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I. INTRODUCTION

K NOWING the acoustic properties of reflective surfaces 
a given environment is of crucial importance for a wide

range of applications of space-time audio processing. Applica-
tions of acoustic rendering, for example, are critically depen-
dent on the reverberation in the hosting environment. Failing to
correctly account for reflections on the part of walls and/or ob-
stacles could result in a severely impaired spatial impression of
the acoustic scene. If the locations of walls and their reflective
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properties are known, reverberation can be canceled out up to a
certain degree [1]. Early reflections can even be exploited to en-
hance the spatial impression [2], [3] or to improve the accuracy
of source localization algorithms [4].
In this contribution we propose a methodology for the fre-

quency-subband in-situ estimation of the reflection coefficients
of planar surfaces. An accurate estimation of the reflection co-
efficients is a highly challenging task, which is typically con-
ducted in an acoustically conditioned dedicated environment.
For this purpose, several techniques are available in the litera-
ture, based on the use of impedance tubes [5], [6]. This category
of techniques has been standardized in ISO 10534-1 (for nar-
rowband estimation) [7] and ISO 10534-2 (for wideband esti-
mation) [8]. Impedance tube measurements offer a good level of
accuracy but they are costly and complex to carry out, as a por-
tion of material under test needs to be removed. As an alterna-
tive to the impedance tube methods, reflective properties of wall
material can also be measured in a reverberation chamber. The
related measurement process is standardized in ISO 354:2003
[9]. It is worth noting that the use of a reverberation chamber
requires the whole measurement procedure to be accomplished
in acoustically treated rooms and, therefore, it turns out to be
rather costly for many applications.
A different route is pursued for in-situ measurements. Rele-

vant examples include [10]–[16]. The method in [10] is based
on the analysis of the Acoustic Impulse Response (AIR) be-
tween a source and a microphone, which are aligned perpen-
dicularly to the wall under analysis and in close proximity to
it. In this configuration, the AIR consists of the direct-path
signal between the source and the microphone, the echo re-
lated to the reflection coming from the material under test and
all other reflections. Given a reference AIR between the source
and the microphone, obtained in a separate free-field measure-
ment, the direct-path signal is subtracted from the rest of the
measured AIR. Under the assumption that the reflection from
the material under test and other unwanted reflections do not
overlap in time, they can be readily separated through tem-
poral windowing. The reflection coefficient is then estimated
by comparing the magnitude of direct and reflection paths. This
type of measurement procedure has been standardized in ISO
13472-1 [17]. The method proposed in [11] follows a similar
measurement procedure but estimates the acoustic impedance
(and thus also the reflection coefficient) using the complex
transfer function between the source and the receiver, obtained
as a division of the spectrum of the reflected and direct-path
signals. Authors in [12] propose to use space-time processing
in order to avoid time-domain analysis of the Acoustic Im-
pulse Response. The microphone array is placed between the



source and the reflective surface. The magnitude of the direct
and reflection paths are estimated by steering the maximum
directivity of the spatial response towards the probing source
or the material under test, respectively. The reflection coeffi-
cient is then estimated by comparing the magnitudes of the
direct-path and the reflected signals, similarly to [10]. Spatial
filtering is also used in [13] in order to separate direct and re-
flected paths. The amplitudes of these paths are determined by
means of plane-wave decomposition and the complex ratio of
the reflected and direct-path signal amplitudes determines the
reflection coefficient value. Authors in [14] use a method based
on the combined measurement of the instantaneous sound pres-
sure and sound particle velocity. Provided that the particle
velocity-pressure transducer is adequately calibrated, the pro-
posed method gives reasonably accurate measurements of the
field impedance close to the surface of interest. When the envi-
ronment comprises walls of different materials, the methods in
[10]–[14] require multiple measurements, one per wall, which
results in a rather time-consuming procedure. The method pro-
posed in [15] considers the in-situ estimation of the sound ab-
sorption of all walls in a room as a boundary inverse problem
that is solved using a global optimization algorithm. In partic-
ular, the finite element method (FEM) or the finite difference
method (FDM) is used to model the room and a evolutionary
algorithm minimizes the difference between the modeled pres-
sure values and the values observed at a few measurement
points. In [16], for in-situ measurement of surface properties,
a hemispherical microphone array is designed. Once the sound
pressure distribution on the hemispherical shell is known, the
data is transformed into the Spherical Harmonics (SH) domain.
This data can then be used to derive angle-dependent reflection
properties of surfaces.
The technique proposed in this manuscript aims at estimating

