
Theoretical investigation and computational
evaluation of overtone and combination
features in resonance Raman spectra of
polyenes and carotenoids
Matteo Tommasini,a,b* Giovanna Longhi,c,d Sergio Abbatec,d
and Giuseppe Zerbia
1(Because of typographical restrictions, the symbol R replaces here the
symbol commonly used in the previous literature, namely the letter ‘ya’ of
the Cyrillic alphabet).

* Correspondence to: Matteo Tommasini, Dipartimento di Chimica, Materiali e
Ingegneria Chimica, Politecnico di Milano, Piazza Leonardo da Vinci, 32,
20133 Milan, Italy. E-mail: matteo.tommasini@polimi.it

a Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133, Milan, Italy

b Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM),
Unità di Ricerca del Politecnico di Milano (Dip. CMIC), Piazza Leonardo da Vinci
32, 20133, Milan, Italy

c Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia,
Viale Europa 11, 25123, Brescia, Italy

d C.N.I.S.M. Consorzio Interuniversitario Scienze Fisiche della Materia, c/o
Università Roma 3, via della Vasca Navale 84, 00146, Rome, Italy
Introduction

The resonant Raman spectra of several carotenoids were investi-
gated in the past, and overtone and combination bands were
assigned[1]; all of the latter involve intense CC stretching modes re-
lated with the effective conjugation coordinate (ECC, also denoted
withR; for details, see the work of Castiglioni et al.[2] and the refer-
ences therein). The data reported by Okamoto et al.[1] reveal that
mechanical anharmonicity is little, as one expects for vibrations in-
volving the π-conjugated backbone of carotenoids; however, it is
noteworthy that in the work of Okamoto et al.,[1] so many overtone
and combination data weremade available, in that a full set of prin-
cipal and cross anharmonicity constants χii and χij were derived
from experimental frequencies with great accuracy. Their values
were found in the range 1–5 cm�1. In this work, we focus our atten-
tion on the second relevant aspect of overtones and combinations
in Raman spectroscopy: the intensities, which were not discussed in
the work of Okamoto et al.[1] and are usually neglected also in the
analysis of off-resonance Raman spectra, because of their weak
signal. Indeed, we notice that the ν4-dependence of Raman intensi-
ties hampers observation of overtones, as noted, e.g. by Henry et al.
in their local mode studies.[3] We will tackle this problem by
studying, in resonance conditions, the scattering tensor, which
directly determines the intensity of higher-order Raman transitions.

The calculation of off-resonance Raman spectra of carotenoids
can be carried out with density functional theory (DFT) methods,[4]

and it reveals a good match with the experimental counterpart
(see, for instance, the case of β-carotene reported in Fig. 1). This is
an encouraging indication that the vibrational dynamics obtained
from DFT calculations is a good starting point for successive
developments taking into account resonance effects.

It has been shown that in resonance conditions, higher-order
Raman scattering processes are significantly enhanced compared
with off-resonance conditions.[5] In fact, it is not by chance that it
is possible to observe and assign a considerable number of
overtones and combinations in the resonant Raman spectra of
several carotenoids.[1,4]

The use ofR-coordinate[2] has proved to be useful for investigat-
ing the possible structure of carotenoid natural pigments[4] and
other polyenes of biological interest.[6] 1 On the other hand, the cal-
culation of the Raman scattering tensor of fundamental transitions
by following the same theoretical framework here considered[7]

was successful for other π-conjugated systems, namely polycyclic
aromatic hydrocarbons.[8] In this work, we will show that by joining
the theory ofR-coordinate[2] with Nafie–Stein–Peticolas theory,[5,7]

it is possible to straightforwardly compute the resonant Raman
response of β-carotene. In particular, the Raman intensity of each



Figure 1. First-order Raman spectrum of β-carotene: comparison of DFT
calculations and experiment. Top: representation of the nuclear displace-
ments along the ν1 normal mode, computed at 1575 cm�1, containing the
largest contribution from the R -coordinate (Table 1); the relative
stretching/shrinking of CC bonds is indicated with green/blue; red arrows
are proportional to the displacement vector of each atom. (a) Experimen-
tal off-resonance FT-Raman spectrum (1064 nm excitation, present work);
(b) off-resonance Raman spectrum simulated with DFT (B3LYP/6-31G**
calculations carried out with Gaussian09[15]); (c) calculated Raman
spectrum through Eqn (1): relative intensities proportional to the square
of the electron–phonon coupling given by g � Lk (see text for details;
results from TD-B3LYP/6-31G** calculations). This figure is available in
colour online at wileyonlinelibrary.com/journal/jrs
line is the result of the R -coordinate content of the associated
normal mode. Furthermore, the extension of this approach to
overtones and combinations is feasible thanks to Nafie et al.[5]

and nicely reveals the role of electron–phonon coupling
described by R-coordinate in determining the strength of
higher-order Raman processes.
Theoretical model and computations

