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Abstract 

Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be 

subject to failure in case of local removal of the oxide film due, for example, to incorrect 

handling during transport, installation, or use. Depending on part size and usage, an 

electrochemical anodizing treatment could be not feasible. In this case, localized chemical 

oxidation treatment could be used to recover damaged film and restore corrosion 

resistance. Chemical oxidation was performed on titanium by immersion in NaOH 10 M and 

H2O2 10 M at temperature from room to 90°C with duration ranging between 1h and 72h. 

Potentiodynamic tests in bromides 0.5 M were used to determine the effectiveness of the 

treatment in relation with the one obtained with anodic oxidation. Higher bath temperature 

led to faster growth of the film, however it has no effect on the final corrosion resistance. 

Breakdown potential in bromides increased with treatment duration. The establishment of a 

plateau occurs at earlier stage, as temperature is increased. Titanium samples anodized and 

then scratched, to simulate film mechanical removal, were recovered using chemical 

oxidation and initial corrosion resistance was restored. The suggested treatments for in-situ 

recovery are 72h of exposure to NaOH or 6h at H2O2 at room temperature. 

Keywords: Titanium oxidation; chemical oxidation; anodizing; TiO2; surface treatment 

1 Introduction 

Titanium and its alloys are widely appreciated for their high corrosion resistance in 

environments that are critical even for high-end stainless steel (duplex UNS S31803 and UNS 

S32750), such as concentrated chlorides [1,2]. This resistance is due to a thin (1.5 nm - 10 

nm) [3] but compact oxide layer that is naturally formed when the metal is exposed to the 

air. For this property, together with high strength, high fracture toughness and low density, 

[4,5] titanium is used where other metals would fail, such as offshore, acid environment, 

aerospace [6,7], automotive, high temperature, chemical & food industry [8–14]. 
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In such aggressive environments, commercially pure titanium may suffer different form of 

corrosion [15,16], as pitting promoted by the presence of concentrated halides, hot salty 

water or bromide salts [3,17]. 

To improve titanium corrosion resistance, Ti alloys with palladium were developed [18], 

together with alternative surface techniques, such as nitration, that consist in introducing 

nitrogen in the first µm of the surface to promote the formation of TiN. [19,20] These 

methods, acting on titanium composition, are effective but complicated to perform and 

expensive as well other surface coating techniques, such as vacuum plasma spray coating, 

plasma spraying and chemical vapor deposition. [21] 

For this reason, treatments that act on the naturally formed passive layer are preferred. The 

easiest and cheapest treatment to adjust oxide layer is anodic oxidation. It consists in 

applying an anodic polarization of several tens of volts to the metal, promoting the growth 

of a compact, adherent and corrosion resistant oxide with thicknesses ranging from about 

40 nm with anodizing potential 10 V, to about 250 nm at 100 V. [22–24] 

However, in case of already installed part, localized treatment, small part or complex 

geometry, anodic oxidation could be un-feasible. In these cases chemical oxidation would be 

suitable to provide the corrosion resistance enhancement needed. Moreover, chemical 

oxidation can be used to restore mechanically disrupted oxide continuity. Abrasions and 

scratches during parts transport or installation can lead to lack of protection where anodic 

oxide is locally removed. In-situ recovery prevents the need of part re-treatment. 

Most common reagents used for chemical oxidation are alkoxides (e.g. NaOH, KOH) and 

hydrogen peroxide [25–27]. Sodium and potassium hydroxide dissociate in water releasing 

metal cation and hydroxide anion. The latter promotes titanium oxide growth [28]. Hydrogen 

peroxide treatment has been less investigated in literature; the proposed mechanism of 

oxide formation pass through numerous intermediates [26–29], with the formation of OH 

radicals resposnible of Ti oxidation. 

The purpose of this work was to find key parameters that influence the formation of 

chemically promoted oxide layer, to tune them in order to achieve the highest corrosion 

resistance and to use this treatment to spot recover oxide on previously anodized parts. 

2 Materials and Methods 

2.1 Specimens 

Samples with dimensions 20x20x1.6 mm were cold-cut from a titanium UNS R50400 (ASTM 

grade 2) sheet, and polished with 100 and 300 grit silicon carbide paper. To remove possible 

surface contaminations, the specimens were degreased with ethanol in ultrasonic bath for 

4 minutes and then rinsed in distilled water in ultrasonic bath for 4 minutes. 
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2.2 Passivation 

2.2.1 Hydroxides 

NaOH was used for its ease of production and storage, and for its tendency to produce less 

porous and more compact oxide film. [25] Treatments were performed by soaking titanium 

samples in 100 ml beakers, with different quantity of electrolyte: 10 ml, 50 ml and 100 ml. 