the reflection coefficients of the walls through a single mea-
surement in a frequency-subband fashion. A beamforming tech-
nique allows to estimate the angular distribution of the acoustic
energy “observed” by the microphone array. This distribution
is referred to as angular pseudospectrum [18] or steered re-
sponse power [19]. The angular pseudospectrum is modeled
as a linear combination of multiple contributions related to the
most relevant reflection paths. If we assume to know the geom-
etry; position and radiation pattern of the source; position and
spatial response of the array; such contributions can be mod-
eled up to a scale factor, which nonlinearly depends on the re-
flection coefficients. We propose a two-step iterative estimation
technique based on the Expectation-Maximization (EM) algo-
rithm. The first step estimates the scaling factors, while the latter
determines the reflection coefficients from the scaling factors.
Under the assumption of additive white Gaussian noise, the out-
lined methodology determines a Maximum Likelihood (ML)
estimate.
In [20] the generative model of the pseudospectrum is in-

troduced. However, the method is not based on Expectation-
Maximization, resulting in less accurate estimations, especially
at low frequencies and for highly absorptive materials. In
this manuscript we aim at overcoming these limitations in
two different ways. The first major novelty is in the use of
Expectation-Maximization algorithm, which improves the ac-

Fig. 1. Acoustic wave reflection from a wall.

curacy of the estimation procedure. Secondly, we propose using
a Minimum Variance Distortionless Response (MVDR) beam-
former in order to measure pseudospectra with higher spatial
selectivity.
Although in this paper we consider 3D wave propagation, we

propose a solution based on 2D geometric analysis (i.e., we as-
sume reflections from floor and ceiling to be negligible), which
allows us to adopt an acquisition system based on a circular mi-
crophone array. Note that the extension of the presented method
to the case of 3D geometry is straightforward. This choice, how-
ever, would render the acquisition system to be more expensive
(spherical microphone array) and the acquisition and estimation
process more time-consuming (more variables and unknowns),
unless we were dealing with simple environments, e.g., where
all walls of a shoe-box room were made of the same material
type.
The rest of the manuscript is organized as follows: Section II

formulates the problem of reflection coefficient estimation.
Section III shortly reviews some beamforming techniques
for pseudospectrum measurement. Section IV introduces the
generative model of the pseudospectrum, which constitute the
basis for the rest of the manuscript. In Section V, the algorithm
for the estimation of the reflection coefficient is proposed.
Section VI assesses the accuracy of the technique through ex-
periments based on measured data. Finally, Section VII offers
some concluding remarks.

II. PROBLEM FORMULATION

As discussed in the Section I, in this manuscript we study a
2D floormap of the environment, which allows us to adopt a
circular microphone array for the estimation of the reflection
coefficients. The real-valued reflection coefficient of a material
is defined as the amplitude of a reflected wave relative to an
incident wave [21]. The reflection coefficient value
for the reflector depends on the frequency and the angle of
incidence . We assume that the environment is an enclosure
made of large - relative to the wavelength - planar surfaces, each
with homogeneous properties. Incident waves are assumed to be
reflected by the walls in a purely specular fashion (the angle of
incidence equaling the angle of reflection). We also assume the
size of the array to be small, so that the wavefronts that it senses
can be considered as planar. As shown in Fig. 1, upon specular
wave reflection, the amplitude of the reflected signal is reduced
proportionally to the traveled distance and it is scaled down by
the reflection coefficient . It is known in the literature



(see [21]) that, assuming the boundary to be locally reacting, the
angle-dependent reflection coefficient is given by

(1)

where measures the ratio of the acoustic impendances of
the th wall and air at frequency . If the wall is normal to the
travel direction of the incident wave, (1) reduces to

(2)

In this manuscript, the goal is to estimate from acqui-
sitions by a microphone array of a known source signal.
In addition to the traveled distance and the reflection coef-

ficient, the amplitude of the reflected signal acquired by a mi-
crophone also depends on the amplitude of the emitted signal

, the radiation pattern of the loudspeaker (function
of the direction ), and the directivity pattern of the micro-
phone (function of the direction ). As reflection co-
efficients are generally frequency-dependent, we estimate their
values at different frequencies. However, in order to simplify
the notation, we will omit specifying the frequency variable
(unless explicitly provided in Section III).
The a priori knowledge that is needed for the estimation pro-

cedure consists of the source signal ; the environment geom-
etry; and rough estimates of and . In particular, the
latter two can also be estimated or approximated using methods
presented in [22], [23]. The parameters , , , , and
(i.e., delay corresponding to the travelled distance ) can be ob-
tained from geometrical acoustics relationships (e.g. using the
modeling engine in [24]). Thus the remaining unknowns are the
signal amplitude ; the reflection coefficients at normal-inci-
dence of all reflective surfaces in the environment, ; and the
variance of the additive noise at the microphones.
In what follows, we denote the signal acquired bymicrophone
as and the signals acquired by the microphone array
as . The signals , on the other
hand, denote the modeled signals, obtained using the a priori
information. These signals match except for the magni-
tude of the echoes (which depends on and ) and the noise
component (assumed to be Gaussian). From we obtain the
measured pseudospectrum . Using the a priori informa-
tion, we obtain the modeled pseudospectrum , up to scalar
coefficients, which depend on , and the noise variance. The
aim of the proposed method is to estimate the reflection coeffi-
cients of all walls in the acoustic enclosure by matching these
pseudospectra for all directions .

