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1. Introduction

In many machine components, when damage occurs, a strongly impulsive signal is generated, triggering a series of
vibrations according to the impulse response function of the structure of the mechanical system where the component is
installed. This behavior is, for instance, typical of internal combustion engines [1], rolling element bearings [2], fluid
instability phenomena in hydraulic and steam turbines [3–6] and rubbing phenomena in large turbomachineries [7,8].
quency inner; BPFO, ball pass frequency outer; CS2, second order cyclostationary; CPW, cepstrum pre-
Fourier transform; IDFT, inverse discrete Fourier transform; IEPE, integrated electronics piezo-electric;
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In the last years, two main families of signal processing tools have gained a leading role in the diagnostic of such
components: the kurtosis-based family and the CS2 family.

The first family consists of time and frequency domain indexes derived from the kurtosis index, which is chosen as a
direct measure of the “impulsiveness” of the signal [10]. Kurtosis, band kurtosis, spectral kurtosis and kurtogram are the
most used techniques belonging to this category. The spectral kurtosis, presented by Dwyer [11], has been indicated as a
very effective tool for the identification of transients in a signal, representing, in the case of diagnostics, the response of the
system to impulsive excitation due to the damage; however, the complexity of its calculation hindered its diffusion in
industrial application. On the contrary, the kurtogram, introduced in this field by Antoni and Randall [12], has been further
developed to ease its calculation in the so called Fast Kurtogram [13] and consequently represents an efficient tool to select
the best band for the filtering step in the process of envelope analysis. Improved results have been shown for a higher-
resolution kurtosis-based index, the protrugram, developed by Barszcz and JabŁoński [14]. This index is obtained by
calculating the kurtosis of the analytic signal on a narrow band, which is shifted almost continuously along the
frequency axis.
Fig. 1. Simulated signal of in case of an impulsive excitation on a 1 d.o.f. mechanical system: (a) impulse train in time domain, (b) impulse train in
frequency domain, (c) impulse response of the system in time domain, (d) impulse response of the system in frequency domain, (e) simulated signal as
convolution of impulse train and impulse response with additional white noise, (f) simulated signal in frequency domain, (g) filtered simulated signal in
time domain, (h) filtered simulated signal in frequency domain, (i) envelope in time domain, and (j) SES.



The second family of diagnostic tools is represented by the cyclostationary group, among which the envelope and the
squared envelope spectrum (SES) are the most widely spread in the industrial applications for the diagnostics of impulsive
signals, i.e. CS2. Such techniques have been thoroughly described and analyzed in the field of rotating machineries, and
especially in bearing diagnostics [15,16]. The basic idea of this approach is to treat the signal as a stochastic quantity, whose
variance (i.e. energy, squared value) varies cyclically as a function of time or of the angular rotation of a reference shaft.
In fact, when the impulsive excitation triggers the natural vibration of the mechanical structure, the energy in the signal is
expected to increase with respect to the average energy level associated to normal conditions. The procedure to obtain the
SES consists of 3 steps [17]:
1.
 The signal is filtered around a resonance in order to remove noise and highlight the natural vibrations of the structure,
which has been caused by the impulsive excitation of the damage.
2.
 The squared-envelope (SE) signal is calculated as squared absolute value of the analytic signal, obtained by means of the
Hilbert transform applied to the filtered signal. This operation is expressed in Eq. (1), where xf is the band-pass filtered
signal and j is the imaginary unit

SEx½n� ¼ jxf ½n�þ jUHilbertfxf ½n�gj2 ð1Þ
3.
 The SES is finally obtained as the autospectrum of the square of the envelope signal, i.e. as the squared absolute value of
the discrete Fourier transform (DFT) of the envelope:

SESx½k� ¼ jDFTfSEx½n�gj2 ð2Þ
For the sake of clarity, an example of damage symptomatic signal has been numerically simulated and analyzed by
means of the envelope in Fig. 1.
�
 An impulse train has been generated with a constant period: time domain (a) and frequency domain (b).

�
 It has been convolved with an impulse response function: time domain (c) and frequency domain (d).

