie
jωt (20)

The potential and kinetic energy of the plate are expressed, respectively, as

U =
1

2
γ2

+1
∫

−1

2π
∫

0

+h
2

∫

−

h
2

(

ε
T
pCppεp + ε

T
pCpnεn + ε

T
nCnpεp + ε

T
nCnnεn

)

(ξ + δ) dzdθdξ

(21)
and

T =
1

2
γ2

+1
∫

−1

2π
∫

0

+h
2

∫

−

h
2

ρ

[

(

∂uξ

∂t

)2

+

(

∂uθ

∂t

)2

+

(

∂uz

∂t

)2
]

(ξ + δ)dzdθdξ (22)

where ρ is the mass density of the plate. Substituting Eq. (20) into Eqs. (6) and (7) and

using Hooke’s law in Eq. (11), the expressions of the maximum potential and kinetic
energy of the plate vibrating harmonically can be compactly written as follows:

Umax =
1

2
c
T
τ iKτsijcsj (23)

and

Tmax =
1

2
ω2

c
T
τ iMτsijcsj (24)

where s and j are other theory-related and Ritz-related dummy indices, respectively.
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In the above equations, when n ≠ 0, Kτsij and Mτsij are 3× 3 matrices given by

Kτsij = γ2

+1
∫

−1

2π
∫

0

{

[DpΘ(nθ)Φτ i(ξ)]
T [Zpp

τsDp + Z
pn
τsDn

+Z
pn
τs,z

]

Θ(nθ)Φsj(ξ) + [DnΘ(nθ)Φτ i(ξ)]
T [Znp

τsDp

+Z
nn
τsDn + Z

nn
τs,z

]

Θ(nθ)Φsj(ξ) + [Θ(nθ)Φτ i(ξ)]
T
[

Z
np
τ,zsDp

+Z
nn
τ,zsDn + Z

nn
τ,zs,z

]

Θ(nθ)Φsj(ξ)
}

(ξ + δ) dθdξ

(25)

and

Mτsij = γ2

+1
∫

−1

2π
∫

0

[Θ(nθ)Φτ i(ξ)]
T
Z

ρ
τsΘ(nθ)Φsj(ξ) (ξ + δ) dθdξ (26)

where Zpp
τs , . . . ,Z

ρ
τs are matrices of thickness integrals whose expression is given in

Appendix A. Matrices in Eqs. (25) and (26) represent modeling kernels and are called
Ritz fundamental nuclei of the present formulation. Indeed, they are invariant with re-
spect to both the underlying kinematic theory and the set of Ritz admissible functions.

In the case of axisymmetric modes, the condition n = 0 yields fundamental nuclei
Kτsij and Mτsij of dimension 2× 2 since only uξ and uz are involved. In the case of

torsional vibration, the fundamental nuclei reduce to scalar quantities. The elements
of Kτsij and Mτsij are explicitly reported in Appendix B.

The stiffness and mass matrices of the plate are built from the above nuclei through
an assembly-like procedure. The nuclei are first expanded to 3(N + 1) × 3(N + 1)
matrices by varying the theory-related indices τ and s from 0 to N . This expansion
yields

Kij =

⎡

⎣

K00ij K0rij K0Nij

Kr0ij Krrij KrNij

KN0ij KNrij KNNij

⎤

⎦ (27)

Mij =

⎡

⎣

M00ij M0rij M0Nij

Mr0ij Mrrij MrNij

MN0ij MNrij MNNij

⎤

⎦ (28)

where r = 1, . . . , N − 1. Then, the final matrices K and M of dimensions 3M(N +
1) × 3M(N + 1) are generated accordingly through variation of Ritz-related inde-
ces i and j in the above quantities Kij and Mij and by applying the same assembly

operations adopted for the nuclei expansion.

The extremization of the energy functional Π = Umax − Tmax with respect to the
coefficients cτ i yields the following generalized eigenvalue problem:

(

K− ω2
M

)

c = 0 (29)

where c is the vector containing the unknown coefficients csj .
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3 Convergence and stability analysis

The mathematically complete set of admissible functions in Eq. (18) yields upper-

bound frequency values with increasing accuracy towards exact solutions as the num-
ber of terms M retained in the series of Eq. (19) increases. However, nothing can be
said in advance with regard to the efficiency of the present method in terms of rate of

convergence. Furthermore, possible numerical issues associated with ill-conditioned
eigenvalue problems in Eq. (29) can arise when an high number of terms are taken.