Different soaking duration were tested: 3h - 6h - 12h - 24h - 72h. NaOH concentration was 

10 M and  50 M. Temperature was kept at 25°C and 60°C. 

Temperature was maintained below 60°C to avoid hydrogen embrittlement due to the 

formation of titanium hydrides with hydrogen generated by the secondary reaction: [28] 

                  

Post-treatment annealing was performed on some samples to convert sodium titanate 

hydrogel, formed on the surface during chemical oxidation, into amorphous titanate layer, in 

order to reduce protective layer porosity. [30,31] Annealing treatments were performed at 

400°C, 500°C or 600°C for 1 hour in air. 

2.2.2 Hydrogen Peroxide 

Hydrogen peroxide treatments were performed in a 10 M H2O2 solution, prepared few 

minutes before the treatment, from a H2O2 solution (35% wt.) stored at 5°C to prevent 

thermal decomposition. Treatments were performed in 50 ml or 100 ml of solution, with 

duration ranging from 6h to 24h and temperatures from 25°C to 90°C. Due to the high 

decomposition rate of H2O2, the minimum solution quantities tested was 50 ml. With lower 

solution quantity, the H2O2 decomposition becomes relevant, then affecting the solution 

concentration during the test. 

Annealing was performed at either 350°C, 400°C, 450°C 500°C, 600°C and 700°C for 1h. 

Annealing is reported to be able to positively modify surface morphology by decomposing 

oxygen bubbles from the gel layer of the reaction products attached to the surface, causing 

the appearance of grooved structure on the surface during the heating process.[27] 

2.3 Microscopy 

After chemical oxidation, field emission SEM FEI Nova nanoSEM 450, and tungsten filament 

SEM Stereoscan 360 were used to characterize samples morphology and oxide thickness. 

Sacrificial samples were bent to a narrow curvature radius to promote film rupture. Scales 

detached in this way were gold sputtered, turned by 90° and observed in cross-section. 

The presence of crystalline structure in the oxides was detected using XRD technique with a 

diffractometer model Phillips PW 1830, able to generate a Cu-Kα radiation with a 

wavelength of 0.154 nm. This technique does not allow the measurement of absolute 
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crystalline fraction, but was used to detect the presence of sodium titanate after NaOH 

treatments of different durations, comparing the amount by normalizing sodium titanate 

peaks height with the titanium principal one. 

2.4 Corrosion test 

Samples corrosion resistance were characterized with potentiodynamic tests performed 

with MetroOhm Autolab potentiostat M204. A standard 3-electrode 1 liter cell was used. An 

activated titanium counter electrode, a silver/silver chloride (SSC) reference electrode and a 

working electrode 1 cm2 of exposed area were used. Tests were carried out in 0.5 M 

ammonium bromide [32]. Open circuit potential (OCP) was recorded for 1h of sample 

immersion in the testing solution. Then potential was scanned from – 0.1 V vs OCP up to 8 V 

vs SSC with a scan rate of 20 mV/min. A current density of 10 A/m2 was chosen as threshold 

to define localized oxide breakdown. 

As the duration of each test did not exceed 8h, no sealing was considered. Previous works on 

titanium oxide tested in such conditions showed that nor chemical (ΔpH ≈ 0.05) nor physical 

(ΔT ≈ 2°C) deviations were expected [24]. In order to ensure repeatability, a minimum of 

three measurements were made for each treatment. 

2.5 Scratch test 

To simulate and abrasion event occurred during part transportation, installation or usage, 

anodized samples were scratched, leading to a partial removal of protective oxide. Scratched 

samples were then vibrated in ethanol and rinsed in water to remove possible silicon carbide 

embedded particles. 

For a reproducible scratching procedure, a rectangular strip of grit 300 emery paper (1 cm x 

4 cm) was dragged over the titanium coupon for its whole length, being subject to a weight 

of 1 kg over its 4 cm2 surface. A uniform pressure was guaranteed by placing supports of the 

same height of the sample (Fig. 1) 

 

Figure 1 Scheme of scratching mechanism 

Anodized and scratched samples were then subject to chemical oxidation to repair the 

oxide. 
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3 Results and Discussion 

3.1 Solution concentration and quantity 

The effect of the volume of solution on titanium corrosion resistance is shown in Fig. 2. The 

five-plotted curves are a representative of all the repetitions performed. Blue curves 

describe the corrosion behavior observed on titanium anodized in 10 ml, 50 ml and 100 ml 

of NaOH. The effect on localized corrosion lays within the experimental error. The same 

phenomenon is observed on red curves, obtained on titanium anodized in different volumes 

of H2O2. 

 

 

Figure 2 Effect of NaOH and H2O2 treatment solution volume on samples corrosion resistance to 
NH4Br 0.5 M 

 

From this observation, two contrasting hypothesis were made. 