�
 White noise has been added to the result of the convolution, representing the simulated measurement: time domain

(e) and frequency domain (f).

�
 The signal has been band-pass filtered around the resonance (30–70 non-dimensional frequency): time domain (g) and

frequency domain (h).

�
 The absolute value of the analytic signal has been calculated by means of the Hilbert transform, obtaining the envelope

signal (i) and the corresponding squared envelope spectrum (SES) (j).
In the past, the two families have often been coupled, in multi-steps signal processing procedures. A typical combination
is the selection of the pass-band filter by means of the kurtogram [13] or protrugram [14], identifying the “most impulsive”
(i.e. highest kurtosis) band for the application of the envelope analysis. This approach was found successful by many authors
in different experimental applications in the past (e.g. [18–20]). However, the two families have always been treated on the
basis of two different analytical bases, one referring to the “impulsiveness” of the signal, the other to the cyclic 2nd order
statistics of the signal.

Moreover, while envelope analysis has been indicated as the main tool for a detailed diagnostic of faults, simple kurtosis-
based indexes have usually been implemented in prognostics, being naturally easier to track on a long time span.

The aim of this paper is to demonstrate the analytical connection among kurtosis and SES, giving a single analytical
framework for the analysis of diagnostic of impulsive machine signals, and to identify the most suitable indicators for
diagnostic and prognostics. The paper will analyze the properties of general signals such as that of Fig. 1, to obtain the
analytical equivalencies among kurtosis and envelope indexes. Thus, an experimental campaign on rolling element bearings
will be presented to finally identify the analogies and differences of kurtosis and envelope based prognostic strategies.
2. Analytical identities

2.1. Kurtosis and envelope

As mentioned in the previous section, the first step of envelope analysis results in a band-pass filtered vibration signal
xf ½n�, consisting of a convolution of the measured signal x½n�with the filter f hl ½n�, which is selected as an ideal pass-band filter
with non-dimensional pass-band lrkoh

xl;h½n� ¼ x½n� � f hl ½n� ð3Þ

Then the analytic signal ~x½n� is obtained as follows:

~xl;h½n� ¼ xl;h½n�þ jUHilbertfxl;h½n�g ð4Þ



Such signal will have the following DFT:

DFTf ~xl;h½k�g ¼
2DFTfxl;h½k�g lrkoh

0 otherwise

�
ð5Þ

The sample kurtosis κl;h of this signal is defined as the ratio among the fourth central moment m4 and the squared second
central moment m2 of ~xl;h½n�:

κl;h ¼
m4f ~xl;h½n�g

ðm2f ~xl;h½n�gÞ2
ð6Þ

Since vibration signals are generally expected to be zero-mean, the numerator, or fourth moment, is estimated by the
following:

m4 ~xl;h n½ �� �¼ 1
N

∑
N

n ¼ 1
j ~xl;h½n�j4 ð7Þ

The right hand side of Eq. (7) can be rewritten in the following form:

m4 ~xl;h n½ �� �¼ 1
N

∑
N

n ¼ 1
ðj ~xl;h½n�j2Þ2 ð8Þ

In this form, it is possible to identify the SE signal (see Eq.. (1)), which can be substituted in the equation, giving:

m4 ~xl;h n½ �� �¼ 1
N

∑
N

n ¼ 1
ðSEl;h½n�Þ2 ð9Þ

And, by applying Parseval's theorem [21], it results in the following equation:

m4f ~xl;h½n�g ¼ ∑
N

n ¼ 1
jDFTfSEl;h½n�gj2 ð10Þ

The right hand term of (10) exactly matches the definition of the SES (see Eq. (2)), thus, by considering that SES (in its single-
sided form) is non-zero only in the range of cyclic frequencies 0rkoh� l it is possible to state a first significant identity:

∑
h� l

k ¼ 0
SESl;h½k� ¼m4f ~x½n�g ð11Þ

Therefore, Eq. (6) can be rewritten, by considering Eq. (11) and by expressing the denominator as the fourth power of the
root mean square (RMS) of the filtered analytic signal (see Appendix A for proof):