3.1 Convergence study

The convergence of the method is discussed by referring to the particular case of a
clamped solid circular plate (Ro = R) with various thickness-to-radius h/R ratios. It

is worth noting that the conclusions outlined in the following are also valid for circular
plates with other boundary conditions and for annular plates having different Ro/Ri

ratios. Clamping boundary conditions have been selected since the convergence is
expected to be slower than for other edge conditions, even for the lowest frequency
parameters [15, 22]. This is mainly due to the difficulty of global trial functions in

approximating the actual displacement field near the fixed boundary. Three cases
are considered corresponding to a thin plate (h/R = 0.01), a moderately thick plate

(h/R = 0.1), and a very thick plate (h/R = 0.5). The first six non-dimensional fre-
quencies λ = ωR2

√

ρh/D, where D = Eh3/12(1−ν2) is the plate bending stiffness,
are listed in Table 2 for three different kinematic theories of increasing complexity

(N = 1, 2, 6). Numerical results are shown as functions of increasing value of order
M for the Ritz expansion in the radial direction. Frequency values with superscripts a
and t denote axisymmetric and torsional vibration modes, respectively, corresponding

to n = 0. In the following, Poisson’s ratio is taken as ν = 0.3.

As expected, all the frequency parameters monotonically decrease with the increase
in the number of admissible functions, regardless of the thickness-to-radius ratio and

the order of the kinematic model.

For each thickness-to-radius ratio, the rate of convergence of the method is very
similar for HOT2 and HOT6. Although corresponding results are not shown here due
to brevity reasons, the same can be said for kinematic models of intermediate order.

From Table 2, it can be seen that fewer terms are needed for the frequency values
to converge when the thickness dimension becomes significant. Indeed, all the first
six frequency parameters converged to five-digit upper-bound values with M = 16
in the case of h/R = 0.5. When thinner plates are considered, the same frequencies
are of only three- or four-digit accuracy even when the order M raises up to 30. A

more rapid convergence as the plate thickness ratio increases has been also observed
in 3-D Ritz-based vibration studies [16]. Moreover, the substantial invariance of the
convergence behavior with respect to the assumed kinematic theory was also found in

previous works on straight-sided plates [22, 23].

By further comparing solutions obtained with N = 2 with those obtained with N =
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Table 2: Convergence of the first six frequency parameters λ = ωR2
√

ρh/D for solid

clamped circular plates.

Mode
N h/R M 1 2 3 4 5 6

1 0.01 8 11.304a 23.518 38.568 43.976a 56.410 67.232
10 11.304 23.518 38.568 43.976 56.409 67.229
20 11.304 23.518 38.568 43.976 56.409 67.229

0.1 8 11.000a 22.324 35.625 40.354a 50.625 59.557
10 11.000 22.324 35.625 40.354 50.624 59.556
20 11.000 22.324 35.625 40.354 50.624 59.556

0.5 8 7.3607a 12.364 13.720 15.705t 17.387 19.102a

10 7.3607 12.364 13.720 15.705 17.387 19.102
18 7.3607 12.364 13.720 15.705 17.387 19.102

2 0.01 8 10.259a 21.345 35.006 39.916a 51.201 61.022
10 10.244 21.314 34.955 39.858 51.129 60.938
20 10.222 21.269 34.881 39.773 51.019 60.808
30 10.218 21.260 34.867 39.757 50.999 60.783
40 10.217 21.257 34.862 39.752 50.992 60.775

0.1 8 10.030a 20.426 32.713 37.085a 46.647 54.963
10 10.019 20.404 32.679 37.048 46.602 54.912
20 10.010 20.386 32.652 37.018 46.566 54.870
30 10.010 20.386 32.652 37.018 46.565 54.869

0.5 8 7.0527a 11.955 13.684 15.705t 16.864 18.548a

10 7.0525 11.955 13.684 15.705 16.864 18.547
16 7.0525 11.955 13.684 15.705 16.864 18.547
18 7.0525 11.955 13.684 15.705 16.864 18.547