III. MEASUREMENT OF THE PSEUDOSPECTRUM

When using a microphone array for sampling the sound field,
the angular distribution of the acoustic energy can be estimated
using beamforming techniques on the acquired microphone
signals. For this purpose, the room is scanned using a beam-
former and the output power for each look direction forms the
so-called angular pseudospectrum [18]. Such a spatial power

pseudospectrum for sample look
directions can generally be expressed as

(3)

where is the look direction, denotes the array weight
vector, which depends on the specific beamforming technique,
and denotes the estimate of the autocorrelation matrix of
the microphone signals

(4)

denoting the sample estimate of the expected value. In
principle, the pseudospectrum can be measured using (3)
with computed with any beamforming technique. In this
manuscript, we consider both data-independent and statistically
optimum beamformers, namely the Delay-And-Sum (DAS)
and the Minimum Variance Distortionless Response (MVDR)
beamformers.

A. Delay-and-Sum Beamformer

The pseudospectrum of a Delay-And-Sum (DAS) beam-
former is obtained by substituting into (3), which
yields

(5)

where the steering vector of the array is given by

(6)

and denotes the temporal frequency, is the angle of arrival,
for the circular array with radius ,

is the angle of the th microphone position with respect to the
array center, and is the speed of sound [18].
The DAS is a data-independent beamformer whose design

maximizes the SNR for spatially uncorrelated noise. This means
that it is robust against microphone self-noise and positioning
errors in the microphone rig [25]. On the other hand, it offers
limited spatial resolution at low frequencies.

B. MVDR Beamformer

In order to improve spatial selectivity in the mid/low fre-
quency ranges, superdirective beamformers can be employed.
One such beamformer is the MVDR, whose design is statisti-
cally optimum, as it minimizes the output variance (or power)
subject to a distortionless constraint on its response in the look
direction [26]. The MVDR beamformer solves the following
minimization problem

subject to (7)

The closed-form solution of the weight vector of the beam-
former can be derived, using themethod of Lagrangemultipliers
[27], as

(8)



As superdirective beamformers are highly sensitive to the
microphone self-noise and geometric errors in the array rig,
controlling the robustness of the design is of utmost importance.
With reference to (8), this can be achieved through diagonal
loading (with frequency-dependent loading factors), obtained
with an iterative design scheme [28]. In the optimization
problem (7), improved robustness can be achieved using the
additional White Noise Gain (WNG) constraint

(9)

being the array gain against white noise [25]. In addition,
for the extraction of room reflection signals that have low
energy and are strongly correlated with the direct-path signal
(see model presented in Section IV), focusing matrices and
frequency smoothing techniques [29], [30] can be used for
alleviating the ill-conditioning problem associated to the auto-
correlation matrix , thus increasing the robustness of this
data-dependent beamformer for coherent sources (see [31], [32]
for a detailed discussion). Further robustness can be gained by
smoothing the autocorrelation matrix over time.
The purpose of focusing matrices is to map

the signal space at all frequency bins from the range
onto a common reference frequency
, i.e.,

(10)

where denotes the direc-
tion matrix for sound sources. As these Directions Of Arrival
(DOAs) are known in our scenario, the design of focusing ma-
trices could in principle be performed by rearranging terms in
(10). However, since it has been shown in [30] that unitary fo-
cusing matrices do not change the spatial correlation of noise,
we apply the unitary focusing matrices, which can be computed
by solving the following constrained problem

subject to

(11)

where denotes the Frobeniusmatrix norm and is the iden-
tity matrix. Using (11), the focused and frequency-smoothed
measured autocorrelation matrix is obtained as

(12)

where and
, and and denote the source

and noise autocorrelation matrices, respectively. Finally, substi-
tuting (12) into (8) and (3), the measured MVDR pseudospec-
trum can be estimated.
The MVDR design offers high directivity even at low fre-

quencies and automatic null placement to interferers, which
is beneficial for automatic suppression of the direct path and

Fig. 2. Acoustic propagation and reflection model.

strong reflection signals. However, as this is a signal-dependent
superdirective beamformer, the robustness issues mentioned
above, need to be addressed in order to deal with real micro-
phone arrays and coherent reflection signals.