The chemically developed oxide growth has linear kinetic and the amount of reagent 

consumed in 24h at 60°C is lower than the one contained in 10 ml of solution 10 M. So it is 

not entirely consumed by the oxidation and an increased amount of available reagent does 

not contribute to oxide growth. 
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The second hypothesis is that the growth kinetic decreases exponentially so the film formed 

in the first stage leads to the shown increase in corrosion resistance. Any further exposure to 

the solute contributes only marginally to the oxide growth and the effect are not visible on 

the breakdown potential. 

To discern the correct hypothesis, the treatment was repeated by considering 50 M NaOH. In 

case of linear growth, the exposure to a more concentrated reagent would lead to an 

appreciably thicker oxide. On the other side, if after the initial oxidation the oxide growth 

rate progressively slow down to negligible values, the higher concentration would not lead 

to higher corrosion resistance. 

The effect of NaOH concentration increase from 10 M to 50 M is shown in Fig. 3. 

 

Figure 3 Effect of NaOH concentration on samples corrosion resistance to bromides 0.5 M 

No differences in corrosion resistance were observed with NaOH concentration increase. 

It is important to notice that, even if it does not affect the final corrosion resistance, the 

increase in concentration modifies oxide growth kinetic enough to produce different 

aesthetic appearance of the oxide. Titanium oxide interference color is strongly dependent 

on oxide thickness, its variation (visible in Fig. 4) indicates a difference in oxide thickness on 

samples produced with 10 M and 50 M NaOH. 
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Figure 4 Sample aesthetic appearance changing passing from 10 M NaOH (left) to 50 M NaOH (right) 
treatment conducted for 24h at 60°C 

3.2 Treatment duration and temperature 

Under the hypothesis, confirmed by Fig. 3, that a plateau exists after which the oxide growth 

become too slow to affect corrosion resistance, the time of establishment of this plateau at 

a temperature of 60°C was searched. Fig. 5 shows the results of at least three 

potentiodynamic tests performed on samples treated for 1h, 6h, 12h, 18h, 24h and 72h at 

60°C in NaOH. 

 

 

Figure 5 Effect of treatment temperature and duration on NaOH chemical oxidized samples 
breakdown potentials in NH4Br 0.5 M 

After 12h of treatment the increase of corrosion resistance become negligible and the only 

effect is a narrowing of results distribution due to a stronger and more reliable oxide film. 
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The existence of a similar plateau was investigated also at room temperature, in order to 

simplify a possible in-situ treatment, without the requirement of a local heat at 60°C for 

many hours. Results are shown in Fig. 5. Lowering the temperature has the effect to increase 

the time necessary to get the maximum corrosion resistance plateau. In both the cases, the 

final corrosion resistance is not influenced by treatment temperature. 

To validate oxide growth kinetic hypothesis, SEM observations of oxide cross-section were 

performed to measure the oxide thickness. Fig. 6 shows the cross-section of an oxide 

obtained by soaking titanium for 12 hours in NaOH 10 M. Oxyde thickness is about 1 m. 

Fig. 7 reports the thickness of the oxide obtained at different soaking duration in NaOH 10 M 

at 60°C. 

 

Figure 6 SEM observed cross section of the oxide produced by 12 hours of treatment in NaOH 10 M 

 

Figure 7 Effect of NaOH treatment duration on titanium oxide thickness at 60°C 
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Oxide growth rate is about 117 nm/h in the first 6h, then 50 nm/h passing from 6h to 9h and 

83 nm/h from 9h to 12h, but drop down to 4 nm/h passing from 12h to 24h of treatment. 

These data correlate the stabilization of corrosion resistance given by increasing treatment 

duration with oxide growth kinetic. 

The low conductivity of TiO2 film, in the order of 10-11 S/m [33], hinders current flow from 

the electrolyte to the sample, increasing ohmic drop at the interface. Thus, thicker oxides 

provide higher corrosion protection if their composition and phase remains constant. It was 

proved that, if the oxide grow in thickness but increase in crystallinity, no advantage on 

corrosion resistance is provided. [24] 

The same trend was found on H2O2 treatments, as reported in Fig. 8. 

 

 

Figure 8 Effect of treatment temperature and duration on H2O2 chemical oxidized samples breakdown 
potentials in NH4Br 0.5 M 

Increasing temperature from 25°C to 90°C and duration from 6h to 24h does not lead to any 

significant variation in corrosion resistance. The establishment of the plateau on H2O2 occurs 

before 6h at 25°C, suggesting a faster kinetic compared to NaOH. 

3.3 Post annealing treatment 

To achieve better corrosion resistance in bromides, overcoming the 4 V breakdown potential 

plateau observed in both NaOH and H2O2 treatments, annealing for 1h at 400°C and 600°C 

was performed. Fig. 9 compares between the effect of calcination. Thermal treatment has a 

moderate effect on corrosion resistance of non-pre-oxidized titanium, due to the thickening 

of titanium dioxide during the thermal oxidation. Annealing has no effect at both 
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temperatures on samples treated in NaOH, while is has an interesting effect on titanium 

oxidized in NaOH promoting an increase of the breakdown potential up to 6.5 V SSC. 