6 0.01 8 10.258a 21.343 35.003 39.912a 51.194 61.013
10 10.243 21.312 34.952 39.853 51.122 60.928
20 10.222 21.267 34.877 39.768 51.012 60.798
30 10.217 21.258 34.863 39.752 50.991 60.773
40 10.216 21.255 34.858 39.747 50.984 60.765

0.1 8 9.9973a 20.310 32.449 36.766a 46.167 54.340
10 9.9862 20.288 32.416 36.728 46.121 54.286
20 9.9746 20.265 32.381 36.689 46.073 54.230
30 9.9735 20.263 32.377 36.685 46.068 54.224

0.5 8 6.8094a 11.501 13.659 15.705t 16.234 17.829a

10 6.8075 11.498 13.657 15.705 16.231 17.827
16 6.8060 11.497 13.657 15.705 16.230 17.825
18 6.8060 11.497 13.657 15.705 16.230 17.825
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6, it is noted that, except for the thin case (h/R = 0.01) and the results corresponding
to torsional modes, all the natural frequencies converged to different values according

to the adopted theory. As shown in the next section, the accuracy of the solution for
moderately thick and very thick plates is largely affected by the underlying kinematic

model. In the case of thin plates, frequency values computed by plate theories of
increasing order are all very close to each other and completely consistent with results
obtained from the classical 2-D Kirchhoff theory (see Table 2.1 in [9]).

Tabulated results corresponding to N = 1 show that the rate of convergence of

the method is very fast in that case, regardless of the thickness-to-radius ratio. All
the frequency parameters converged to five-digit upper-bound values with M = 10.
However, it is observed that convergent results are all significantly higher than those

obtained with more refined theories. This behavior is due to a locking mechanism,
known as thickness locking (TL), which occurs when the kinematic model exhibits a

constant distribution of the transverse normal strain εzz [22]. Note that TL effects are
more distinct for thin plates and bending dominated modes and slightly decrease with
increasing thickness. A way to avoid TL when a first-order theory is used is discussed

in the next section.

3.2 Numerical stability

As far as the numerical stability of the method is concerned, it can be noticed from
Table 2 that ill-conditioning of the eigenvalue problem is avoided even when a high

number M of terms is taken to compute the frequency solutions. Indeed, it is shown
in Table 2 that stable numerical analysis can still be carried out when M = 40.

As a further insight, a numerical test involving up to M = 100 terms in the radial
direction is presented in Table 3 by referring again to a clamped circular plate. Only

the thin case with h/R = 0.01 is now considered. Some selected frequency param-
eters λ = ωR2

√

ρh/D corresponding to vibration modes with n = 1 and different
radial mode numbers s = 1, 5, 10, 15, 20, 25 are tabulated using a refined theory of

fourth order (N = 4). It is observed that stable solutions are obtained for both low
and high values of radial wavenumbers. As shown in the table, such immunity against

ill-conditioned behavior can be of great importance in improving the accuracy of the
eigenfrequencies of higher order vibration modes.

4 Numerical assessment

The variable-kinematic Ritz formulation derived in Section 2 is here validated against

some reference solutions available in the literature. In particular, the following anal-
ysis is focused on comparing eigenfrequencies of different annular plates obtained
on the basis of higher-order 2-D theories with those computed using a fully 3-D ap-

proach. Some results are given in tabulated form, so that listed solutions may serve as
benchmark values for future comparison.
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Table 3: Convergence and numerical stability of modes corresponding to n = 1 and
different radial mode numbers s for a solid clamped circular plate with h/R = 0.01
using HOT4.

s
M 1 5 10 15 20 25

10 21.3124 301.531 1487.54 3053.78 5442.73 9136.66
20 21.2670 296.267 876.225 1734.88 2952.54 4338.17
30 21.2582 296.144 875.737 1734.85 2399.24 3232.13
40 21.2555 296.108 875.633 1734.84 2399.24 3189.49
50 21.2547 296.097 875.599 1734.84 2399.24 3189.38
60 21.2544 296.092 875.585 1734.84 2399.24 3189.33
70 21.2542 296.090 875.578 1734.84 2399.24 3189.31
80 21.2541 296.089 875.575 1734.84 2399.24 3189.29
90 21.2541 296.088 875.574 1734.84 2399.24 3189.29
100 21.2541 296.088 875.573 1734.84 2399.24 3189.29

Table 4: Frequency parameters λ = ωR2
o

√

ρh/D for the first eight modes of annular
plates with Ro = (10/3)Ri, h/Ro = 0.2 and various boundary conditions (BCs).