IV. MODELING THE PSEUDOSPECTRUM

In order to model the pseudospectrum for a given acoustic
scenario, we begin with deriving the model of the signal

acquired by the microphone . With reference to the prop-
agation model of Fig. 2, a source signal (emitted by a loud-
speaker) of amplitude is reflected by a wall in the acoustic
enclosure. Assuming a point source (loudspeaker located in the
far-field), the reflection signal acquired by a microphone can be
written as [21]

(13)

where is the reflection coefficient of the th reflector at
angle ; is the loudspeaker gain in the direction ;
is the microphone gain in the direction ; and are the
traveled distance and the corresponding delay, respectively. As
made explicit in Section II, the term depends also on the
frequency. The signal should therefore be interpreted as
the passband-filtered version of the signal acquired by the mi-
crophone, where the central frequency of the filter is .
Eq. (13) shows that reflected paths have magnitudes that de-

pend on the incidence angle, as already explained by (1). If we
attempted to estimate the reflection coefficient for all possible
incidence angles, we would soon find ourselves with more un-
knowns than measurements. We therefore need to reformulate
the problem in such a way to reduce the number of unknowns to
work on at the same time. This can be done through a process of
“iterative factorization.”We begin with rewriting the expression
of the reflection coefficient in such a way to become the product
of the normal-incidence reflection coefficient (which is the
term we aim to estimate) and a term . This second term
depends on as well, but this dependency can be removed by
computing it from a value of estimated in the previous itera-
tion step. Through this iterative approximation, the unknown
is now shared by all of the incident acoustic paths on reflector ,
which rebalances the number of unknowns with respect to the
number of available measurements.
More specifically, we rewrite (1) as

(14)



where

(15)

depends on as well, because

(16)

However, as our estimation algorithm is iterative, the estimate
of at iteration can be obtained from (16) using

the value of the reflection coefficient obtained in the
previous iteration. More explicitly, we can write

(17)

where

Using the iterative factorization (17) the term is now
known. In fact, is available from the previous iteration
and the incidence angle can be computed using a propagation
modeling engine.
Under the assumptions expressed in Section II (prior knowl-

edge of the signal , of the geometry of the environment, and
rough knowledge of and ), we use the acoustic prop-
agation modeling engine presented in [24] to obtain , , ,
, and . As far as the initialization of the estimation algorithm is
concerned, we set . Note that the function
has two poles in and ; and zeroes
in and . As the normal-incidence re-
flection coefficient grows, in (16) grows as well and
soon tends to 1 (see eq. (15)). This means that with a
sufficiently large , the reflection coefficient (14) is nearly
independent of the angle.
With the above approximation, the reflection signal of Fig. 2

becomes

The known portion of the observed signal can be written as

(18)

The signal amplitude depends on the overall gain of the hard-
ware used for acquiring the signal and, for practical reasons, it is
assumed to be unknown. The unknowns are therefore the wall
reflection coefficients and the signal amplitude of the source,
which can be expressed as a product .
After a number of reflections, such as those shown in Fig. 3,

the signal that is acquired by microphone can be written as

(19)

where is the known portion of the signal corresponding
to the th acoustic path of those that have undergone reflec-
tions, as acquired by the th microphone; is the unknown

Fig. 3. Reflection model for an acoustic environment with two reflectors.

amplitude of the reflected signal; and denotes the ad-
ditive noise, related to the self-noise of the microphone and
on the ADC circuitry. In particular, is the direct path;

collects all the echoes that have bounced off one wall
only, etc.; finally, is the number of reflection paths of re-
flection order . For the case of a rectangular 2D room, we
have and and for the direct path,

, for the first-order reflections,
and , for the second-order reflections,
as shown in Fig. 3. We assume the noise component to
be Gaussian, statistically independent from , and spatially
white. Note that in (19), reflections are modeled up to order
, whereas reflection paths with are assumed to have
very low energy and to fall on the array from directions that
are uniformly distributed, therefore they can be considered as
part of the noise. Note from (19) that the signal-related compo-
nent of contains the term , which is not
known a priori but it is estimated iteratively. Consequently, an
erroneous estimate of could lead to an erroneous value
of . However, note that all the paths that are incident on
the same wall with index share the same unknown . An
error on for a specific path, therefore, does not nec-
essarily leads to an erroneous estimate of . To verify the
convergence of the iterative estimation algorithm, simulations
were conducted and the results are shown in Section VI.
The signals acquired by the -element microphone array are

written in matrix form as

(20)

where

In the following paragraphs, we apply the model of (20) as
a model for the pseudospectrum. First, however, it is worth
noticing that echoes corresponding to different propagation
paths consist of delayed and attenuated replica of the same