Electron–phonon coupling

In the present work, we rely on the theory describing the Raman
process in terms of time-ordered diagrams, which was intro-
duced in the seventies by Nafie et al.[5] to describe interactions
of electromagnetic fields and molecules. Such model makes use
of a Herzberg–Teller perturbative approach, where a central role
is played by the electron–phonon (–vibration) interaction
operator ∂H/∂Q. Of particular importance is the diagonal matrix
element of the electron–phonon coupling operator, namely
hα|∂H/∂Qk|αi, the term that, at different orders and in reso-
nance condition with excited state |αi, is directly responsible
for Raman scattering. The calculation of the electron–phonon
coupling matrix element with respect to a given excited state
can be most conveniently carried out by means of the transfor-
mation from normal (Qk) to Cartesian coordinates (xi) deriva-
tives, as follows:
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where normal coordinates are such that xi=∑ kLikQk. Eqn (1)
allows to straightforwardly compute via time-dependent DFT the
electron–phonon (e–ph) coupling matrix elements. It suffices to

compute the gradient gi ¼ α ∂H
∂xi

�� ��α� �
of the excited state energy

surface at the Franck–Condon (FC) point and consider its dot
product with the eigenvector Lik of the k-th normal mode under
investigation. This can be carried out without any further
assumption. This approach is very promising, because, as a first
step, we realized that the off-resonance intensities of the Raman
fundamental transitions of β-carotene are well reproduced by
the squares of the electron–phonon coupling parameters deter-
mined with Eqn (1) (Figure 1 and Table 1).

Effective conjugation coordinate theory permits to highlight a
further aspect of the electron–phonon coupling related to vibrational
displacements. In the space of nuclear coordinates, we can define a
peculiar displacement direction, parallel to the gradient g, which is
ultimately determined by ECC (R-coordinate). The unit vector uR
associated to g is defined as follows:

uR≡
g

gk k (2)

so that uR�uR ¼ 1. The Cartesian nuclear displacements along
R are given by x ¼ R uR. Therefore, by definition, theR-coordinate
recovers the strength ‖g‖ of the electron–phonon coupling:
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By considering now a given normal coordinate Qk, whose R
content is denoted LRk ¼ ∂R=∂Qk , we have
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Finally,
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Equation (5) can be used to provide a physical interpretation of
the origin of the Raman scattering activity through electron–phonon
coupling. Two important results stem from Eqn (5): The coupling of a
given normal mode Qk to the electronic excited state |αi is propor-
tional to the contentLRk ofR in thatmodeQk. The expectation value
over the state |αi of the gradient of H with respect to R is the key
factor of the e–ph coupling and represents its strength.



Table 1. Electron–phonon coupling terms for β-carotene computed
through Eqn (1) (TD-B3LYP/6-31G**) compared with off-resonance
Raman intensities (B3LYP/6-31G**, last column).

νk (cm
�1) |〈α|∂H/∂Qk|α〉|

2 (%) Ik (%) Ik (A
4/amu)

293 0.07 0.08 1 834

872 0.08 0.09 2 026

994 0.19 0.20 4 776

1006 0.28 0.30 7 083

1011 0.16 0.16 3 852

1029 2.98 3.11 73 964

1034 1.42 1.40 33 373

1043 0.87 0.79 18 683

1180 0.65 0.81 19 188

1198 7.04 7.82 186 200

1204 10.31 11.31 269 180

1227 6.48 6.40 152 360

1232 0.16 0.14 3 319

1257 1.18 1.08 25 748

1304 1.71 1.86 44 319

1314 0.57 0.69 16 302

1341 0.26 0.13 3 063

1351 0.38 0.59 14 105

1396 0.35 0.68 16 102

1407 0.05 0.02 553

1435 0.10 0.20 4 820

1438 0.10 0.35 8 401

1483 0.07 0.07 1 722

1500 0.56 0.53 12 677

1501 2.47 2.10 50 019

1501 1.27 1.17 27 918

1507 0.44 0.49 11 689

1575 46.37 43.01 1 023 600

1585 8.91 8.77 208 660

1643 1.60 1.51 36 046

1653 1.89 2.53 60 101

Total 98.97 98.39

The sum of percent values over all normal modes is 100. We report
results only for modes with strong enough electron–phonon and
Raman intensity (relative electron–phonon coupling larger than
0.05%).