Mode
BCs Method 1 2 3 4 5 6 7 8

FS Present (N = 1) 4.9611 12.171 12.761 15.942 22.959 27.961 32.928 33.166
Present (N = 2) 4.5470 11.365 12.744 15.907 21.107 27.933 31.059 32.042
Present (N = 3) 4.5401 11.240 12.743 15.906 20.856 27.932 30.717 31.553
Present (N = 4) 4.5399 11.240 12.741 15.904 20.852 27.931 30.709 31.543
Present (N = 5) 4.5398 11.239 12.740 15.904 20.852 27.931 30.708 31.542
Present (N = 6) 4.5398 11.239 12.740 15.904 20.852 27.931 30.708 31.542
3D-Ritz [16] 4.5401 11.240 12.742 15.904 20.852 27.931 30.709 31.543

FF Present (N = 1) 4.7487 8.5204 11.462 15.687 16.290 19.438 27.918 28.378
Present (N = 2) 4.6393 7.9075 11.222 15.389 15.662 19.030 27.206 27.779
Present (N = 3) 4.6196 7.8940 11.143 15.189 15.662 18.828 26.815 27.384
Present (N = 4) 4.6196 7.8939 11.143 15.187 15.661 18.826 26.809 27.378
Present (N = 5) 4.6195 7.8939 11.143 15.187 15.661 18.826 26.808 27.377
Present (N = 6) 4.6195 7.8939 11.143 15.187 15.661 18.826 26.808 27.377
3D-Ritz [16] 4.6198 7.8939 11.143 15.189 15.662 18.826 26.810 27.378

FC Present (N = 1) 11.143 17.069 27.808 39.482 39.662 39.964 40.534 44.172
Present (N = 2) 10.553 16.323 26.210 37.101 38.249 39.627 40.534 44.106
Present (N = 3) 10.453 16.035 25.674 36.263 37.403 39.606 40.534 44.083
Present (N = 4) 10.442 16.020 25.645 36.214 37.339 39.598 40.534 44.074
Present (N = 5) 10.440 16.015 25.638 36.202 37.321 39.594 40.534 44.071
Present (N = 6) 10.438 16.013 25.634 36.197 37.313 39.592 40.534 44.068
3D-Ritz [16] 10.448 16.026 25.650 36.220 37.346 39.602 − 44.080
3D-Ritz [17] 10.437 16.012 25.632 36.194 37.309 39.591 40.534 44.066

CC Present (N = 1) 33.182 33.965 37.123 43.579 48.220 52.792 53.107 63.563
Present (N = 2) 31.822 32.548 35.451 41.442 48.220 50.147 53.085 60.479
Present (N = 3) 30.835 31.565 34.456 40.353 48.220 48.835 53.075 58.844
Present (N = 4) 30.741 31.473 34.371 40.271 48.220 48.745 53.071 58.729
Present (N = 5) 30.711 31.444 34.344 40.248 48.220 48.722 53.069 58.704
Present (N = 6) 30.696 31.430 34.333 40.238 48.220 48.713 53.068 58.695
3D-Ritz [16] 30.743 31.474 34.370 40.266 − 48.736 53.072 −

3D-Ritz [17] 30.688 31.422 34.325 40.231 48.220 48.707 53.067 58.689
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The first analysis is referred to annular plates with Ro = (10/3)Ri and h/Ro = 0.2.
Four cases with different combinations of free (F), clamped (C) and hard simply sup-

ported (S) boundary conditions are considered. For the sake of brevity, a two-letter
symbolic notation is used to define the conditions at the inner and outer edges, respec-

tively. The first eight frequency parameters λ = ωR2
o

√

ρh/D are sorted in Table 4
as a result of the adoption of kinematic models of order N = 1, . . . , 6. Present Ritz-
based solutions are computed with M = 30 and compared with those obtained from

three-dimensional analysis using orthogonally generated polynomial functions [16]
and Chebyshev polynomials [17]. Note that missing terms corresponding to mode 7th
and mode 5th for FC and CC boundary conditions, respectively, are related to a tor-

sional mode, which was not computed in [16]. Instead, missing term corresponding
to mode 8th for the case of inner and outer edges clamped is not reported by Liew and

Yang [16]. The following observations can be made from computed results.