Fig. 4. Illustration of the amplitudes of two second-order reflections.

signal , and are therefore highly coherent. This fact has a
relevant impact on the structure of the correlation matrix
in (3). We denote with

(21)

the modeled correlation matrix between the generic echoes
and . Substituting (21) into (3), we obtain

(22)

where the noise is assumed to be statistically independent of
and spatially white with unknown variance , i.e.,

(23)

Applying the DAS beamformer, , yields ob-
viously . For the MVDR beamformer,

depends on the measured autocorrelation matrix, as in
(8). Moreover, focusing and frequency smoothing techniques
are applied to the modeled correlation matrices
and to the noise components, according to the equations that
follow (12) for the measured counterparts. We denote with

the
contribution to the pseudospectrum coming from the acoustic
paths with indices , and , , where the component

is defined as

(24)

The model of the pseudospectrum
is obtained using (24) in (22), which yields

(25)

where .
In order to derive a simplified expression of , we note

that in (25) there are sets of contributions whose
unknown scaling factors correspond to the same
combination of the reflection coefficients and signal ampli-
tude . In order to clarify this fact, Fig. 4 shows two examples
of second-order reflection paths that undergo reflections from

the same walls but in a different order. The angular variation
of reflection coefficients is included in the model , and
therefore these two paths have the same unknown amplitudes

. As a consequence, the autocorrelation
in the pseudospectrum of the first path , the autocor-
relation in the second path , and the crosscorrelations
between these two paths (namely, and ), all
share the same unknown scaling factor in (25). We
therefore group together all pseudospectrum components that
have the same scaling factors, which greatly simplifies the
overall expression of . With reference to the simple scenario
of Fig. 4, we can group and to obtain their
weights and pseudospectrum components as and

. This grouping
operation can be performed using beam tracing [24], by per-
forming a check on paths that undergo the same reflections.
The modeled pseudospectrum finally takes the expression

(26)

where is the number of pseudospectrum compo-
nents after grouping, ,

, and indicates the scale
factor of the pseudospectrum component . As an example,

for the direct path component, for the
autocorrelation of the first-order reflection, for
the crosscorrelation between the direct path and the first-order
reflection, and for the crosscorrelation between
two first-order reflections.
Note that the scaling factors are a product of a vari-

able number of reflection coefficients , the signal
amplitude , and the noise variance ( ). The
nonlinear system of equations to be solved for calculating
the reflection coefficients from the pseudospectrum
scale factors can be transformed into a linear system
of equations by applying a logarithmic transform. For
the example of , the transform results in

. Let us now define

as a vector that contains the logarithms of unknown parameters,
and as a matrix that counts the number of occurrences of the
elements in for each component of . As an example,
the th row of corresponding to is
given by . We can then write the relation be-
tween the component scale factors and unknown parameters
as

(27)

V. REFLECTION COEFFICIENT ESTIMATION

The procedure for the estimation of the reflection coefficients
is based on the matching between the measured pseudospectrum
(3) and the modeled pseudospectrum (26)

(28)

In (28), the pseudospectrum vector represents the measure-
ments acquired by the microphone array and contains the



Fig. 5. Pseudospectrum generation model and matching with measurements.

modeled components of the pseudospectrum , as shown in
Fig. 5.
In [20], we followed a two-step procedure:
1) Obtain the estimate of from by minimizing the sum
of squared differences between the observations and the
model.

2) Obtain a least-squares solution from through the rela-
tionship (27). The final estimates are
obtained as .

This procedure showed promising results but was inaccurate
at low frequencies and for absorptive materials. This can be ex-
plained by the fact that the number of variables in is larger
than the number of parameters to be estimated. Consequently,
(28) can result in multiple solutions, among which we need to
choose the least-squares one. However, the best solution in the
least-squares sense for the first step does not necessarily guar-
antee the best solution for the second step. This is especially true
when themeasured pseudospectrum exhibits a smooth behavior,
i.e., for low frequencies (a smaller resolution is possible) and for
absorptive materials, which generate less pronounced peaks in
the pseudospectrum. In order to alleviate this problem in [20],
the matching was applied to multiple observations. In this man-
uscript, in order to overcome the above limitations, we pursue a
different route.
We treat as the unobserved latent variables linked to the

observations through the non-invertible transformation .
We then apply the Expectation-Maximization (EM) algorithm
[33], [34], which consists of the following two steps:
1) E-step: Compute , where
is the estimate of at the current iteration of the
algorithm. Under the assumption that follows
a Gaussian distribution, we obtain the Minimum Mean
Square Error (MMSE) [35] estimate of .