 

Figure 9 Effect on breakdown potential in NH4Br 0.5 M of thermal treatments at 400°C and 600°C for 
1h on non-treated titanium, NaOH oxidized titanium and H2O2 oxidized titanium 

As a positive effect of annealing on H2O2 treated titanium is reported in literature [34], the 

duration of the treatment was doubled. No effect on corrosion resistance was observed 

(Fig. 10). 

 

Figure 10 Effect of thermal treatments duration on breakdown potential in NH4Br of samples oxidized 
in NaOH at 60°C for 24h 
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The positive effect of annealing on titanium treated with H2O2 was further investigated, by 

performing SEM analysis on the treated surface. The oxide obtained at room temperature 

has a disordered lamellar structure with cracks 0.1-0.2 m wide (Fig. 11). This structure does 

not change up to 500°C (Fig. 12). At higher temperature, cracks are recovered, mainly due to 

the thermal film growth. This has been assume the reason of the enhanced corrosion 

resistance of samples treated at higher temperatures (Fig. 9). 

 

Figure 11 Surface morphology of samples treated in H2O2 for 6h at 25°C without any further 
treatment 

 

Figure 12 Surface morphology of samples treated in H2O2 for 6h at 25°C and subject annealing at: a) 
350°C, b) 400°C, c) 450°C, d) 500°C, e) 600°C, f) 700°C 

 



 12 

3.4 Recovery 

In order to test the recovery capability of the chemical oxidation treatments, 

electrochemical anodized samples were abraded and then treated by chemical oxidation. An 

anodizing voltage of 20 V was selected to simulate a possible industrial treatment. Scratches 

were carried out according to procedure described in par. 2.5. 

In Fig. 13 breakdown potentials in NH4Br 0.5 M solution of non-treated sample, anodized 

sample, scratched sample and recovered sample are shown. 

 

Figure 13 Comparison of breakdown potential in NH4Br 0.5 M solution of samples subject to 
anodization or/and chemical oxidation treatment 

Anodization process increases breakdown potential of about 3 V, even at low anodizing 

voltage (20 V). After scratch, corrosion resistance abruptly decreases to values close to the 

non-treated one, and the variability of measurements increases significantly. 

Although NaOH 10 M treatment was theoretically able to increase breakdown potential to 

4 V in 24h at 25°C, to repair scratched samples 72h at 25°C or 24h at 60°C are necessary. 

H2O2 10 M treatment was able to recover corrosion resistance in 6h at 25°C. This solution it 

is more difficult to handle and more prone to self-decomposition, so, even if it requires 

lower treatment time, its usage is deprecated in favor of NaOH. 
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4 Conclusion 

Commercially pure titanium ASTM grade 2 was chemically oxidized using NaOH and H2O2. 

The effects of solution concentration and quantity on corrosion resistance to NH4Br 0.5 M 

environment were studied, together with the influence of treatment temperature, duration 

and the presence of post-treatment annealing. 

A plateau of corrosion resistance was identified in both the oxidizing solution. After the 

establishment of that plateau, any further increase of treatment duration, temperature, 

solution concentration and solution volume leads to a marginal increase of oxide thickness, 

without any noticeable effect on corrosion resistance. SEM oxide thickness measurement 

were performed to confirm the relation between corrosion resistance plateau and oxide 

thickness growth kinetic. The establishment of a plateau after which no further oxide growth 

occurs at appreciable velocity was proved. 

This plateau, and the associated maximum of corrosion resistance is achieved after 12h at 

60°C and after 24h at room temperature in NaOH. In H2O2, kinetic is faster and the same 

corrosion resistance is achieved in 6h at room temperature. 

The effect of annealing at 400°C and 600°C on chemically oxidizes titanium was studied. 

Samples treated in NaOH do not show any improvement in corrosion resistance. Annealing 

has a strong effect on breakdown potential in bromides environment when applied to 

samples oxidized in H2O2. This is caused by the deep morphology changes occurring on 

samples surface during thermal treatment, as observed through the observation of samples 

annealed at temperatures ranging from 350° to 700°C. 

The best chemical oxidation procedures were applied as repairing treatment to recover the 

corrosion resistance on damaged electrochemical anodized titanium. Results showed that 

NaOH treatment 24h long at 60°C or 72h long at 25°C can restore the original corrosion 

resistance of a 20 V anodized sample. H2O2 treatments requires only 6h at 25°C. For this 

reason, H2O2 treatment is suggested in case a short treatment time is required, while NaOH, 

being more stable and easier to store, is preferred when fast treatment is not required. 
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