First, it is clear from Table 4 that frequency values arising from 2-D models con-
verge towards 3-D based accurate solutions reported in [16, 17] as the order N of the
underlying theory increases. The agreement is excellent when computations are per-

formed using a kinematic model of order 6. The accuracy is slightly worse, but still
very good, for models of lower order. This shows that, using the variable-kinematic

formulation presented in this work, one can easily select the theory refinement needed
to achieve a desired accuracy without any further development effort and without the
complexity and computational inefficiency associated to 3-D models.

Note also that upper-bound results obtained by the present method using N ≥ 4 are

slightly lower than those obtained in [16] from a 3-D analysis. This is probably due to
the relatively low number of Ritz terms taken in the radial and thickness directions in
the 3-D case.

As a third remark, it is found that the accuracy in the computation of natural fre-

quencies corresponding to torsional modes is not affected by the assumed plate theory
and the computed solutions coincide with 3-D values.

Finally, contrary to theories of higher order where at least a parabolic distribution

of transverse displacement component uz is adopted, it is observed that frequency so-
lutions based on HOT1 suffer from the already mentioned effects due to thickness
locking. A known technique to contrast TL consists of modifying the elastic stiffness

coefficients by imposing the condition σzz = 0. In this way, the first-order shear de-
formation theory can be actually obtained from HOT1 using the present formulation.
The reduced elastic coefficients in Eq. (11) are the following

C̃ij = Cij −
Ci3Cj3

C33

(i, j = 1, 2)

C̃ii = χCii (i = 4, 5)
(30)

where χ is the shear correction factor. Frequency parameters obtained with imposition

of σzz = 0 in HOT1 for the same annular plate previously considered are reported in
Table 5. Results are computed with a shear correction factor χ = 5/6. Comparison
with Table 4 shows that the use of reduced elastic coefficients provides improved
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Table 5: First eight frequency parameters λ = ωR2
o

√

ρh/D of annular plates with
Ro = (10/3)Ri, h/Ro = 0.2 and various boundary conditions. Results obtained by
imposing σzz = 0 in HOT1.

Mode
BC 1 2 3 4 5 6 7 8

FS 4.5328 11.205 12.711 15.875 20.740 27.931 30.530 31.301
FF 4.6160 7.8878 11.126 15.146 15.659 18.778 26.674 27.279
FC 10.365 15.895 25.384 35.763 36.860 39.424 40.534 43.901
CC 30.146 30.878 33.775 39.638 47.999 48.220 52.997 57.793

results. However, except for the torsional modes, frequencies are now underestimated,
as previously pointed out by So and Leissa [15].

Another illustrative example is referred to a completely free annular plate with
Ro/Ri = 2 and two different thickness-to-outer-radius ratios, h/Ro = 0.4 and h/Ro =
1. The first four non-dimensional frequencies λ = ωRo

√

ρ/G corresponding to an-
tisymmetric modes are shown in Table 6 for circumferential wavenumber n ranging
from 0 to 3. Present solutions, computed with M = 30 and based on kinematic the-

ories of order N = 3 and N = 6, are compared with the 3-D Ritz series solutions
available in [15]. Similar conclusions to those outlined in the previous example can

be drawn. In particular, it can be observed that a kinematic theory of moderate re-
finement (N = 3) is largely acceptable in providing accurate frequency solutions in
the case of h/Ro = 0.4 over the whole frequency range considered in the comparison

study. However, when relatively high-order modes of very thick plates are of inter-
est, a 2-D kinematic theory of high refinement is required to achieve a high degree of

accuracy. This is evident by examining the third and fourth modes corresponding to
n = 0 when h/Ro = 1.