2) M-step: Find that maximizes the log-likelihood
obtained in the previous step.

In order for the EM algorithm to provide the Maximum Like-
lihood (ML) estimate of , the distribution should
be Gaussian. Before discussing the EM algorithm in detail,
we show that can be approximated by a Gaussian
distribution.

A. Considerations on

In (3), the sample estimate of the observation au-
tocorrelation matrix is used, which can be written
as a sum of signal and noise autocorrelation matrices,
i.e., , where and

(source and noise signals are assumed to
be uncorrelated). The same estimation procedure is performed
in (21) in order to obtain the modeled components of the
signal autocorrelation matrix . The signal is
deterministic and known, therefore the sum of components

with corresponding amplitudes in (22) should be
equal to the signal autocorrelation matrix contained in

. However, in (22) we use the true noise autocorrelation
matrix (under the assumption of spatially white noise),
while (3) contains an estimate. For Gaussian noise with co-
variance matrix (the noise has zero mean),

, it can be shown that the sample
autocorrelation matrix estimate obtained using samples
has a Wishart distribution with degrees of freedom

[36]. The pseudospectrum in (3)
is therefore distributed as , where is
a distribution with degrees of freedom. The mean
value of is and the variance amounts to

. The distribution with degrees of
freedom is the sum of independent random variables
with finite mean and variance, and thus for sufficiently large
, using the central limit theorem, it can be approximated as

a Gaussian distribution, i.e., .
Here we assume that the number of samples is sufficiently high
and the pseudospectrum noise has a Gaussian distribution. The
model in (26) could suffer from some model inaccuracies (e.g.,
geometry) and measurement errors. However, the distribution
of these errors is more difficult to determine. The geometric
information (environment geometry, loudspeaker and micro-
phone array positions) can be measured in a robust fashion and
with good accuracy [37], [38]. However, small measurement er-
rors are unavoidable, especially for the radiometric information
( and ), which affects the accuracy of the estimate
of . For sufficiently small additional errors of , ,
and , we ascertain that has approximately a Gaussian
distribution. In order to verify this statement, 1000 independent
simulations of measurements within a 2D rectangular room
were performed. For this test, we set while the reflection
coefficient is kept constant for all room walls, ,

. The angle-dependent gain of the loudspeaker
(modeled as cardioid) and the angle-dependent gain of the

microphone (modeled as omnidirectional) are affected
by an additive Gaussian noise. We analyze the distribution of

(29)

Fig. 6 shows the norm-plots [39] of , . In
order for to be Gaussian, its cumulative distribution should
fit the dashed line. Note that the match turns out to be quite
good, especially when the value of is sufficiently large, which
confirms the validity of the assumption behind the Expectation-
Maximization algorithm.



Fig. 6. Norm-plots of , . Dashed lines denote the norm-
plot values for a Gaussian distribution.

B. Expectation-Maximization Algorithm

Assuming the pseudospectrum noise and the component
scale factors to be normally distributed with covariance ma-
trices and , respectively, pseudospectra matching can
be formulated as

(30)

where

1) The E-step calculates the expected value of
given the current estimate , i.e.,

(31)

For a Gaussian distribution of , the log-likelihood
is given by

(32)

where and
indicate the terms that do not depend on . Substituting
(32) into (31), we obtain

(33)

where and
is the MMSE estimate of at the cur-

rent iteration [35]. For and jointly Gaussian we
have

where the respective mean values and covariance matrices
are given by

Therefore the MMSE estimate is the mean value of
the a posteriori probability , i.e.,

(34)

2) The M-step finds the new estimate that maximizes
the expected value of computed using (33)
and (34), i.e.,

(35)

The estimation algorithm terminates when

(36)

where is a given threshold.

VI. EXPERIMENTAL EVALUATION

In order to evaluate the convergence behavior of the iterative
estimation algorithm, we preliminarily conducted a simulation
in the room depicted in Fig. 7. The microphone array is denoted
by the large circle on the right-bottom corner of the room, the
source is in the small circle at the top-right corner, and the num-
bers that are close to the walls are the indices
of the reflective surfaces whose reflection coefficients are to be
estimated. The actual values of the reflection coefficients are



Fig. 7. Room simulation for testing the convergence of the iterative algorithm.
The microphone array is depicted with the empty circle in the right-bottom
corner and the source is in the top-right corner. Numbers denote the indexes

of the walls.