Figure 2. Correlation between the components of the normalized R
vector (uR ¼ g= gk k) and those of the normalized vector obtained from
the matrix product fαuR (from TD-B3LYP/6-31G** calculations). Red points
indicate the components of the vectors pertaining to carbon atoms, while
blue points are relative to hydrogen atoms, which are unaffected by a
displacement along the R-coordinate. This figure is available in colour
online at wileyonlinelibrary.com/journal/jrs
The R -coordinate is defined by a set of collective inter-
dependent nuclear displacements, which may be evaluated as
shown in the following. We may look for a relation of R with
the displacement between ground and excited state minima, as
carried out in the past for defining R in π-conjugated systems
(see the work of Castiglioni et al.[2] and the references therein).
Within harmonic approximation, the excited state energy surface
Eα(x) can be expanded around the minimum of the ground state
(i.e. at the FC point):

Eα xð Þ ¼ E0g þ ℏΩ0
gα þ ∑

i
gαi xi þ

1

2
∑
ij
f αij xixj (6)

where gαi ¼ α ∂H
∂xi

�� ��α� �
is the gradient of the excited state energy

surface at the FC point and, similarly, f αij are the matrix elements of

the Hessian of the excited state energy surface; ℏΩ0
gα is the

vertical transition energy. The minimum of the excited state sur-
face satisfies ∂Eα/∂xi= 0; hence, its ‘multi-dimensional’ distance
{xi} from the FC point has to satisfy the following equation:
gαi þ ∑
j
f αij xj ¼ 0 (7)

The solution to Eqn (7) defines the displacement from the FC
point to the excited state minimum or, equivalently, the distance
of ground and excited state minima Δxg→α

i , that is,

xi ¼ Δxg→α
i ¼ �∑

j
f�1� �α

ij
gαj (8)

Or equivalently

gαi ¼ �∑
j
f αij Δxg→α

j (9)

In vector notation, gα=� fαΔxg→α. If one considers the unit
vectors associated to the two quantities (gα, Δxg→ α), one obtains
a collective nuclear displacement suitable for defining the R -
coordinate of the π-conjugated system. On the basis of Eqn (9),
one concludes that gα or Δxg→α essentially provides the same dis-
placement coordinate when the force constant matrix fα does not
induce any substantial ‘rotation’ to the direction of Δxg→ α vector.
This happens when gα or Δxg→α is close enough to some eigen-
vector of the fα matrix. The situation for β-carotene has been
checked with time-dependent DFT calculations carried out on
the lowest dipole-allowed excited state |αi. The gradient at the
FC point, the optimized structure and the ‘force constant matrix’
of the excited state have been computed with TD-B3LYP/6-31G**
method, providing Δxg→α, gα and fα.

The direct comparison of Δxg→ α with gα is potentially plagued
with spurious roto-translations or large amplitude motions of the
molecule upon excitation, which hinder the straightforward eval-
uation of the vibrational contribution to Δxg→ α. Hence, we adopt
an indirect approach, which consists in considering Eqn (9) and
checking whether the components of normalized gα (uR ) are
close to those of some eigenvector of the fα matrix, i.e. we



checked ifuR is parallel to fαuR. Figure 2 shows the components of
the unit vector defining the ECC coordinate, uR , against the
components of the vector fαuR (normalized as well). It is clear that
the two vectors are parallel to a good approximation; hence, the
gradient gα (R-coordinate) is very close to an eigenvector of the
force constant in the excited state. In conclusion, on the basis of
Eqn (9) and the results summarized in Fig. 2, we deduce that for
the lowest lying bright state of β-carotene, the gradient gα and
the displacement Δxg→α are parallel vectors, to a good approxima-
tion. Thus, in principle, both quantities can be used to define theR-
coordinate, i.e. one can either calculate the gradient at the FC point
or optimize the excited electronic state and compute the geometry
difference with respect to the ground state. These two approaches
can be used to define the R-coordinate in other carotenoids and
oligoenes and in general in other molecular systems.