The last assessment involves an annular circular plate with an inner-to-outer-radius
ratio Ro/Ri = 5.0 and a thickness-to-radius ratio h/Ro = 0.5. In this compari-

son study, the first 40 frequency parameters of antisymmetric and symmetric modes
corresponding to circumferential wavenumbers n = 0, 1, 2, 3 are computed for two
boundary conditions: a plate with free inner edge and clamped outer edge (FC), and a

plate with both edges clamped (CC). Figures 2 and 3 show the percentage differences
with respect to 3-D results given in [17] expressed by

∆% =
(2-D frequency)N − (3-D frequency)

(3-D frequency)
× 100 (31)

where (2-D frequency)N refers to a frequency solution based on a refined 2-D theory of
order N . In particular, comparison with 3-D analysis is given when N = 3, 4, 5 and 6

is adopted. Graphical results clearly show, in both cases, that HOT3 gives reasonably
accurate frequencies (differences within 2.5%) when the radial mode number s for

each n is less than 10. Serious disagreement is observed for higher values of the
wavenumber, unless the 2-D kinematic model is suitably enriched with additional
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Table 6: Frequency parameters λ = ωRo

√

ρ/G for the first four antisymmetric modes

of completely free annular plates with Ro = 2Ri.

Mode
h/Ro n Method 1 2 3 4

0.4 0a Present (N = 3) 1.388 8.344 9.167 14.498
Present (N = 6) 1.388 8.321 9.127 14.133
3D-Ritz [15] 1.388 8.321 9.127 14.133

1 Present (N = 3) 1.944 8.049 8.554 8.974
Present (N = 6) 1.943 8.039 8.534 8.945
3D-Ritz [15] 1.943 8.039 8.534 8.945

2 Present (N = 3) 0.691 3.127 8.422 8.814
Present (N = 6) 0.691 3.123 8.400 8.793
3D-Ritz [15] 0.691 3.123 8.400 8.793

3 Present (N = 3) 1.681 4.459 8.834 9.007
Present (N = 6) 1.680 4.450 8.808 8.986
3D-Ritz [15] 1.680 4.450 8.808 8.986

1 0a Present (N = 3) 1.984 6.129 9.360 10.411
Present (N = 6) 1.984 5.775 8.329 9.355
3D-Ritz [15] 1.984 5.772 8.258 9.084

1 Present (N = 3) 2.002 3.939 6.145 7.959
Present (N = 6) 1.999 3.930 5.842 7.719
3D-Ritz [15] 1.999 3.930 5.839 7.706

2 Present (N = 3) 1.040 2.858 5.213 6.424
Present (N = 6) 1.039 2.846 5.173 6.160
3D-Ritz [15] 1.039 2.846 5.172 6.157

3 Present (N = 3) 2.326 3.975 6.521 7.072
Present (N = 6) 2.320 3.947 6.393 6.808
3D-Ritz [15] 2.320 3.946 6.392 6.805
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higher-order terms. Except for some axisymmetric modes at very high frequency
in the CC case, a substantial invariance of the degree of accuracy with respect to 3-

D values is obtained when N ≥ 5. Note also that, for each vibration category n,
the discrepancy between 3-D results and 2-D solutions exhibits an overall increasing

mean trend, but locally the percentage difference can be strongly dependent on the
mode type. This is seen for example for modes (n, s) = (3, 20) and (3, 26) in Fig. 2
in the case N = 3. The present behaviour is more pronounced when theories of low

order are used.

5 Conclusions

A novel variable-kinematic Ritz formulation capable of handling in an unified way an
entire class of 2-D higher-order kinematic theories for accurate vibration analysis of

circular and annular plates of any thickness has been derived. The method relies on
suitable expansion of invariant kernels of the mass and stiffness matrix. The invariance

is to be intended with respect to both the order of the theory and the type of Ritz trial
functions. Considering the circumferential symmetry of the problem under study, the
present method is computationally efficient even if kinematic models of high order are

used.

Upper-bound frequency values have been presented using products of boundary-
compliant functions and Chebyshev polynomials. It has been shown that the method
exhibits good convergence properties and high numerical stability. As expected, in-

creasing accuracy towards 3-D values in terms of frequency parameters has been found
with theory refinement. Kinematic plate models of lower order are more sensitive to

thickness-to-radius ratio, whereas accuracy is substantially independent from the plate
thickness when a highly refined theory is adopted. This conclusion is also valid with
reference to the frequency range of interest. Two examples have been provided to

show the importance of refined models in the numerical evaluation of higher vibration
modes.
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Appendix A