Fig. 8. Simulation results for testing the convergence of the iterative algorithm:
the estimated reflection coefficients , , at different iterations of
the algorithm (black lines) and the actual values of the reflection coefficients
(dashed lines).

, , , . Note that this
is quite a challenging scenario, as the angle of the reflection
path is far from the normal-incidence condition, and therefore
we cannot write that . This is especially true for
the surface , which has the smallest reflection coefficient
and the largest incidence angle of the first-order reflection paths.
The algorithm has been initialized with values of the reflection
coefficients that are purposefully very far from the correct ones.
The result of the simulation is shown in Fig. 8, which shows
that the estimates converge to the correct values after very few
iterations. More specifically, we observe that the algorithm con-
verges after three or four steps for walls 1 and 2. Even if in an
unfavorable configuration, the estimates converge to the correct
values also for surfaces 3 and 4.
We also conducted experiments with real-world data. Mea-

surements were conducted in a semi-anechoic room at the Chair
of Multimedia Communications and Signal Processing at the
University of Erlangen-Nuremberg, the setup of which is de-
picted in Fig. 9. According to the specific experiment, walls

Fig. 9. Experimental measurement setup.

and are covered with reflective or semi-reflective mate-
rials, whereas walls and are absorptive. This is a rather
challenging scenario for the reflection coefficient estimation
task. In fact, peaks related to the reflection paths bouncing
off absorptive walls are strongly attenuated, which renders the
estimation of reflection coefficients of absorptive walls quite
sensitive to even small measurement and modeling errors. The
sound field is captured with a circular microphone array that
accommodates ten omnidirectional microphones mounted in a
rigid cylindrical baffle with a radius of 0.04 m [40]. The en-
vironment is probed by a GENELEC 1029A loudspeaker, the
frequency-dependent radiation pattern of which has been pro-
vided by the manufacturer. Reflections up to the third order
are simulated by the modeling engine, i.e., . The loud-
speaker, especially at high frequencies, is strongly directional
and is characterized by the maximum directivity in the frontal
direction. Reflectors that are located at the rear of the loud-
speaker, therefore, would not be adequately probed. In order to
overcome this issue, four different orientations (0 , 90 , 180
and 270 ) for each position of the loudspeaker are adopted.
Measurements are then combined as proposed in [20]. Notice
that the use of an omnidirectional loudspeaker would overcome
this problem.
In order to test the robustness of the proposed method, the

estimation is performed using four different loudspeaker posi-
tions, which are marked in Fig. 9 with symbols , , and
. For each position, a different and independent estimate is

obtained. We expect these estimates to be independent of the
source position.
In the first scenario, walls and are covered with two

distinctly reflective materials. More specifically, is covered
with a 30 mm thick aixFOAM semi-reflective material [41], and

is covered with a 10 mm thick Sonatech reflective material
[42], and finally and are acoustically similar to ther-
mafleece (see [43, p. 443]). These datasheets describe the re-
flective properties in subbands in terms of absorption coefficient



Fig. 10. Examples of matching between modeled and measured pseudospectra
at different frequencies for a DAS beamformer; position of the loudspeaker is
with orientations 0 , 90 , 180 and 270 .

value according to ISO 354:2003 [9], which is related to the
reflection coefficient by

The covariance matrices and are assumed to be diag-
onal and their values are chosen empirically as a trade-off be-
tween a good match of to (smaller variance of ) and a
good match of to (smaller variance of ).
Estimates were computed using both DAS andMVDR beam-

formers. The DAS beamformer provided estimates over 10 sub-
bands, whose central frequencies range from 250 to 4750 Hz.
The algorithm first estimates the reflection coefficient value at
4750 Hz and then recursively initializes the estimate at the lower
subband with the estimate of the upper subband. The choice of
starting with the highest subband is dictated by the higher reso-
lution of the pseudospectrum at high frequencies, which enables
a more accurate matching between and . The pseudospec-
trum measured at position and the estimated pseudospec-
trum at three different frequencies are shown in Fig. 10.
Note that a very good match can be observed, especially at high
frequencies and for relevant peaks.
The estimates of the frequency-dependent reflection coeffi-

cients for alongwith the reference values are shown
in Fig. 11. We limit the visualization up to kHz, as ref-
erence values for higher frequencies are not available. It can be
seen that the estimated values are consistent for all the loud-
speaker positions. Furthermore, the estimates for all the walls
are close to the values specified in the datasheets, while the
values for walls and quite closely match the datasheet in
[43]. It is worth noting, however, that the reference values for

and are less accurate than for and .
In order to further verify the ability of the proposed approach

to correctly estimate the reflection coefficients of different re-
flectors in the environment in the presence of both highly reflec-
tive and absorptive surfaces, the experiment has been repeated

Fig. 11. Estimates using the DAS beamformer in the first scenario. Walls
and are covered with reflective materials. Wall and are absorptive.