Raman scattering

The aforementioned discussion has highlighted the key role of
electron–phonon coupling in resonant Raman spectroscopy of
π-conjugated molecules. We consider now the expressions given
in the work of Nafie et al.[5] for resonant Raman intensities of
overtones and combinations. We aim at providing working
equations suitable for numerical evaluation, on the basis of quan-
tities directly obtained from quantum chemical calculations.
Neglecting the contributions from hot band transitions and
anti-Stokes processes and assuming that the interaction process
consists in the creation of n vibrational quanta, each one with
energy ℏΩ, in n successive steps (promoted by time-ordered radi-
ation field–molecule interaction by the first-order perturbative
terms of Eqns (1–5) and as presented in the first two schemes
of Fig. 3(a)[5,9]), the Raman intensity of a generic n-th overtone
of a given normal mode Q can be written as follows:
Figure 3. Time-ordered diagrams relative to Raman process involving (a) ove
three-quanta combinations over two normal modes. Diagrams have been ta
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In the work of Nafie et al.,[5] it is shown how the denominator
of Eqn (10) stems from the use of time-ordered diagrams in the
context of perturbation theory describing vibronic interactions[7]

through (∂H/∂Q)0Q (i.e. Herzberg–Teller). Hence, the unperturbed
energy differences (Eα� Eg) are the vertical transition energies
computed at the unperturbed nuclear equilibrium of the
ground state (Q= 0). Dimensional analysis of the right-hand
term of Eqn (10) reveals a quantity commensurate to the square
of a polarizability (i.e. the square of a transition dipole moment
squared, divided by an energy). This is expected on the basis
of the general quantum expression for Raman scattering
(Kramers–Heisenberg–Dirac) given, for instance, in the work
of Albrecht[10]:

Ii→f ¼ 27π5

32c4
I0 ν0 þ νi � νfð Þ4∑

ρσ
αρσ
	 


i→f

�� ��2 (11)

The quantum mechanical term [αρσ]i→ f directly relates to
molecular vibrational and electronic structure (i.e. resonances)
and dimensionally corresponds to a polarizability. Its expression
involves the product of transition dipole moments divided by
transition energies.

The square of the product of integrals over vibrational
wavefunctions in Eqn (10), i.e. |∏ k= 1.. n hk� 1|Q|ki|2, can be
evaluated within mechanical harmonic approximation by means
of popular tables of integrals involving Hermite polynomials, as
those given in the study of Wilson et al..[11] The result is
rtones of a given mode Q; (b) combination of two modes QI and QJ; and (c)
ken and adapted from the study of Nafie et al.[5]
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(details are given in Appendix A), so that the expression

given by Eqn (10) can be written as follows:
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By following the illustration of the time-ordered diagrams
given in the work of Nafie et al.,[5] one can also derive expres-
sions for Raman intensities associated with combination Raman
processes involving normal modes QI and QJ. The two leading
diagrams are given in Fig. 3(b). Their evaluation provides the
following result:
IIþJ∝ <0 QIj j1><0j jQJj1> j2 �
g μ2j jαh i α ∂H

∂QI

��� ���αD E
α ∂H

∂QJ

��� ���αD E
α μ1j jgh i

Eα � Eg � ℏω1 þ iΓ
� �

Eα � Eg � ℏω1 þ ℏΩI þ iΓ
� �

Eα � Eg � ℏω1 þ ℏΩI þ ℏΩJ þ iΓ
� �

������

þ
g μ2j jαh i α ∂H

∂QJ

��� ���αD E
α ∂H

∂QI

��� ���αD E
α μ1j jgh i

Eα � Eg � ℏω1 þ iΓ
� �

Eα � Eg � ℏω1 þ ℏΩJ þ iΓ
� �

Eα � Eg � ℏω1 þ ℏΩJ þ ℏΩI þ iΓ
� �

������
2 (13)
which simplifies to
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Evaluation of resonant Raman intensities of β-carotene

To numerically evaluate relative Raman intensities for fundamen-
tals, overtones and combinations, we simplify the aforemen-
tioned expressions, assuming resonance condition, ℏω1≈ Eα� Eg,
and factoring out transition dipoles. Furthermore, hα|∂H/∂Qk|αi=
g � Lk, where g is the gradient at the FC point on the excited state
relevant for the resonance condition and Lk are the nuclear
displacements associated to the normal coordinate Qk. For
fundamental Raman transitions, this gives the following:
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For combination of two quanta over two normal modes
(Qh and Qk), one has (Fig. 3(b))
Ihþk∝
ℏ