By introducing the following thickness integrals

Eτs =

+h/2
∫

−h/2

Fτ (z)Fs(z)dz Eτs,z =

+h/2
∫

−h/2

Fτ (z)
dFs(z)

dz
dz

Eτ,zs =

+h/2
∫

−h/2

dFτ (z)

dz
Fs(z)dz Eτ,zs,z =

+h/2
∫

−h/2

dFτ (z)

dz

dFs(z)

dz
dz

the matrices Zpp
τs , . . . ,Z

ρ
τs in Eqs. (25) and (26) are defined as follows:

Z
pp
τs = EτsCpp Z

pn
τs = EτsCpn

Z
np
τs = EτsCnp Z

nn
τs = EτsCnn

Z
pn
τs,z = Eτs,zCpn Z

nn
τs,z = Eτs,zCnn

Z
np
τ,zs = Eτ,zsCnp Z

nn
τ,zs = Eτ,zsCnn

Z
nn
τ,zs,z = Eτ,zs,zCnn Z

ρ
τs = Eτsρ
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Appendix B

After introducing the quantities

Γc =

2π
∫

0

cos2(nθ)dθ (n = 0, 1, 2, . . . )

Γs =

2π
∫

0

sin2(nθ)dθ (n = 0, 1, 2, . . . )

and defining the following integrals

Iabcαβ =

+1
∫

−1

daφατ i

dξa
dbφβsj

dξb
(ξ + δ)c dξ

the elements of the stiffness fundamental nucleus Kτsij can be explicitly written as
follows:

Kτsij(1, 1) = EτsC11 ΓcI
111
ξξ + EτsC22 ΓcI

00−1
ξξ + EτsC12 Γc

(

I100ξξ + I010ξξ

)

+ EτsC66 n
2 ΓsI

00−1
ξξ + Eτ,zs,zC55 γ

2 ΓcI
001
ξξ

Kτsij(1, 2) = EτsC12 nΓcI
100
ξθ + EτsC22 nΓcI

00−1
ξθ + EτsC66 nΓs

(

I00−1
ξθ − I010ξθ

)

Kτsij(1, 3) = Eτs,zC13 γ ΓcI
101
ξz + Eτs,zC23 γ ΓcI

000
ξz + Eτ,zsC55 γ ΓcI

011
ξz

Kτsij(2, 1) = EτsC12 nΓcI
010
θξ + EτsC22 nΓcI

00−1
θξ + EτsC66 nΓs

(

I00−1
θξ − I100θξ

)

Kτsij(2, 2) = EτsC22 n
2 ΓcI

00−1
θθ + EτsC66 Γs

(

I111θθ − I100θθ − I010θθ + I00−1
θθ

)

+ Eτ,zs,zC44 γ
2 ΓsI

001
θθ

Kτsij(2, 3) = Eτs,zC23 nγ ΓcI
000
θz − Eτ,zsC44 nγ ΓsI

000
θz

Kτsij(3, 1) = Eτ,zsC13 γ ΓcI
011
zξ + Eτ,zsC23 γ ΓcI

000
zξ + Eτs,zC55 γ ΓcI

101
zξ

Kτsij(3, 2) = Eτ,zsC23 nγ ΓcI
000
zθ −Eτs,zC44 nγ ΓsI

000
zθ

Kτsij(3, 3) = EτsC55 ΓcI
111
zz + EτsC44 n

2 ΓsI
00−1
zz + Eτ,zs,zC33 γ

2 ΓcI
001
zz

The non-null elements of the mass fundamental nucleus Mτsij are given by

Mτsij(1, 1) = Eτsρ γ
2 ΓcI

001
ξξ

Mτsij(2, 2) = Eτsρ γ
2 ΓsI

001
θθ

Mτsij(3, 3) = Eτsρ γ
2 ΓcI

001
zz

By setting n = 0 in the above equations, axisymmetric modes are obtained. Note

that, in this case, Kτsij(1, 2) = Kτsij(2, 1) = Kτsij(2, 2) = Kτsij(2, 3) = Kτsij(3, 2) =
0 and Mτsij(2, 2) = 0.
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In the case of torsional modes, the circumferential is once again null, but now Γc is
replaced by Γs and conversely. Therefore, the only non-zero terms are the following:

Kτsij = EτsC66 Γc

(

I111θθ − I100θθ − I010θθ + I00−1
θθ

)

+ Eτ,zs,zC44 γ
2 ΓcI

001
θθ

Mτsij = Eτsρ γ
2 ΓcI

001
θθ
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