Fig. 12. Estimates using the DAS beamformer for position in the second
scenario. Wall is covered with a wooden panel and is covered with a
well-defined, moderately reflective material. Walls and are absorptive.

in two other scenarios. In the second scenario, the wall has
been replaced with a wooden panel, while the wall is cov-
ered with Sonatech. The estimates for position are shown in
Fig. 12. As expected, the estimate of is reasonably similar to
the one obtained in the first scenario, while the estimate of
has values that are close to the typical values for wooden panels
found in the literature ([43, p. 442]).
In the third scenario, the wall is covered with aixFOAM,

while all the other walls are absorptive. The estimates at position
are shown in Fig. 13. The estimate of is similar to the

estimate obtained in the first scenario, whereas the estimate of
has a low value similar to the values estimated for other

absorptive walls.
In order to further improve the estimation at lower fre-

quencies and for absorptive walls, the MVDR beamformer
is applied. Fig. 14 shows the matching of the modeled and
measured MVDR pseudospectra at position A. If we compare
the results of the MVDR with those of DAS, we observe
that the use of MVDR greatly improves the directivity of the



Fig. 13. Estimates using the DAS beamformer for position in the third sce-
nario. Wall is covered with a reflective panel. Walls are ab-
sorptive.

Fig. 14. Examples of matching between modeled and measured pseudospectra
at different frequencies for a MVDR beamformer; position of the loudspeaker
is with orientations 0 ,90 , 180 and 270 .

pseudospectra, especially at low frequencies. We also observe
a slight improvement in the matching, especially in proximity
of secondary peaks and smooth portions. Fig. 15 shows the
reflection coefficient estimates in the first scenario obtained
using the MVDR beamformer. The results are obtained over the
frequency bands ranging from 250 to 5000 Hz, in which the fre-
quency smoothing method is applied. As clearly shown, for all
the positions and all the walls, the reflection coefficient values
estimated with the MVDR are much closer to the reference
values if compared to the estimates obtained using DAS in the
same scenario (see Fig. 11 for comparison). This is particularly
true in the case of absorptive walls. Note especially that the
reflection coefficient of walls and in Fig. 15 exhibits a
trend that is consistent for all the tested loudspeaker positions,
whereas the estimates obtained using DAS are characterized

Fig. 15. Estimates using theMVDR beamformer in the first scenario.Walls
and are covered with reflective materials. Walls and are absorptive.

TABLE I
ESTIMATION VARIANCE ACROSS SOURCE POSITIONS

IN DIFFERENT FREQUENCY BANDS.

by a larger variance among different positions. To support
this claim, the variance of estimated reflection coefficients
across source positions for different walls and beamforming
methods is provided in Table I as function of frequency. Notice
that MVDR appears to be more stable with respect to DAS
especially for low frequencies and absorbing walls.

VII. CONCLUSIONS

In this manuscript, we have presented a methodology for the
in-situ estimation of the reflection coefficients of planar walls.
The proposed technique is based on a two-step procedure that
first compares measured and modeled pseudospectra, then per-
forms the estimation of the reflection coefficients in frequency
bands. Based on the EM algorithm, we devised and developed
an iterative estimation scheme that enables an accurate estima-
tion of reflection coefficients even at low frequencies and for ab-
sorptive materials, as proven by the experimental results using
materials with known acoustical properties. In particular, the use
of MVDR beamformers pseudospectrum has been proven ben-
eficial for absorptive materials, as it led to more consistent esti-
mates than for the DAS when varying the source position.
In the manuscript, we considered environments characterized

by large planar surfaces with homogeneous material properties
for each surface. In case of an inhomogeneous surface, we could
split the surface into separate regions characterized by distinct



reflection coefficients. Thus, however, the number of unknown
reflection coefficients would increase and, as a consequence,
the amount of available data (acquired reflection paths) per un-
known would decrease. Moreover, discontinuities of the ma-
terial create diffractive waves on the edges of each portion of
material. Diffractive waves may have opposite polarity with re-
spect to the reflected wave, thus decreasing its apparent ampli-
tude. Such diffractive phenomena arise also for curved and/or
small surfaces. We should keep in mind, therefore, that the ac-
curacy of the estimation algorithm for small, curved or inho-
mogeneous surfaces could suffer from inaccuracies. This is es-
pecially true at low frequencies, where the diffractive waves
become more relevant. Ensuring the robustness of the estima-
tion procedure for such cases is an interesting topic of future
research.
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