2Ωh

 �
ℏ

2Ωk

 �
�
���� g�Lhð Þ g�Lkð Þ
iΓ iΓþ ℏΩhð Þ iΓþ ℏΩh þ ℏΩkð Þ

þ g�Lkð Þ g�Lhð Þ
iΓ iΓþ ℏΩkð Þ iΓþ ℏΩk þ ℏΩhð Þ

����
2

¼

¼ 1

2ℏΩh

 �
1

2ℏΩk

 �

�
���� ℏg�Lhð Þ ℏg�Lkð Þ
iΓ iΓþ ℏΩhð Þ iΓþ ℏΩh þ ℏΩkð Þ

þ ℏg�Lkð Þ ℏg�Lhð Þ
iΓ iΓþ ℏΩkð Þ iΓþ ℏΩk þ ℏΩhð Þ

����
2

(17)

Three quanta Raman transitions over two normal modes
(Qh and Qk) (Fig. 3(c)) give rise to
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Three quanta Raman transitions over three normal modes
(Qh, Qk and Ql) (scheme not reported) give rise to
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Figure 4. Resonant Raman spectrum of β-carotene. Comparison of exper-
imental data recorded by Okamoto et al.[1] with excitation at 457.9nm
(black line) and calculated data by the present theoretical analysis (red
and orange lines). Wave numbers from DFT have been scaled by 0.965;
strict mechanical harmonic approximation has been used to compute the
Dimensional analysis reveals that ℏg � Lk has units of [energy3/2].2
By consequence, the dimensions of the right-hand-side of
Eqns (15–19) are all [energy-2], as expected on the basis of
the discussion that closely follows Eqn (10).
By making use of Eqns (15–19), on the basis of results from DFT

calculations (as mentioned earlier), we have computed resonant
Raman intensities of fundamentals, overtones and combinations
of β-carotene. These data have been used to produce a simulated
Raman spectrum, which is reported in Fig. 4 and compared with
experimental data taken from the study of Okamoto et al.[1]

Discussion of the results and conclusions

The results of Fig. 4 are pretty encouraging for two reasons:

1. Within each one of the four manifolds of Raman resonant fea-
tures defined by Okamoto et al.,[1] the agreement between ex-
periments and theory/computations is pretty good (looking at
Fig. 4, the manifolds contain respectively the following: the
fundamentals, between 1000 and 1600 cm�1; the first over-
tones (2νi) plus two-quanta combinations, between 2000
and 3200 cm�1 a set of higher-order combinations involving
three quanta, between 3200 and 4200 cm�1; and the second
overtone of ν1 (3ν1) plus other combinations, between 4200
and 5000 cm�1).

2. Most importantly, these nice results are arrived at by just cal-
culating the gradient g or other associated quantities such as
uR , which means that a common mechanism for electron–
phonon coupling explains the majority of intensity data of
Fig. 4, and what really counts to confer intensity to fundamen-
tal, overtone or combination features in resonance Raman
2This is easily proved because Cartesian displacements along the k-th normal
mode satisfy Δxk = LkΔQk and the normal coordinate Qk is mass-weighted
and hence has dimension of [length · mass

1/2
]. Hence, Lk has dimension of

[mass
�1/2

].
spectra is the participation of the R-coordinate in the normal
modes involved in the transitions under observation.
However, looking more closely, one realizes that the agree-
ment of theory to experiment is not 100% perfect, and this will
require some further effort to obtain an impeccable interpreta-
tion of the data. As a first step in this direction, we may notice
that the features observed at 3048, 3319 and 4050 cm�1 are
underestimated by the present calculations. The first and last
bands are attributed to 2ν1 and to 2ν1 + ν4, respectively. A
possible source of error in the evaluation of intensities is the ne-
glect in our approach of one basic interaction event included in
wavenumbers of overtones and combinations based on fundamentals. Γ
value for numerical calculations of Raman intensities is 250 cm�1 (the pat-
tern of relative Raman intensities does not sensibly change for Γ < 1000
cm�1). The orange line shows the simulated Raman spectrum magnified
four times. Assignment of overtones and combinations follows the one
given in the study of Okamoto et al.[2] The experimental peak at
4831 cm�1 is not present in the simulations because we have not consid-
ered here fourth-order Raman processes. This figure is available in colour
online at wileyonlinelibrary.com/journal/jrs



Figure 5. Calculated value of isotropic polarizability of hexatriene versus the
displacement ΔQ along the strongest Ramanmode (computed at 1708cm�1;
nuclear displacement pattern reported at the top of figure) in presence of
electromagnetic field of wavelength in the interval 200–600nm (B3LYP/6-
31G** calculations). Units of the color bar are nanometer. The data corre-
sponding to the resonance predicted by TD-B3LYP/6-31G** (255nm) are
plotted with open circle symbols. For the sake of understanding, at the maxi-
mumdisplacementΔQ of +0.2A/amu1/2, the central C–Cbond elongates from
its equilibrium value of 1.352Å to the value of 1.408Å. This figure is available in
colour online at wileyonlinelibrary.com/journal/jrs
the original derivation of Nafie et al.,[5] namely the one involving
the direct generation of an overtone vibration, which we recall
in Fig. 3(a), last column, pasting the picture from Nafie et al. [5]

The intensity associated to such event in resonance condition
(ℏω1 = Eα� Eg) is

I2k∝ h0 Q2
k

�� ��2i�� ��2 1

4

hg μ2j jαihαj∂2H∂Q2
k
jαihαjμ1jgi

iΓ iΓþ 2ℏΩkð Þ

�����
�����
2

(20)

Indeed, in the time-ordered scheme, such term arises because of
a first-order event (such as the one promoting fundamentals) and is

caused by second-order perturbative interaction, 1
2

∂2H
∂Q2

k
Q2
k .
[9] The

numerator of the last factor in Eqn (20) contains the square of the
vibrational energy of mode Qk in the electronic excited state |αi,
which we may indicate as ℏΩ′k. Comparison of Eqn (16) for n=2
and of Eqn (20) shows that the two terms are in the following ratio:

Ieq:20
Ieq:16

¼ 1

4

ℏΩ′
k

ℏg�Lk

� �4
ℏΩk þ iΓj j2 (21)

This means that the importance of the neglected term
increases with Ωk, which may explain why ν1 overtones and com-
bination involving ν1, the largest in the spectrum of the funda-
mental manifold, should have a larger intensity than estimated
in the present model.

Because of the theoretical model we have presented earlier, we
recognize that the observation of Raman overtones in resonance
conditions is not typical of β-carotene. Indeed, not only Tasumi’s
group did observe the same phenomenon in Raman spectra of
other π-conjugated and variously substituted or terminated poly-
enes[1] but also Ci et al.[12] studied hexatriene and found that, by
progressively tuning to resonance the excitation radiation, over-
tone features increase in Raman intensity more evidently than
fundamentals.

For this reason, we applied the Nafie–Stein–Peticolas theory
also to hexatriene, with excellent results, as reported in the
Supporting information.

Furthermore, the results presented here can find application to
other systems than carotenoids, for which electron–phonon
processes are relevant as, for instance, carbon nanotubes and
graphene.[13,14]

The fact that the intensities of the overtones can be easily
recorded in resonance condition may be rationalized by simple
DFT calculations reported in Fig. 5 (for the sake of consistency
with the rest of this work, we kept B3LYP/6-31G** level of theory).
There, we demonstrate that divergences in the trace of the
polarizability tensor of hexatriene, because of resonance with
radiation of wavelength in the interval 240–290 nm, are met with
displacements along the strongest Raman active CC stretching
mode (TD-B3LYP/6-31G** locates resonance with S1 at about
255 nm). Because overtones imply large displacements, these
calculations further justify the special connection of overtones
to resonance. In fact, large amplitude displacements ΔQ, when
close to resonance conditions, allow probing the whole singular
region in the α(Q) diagram (Figure 5). In a polarizability derivative
context for Raman intensity, this would imply exploring a region
where the linear approximation α(Q)≈α0 + (∂α/∂Q)0Q is no more
tenable; hence, overtones due to higher polarizability derivatives
would be straightforwardly implied.
Appendix: A
By referring to the well-known integrals over the eigenfunctions
of the harmonic oscillator (see, for instance, the work of Wilson
et al.[11]), it is straightforward to derive the following result:

0 Qj j1h i 1 Qj j2h i… n� 1 Qj jnh i ¼
¼ ∏

k¼0 :: n�1ð Þ
k Qj jk þ 1h i ¼

¼ ∏
k¼0 :: n�1ð Þ

ℏ

2Ω
k þ 1ð Þ

� �1=2 (A1)

Hence, the square of the modulus becomes

<0 Qj j1><1j jQj2> … <n� 1 jQjn> j2 ¼
¼ ∏

k¼0 :: n�1ð Þ

ℏ

2Ω
k þ 1ð Þ

� �
¼ ℏ

2Ω

 �n

∏
k¼0 :: n�1ð Þ

k þ 1ð Þ ¼

¼ ℏ

2Ω

 �n

1� 2�…� n� 1ð Þ � n ¼ n!
ℏ

2Ω

 �n

(A2)
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