κl;h ¼
∑h� l

k ¼ 0SESl;h½k�
RMS4l;h

ð12Þ

By similar (even easier) steps it is possible to demonstrate that the denominator of Eq. (6) is equivalent to the sum of squares
of the autospectrum of the analytic signal, in turn equal to the zero frequency value of the SES. Thus, an alternative form of
Eq. (12) is as follows:

κ ~x ¼
∑h� l

k ¼ 0SESl;h½k�
∑h

k ¼ ljASl;h½k�j2
� �2 ¼ ∑l�h

k ¼ 0SESl;h½k�
SESl;h½0�

ð13Þ

The definition of the Fast Kurtogram exactly matches that of the kurtosis of the analytic signal of the pass-band filtered
vibration (Eq. (6)) and has been often used as an index of impulsiveness of the signal in such band. In different papers [14], a
very similar quantity is used, fromwhich Eq. (13) only differs because the analytic signal is considered instead of the original
band-pass filtered vibration signal. This has usually little relevance and, even if an analytical equivalence is difficult to be
obtained, the results are often similar and just scaled with a factor of 1.5.

Moreover, the denominator of Eq. (13) is recognizable in the scale factor which Antoni proposes in order to assess the SES
and identify CS2 peaks. In light of this consideration, Eq. (12) now explains with a stronger analytical basis why the band-
kurtosis and the kurtogram have proven so effective in selecting the best band for the envelope analysis. In fact, the kurtosis
of a single band, selected for the calculation of the envelope, will be high if the peaks of the corresponding SES
(i.e. numerator of Eq. (12)) are significantly above the SES average expected value (proportional to the numerator of
Eq. (12)).



2.2. Cepstrum pre-whitening

The recognition of the SES in Eq. (12), normalized with the threshold proposed by Antoni in [15], leads to a further
interesting consideration. In fact, by considering the normalized SES, it is possible to write:

NSESl;h k
� �¼ jDFTfj ~xl;h½n�j2gj2

RMS4l;h
ð14Þ

and, by including the denominator in the numerator:

NSESl;h k
� �¼ DFT

j ~xl;h½n�j
RMS2l;h

2
( )					

					
2

ð15Þ

If the band-pass filtering is taken to the limit of a single spectral line, the RMS of the so-obtained mono-harmonic signal
coincides with the amplitude of the harmonics itself, thus, the scalar-valued NSES (only the zero frequency is non-zero) is
expressed by the following:

NSESl;lþ1 ¼ DFT
j ~xl;lþ1½n�j
j ~X ½l�j

!2
8<
:

9=
;

						
						
2

; ~X k
� �¼DFT ~x n½ �� � ð16Þ

By rearranging the fraction in the parentheses, the following equation is obtained:

NSESl;lþ1 ¼ DFT IDFT
~X ½l�
j ~X ½l�j

!					
					
2

8<
:

9=
;

						
						
2

ð17Þ

Cepstrum pre-whitening was in the first place introduced by Sawalhi and Randall [22], based on the real cepstrum:

C½n� ¼ IDFTf log jDFTðx½n�Þjg ð18Þ
Peaks in the absolute value of the real cepstrum indicate the presence of a deterministic multi-harmonic component in the
signal. The pre-whitening operation consists in setting a zero value for the whole real cepstrum (except possibly at zero
quefrency), then, once transformed back to the frequency domain, the obtained signal is recombined with the phase of the
original signal and inverse transformed to time domain.

This procedure can also be implemented in a very simple way (see for instance [23,24]), avoiding the transformation to
the cepstral domain, just by dividing the Fourier transformed signal by its absolute value and transforming back to the time
domain.

xcpw n½ � ¼ IDFT
DFTðx½n�Þ
jDFTðx½n�Þj

� 

ð19Þ

Thus, recognizing in Eq. (17) the expression of the cepstrum pre-whitening (CPW), it is finally possible to express the
following identity for the squared envelope spectrum of the CPW signal SESCPW ½k�:

SESCPW k
� �¼NSESk;kþ1 ¼ DFT IDFT

~X ½k�
j ~X ½k�j

!					
					
2

8<
:

9=
;

						
						
2

ð20Þ

3. A new method for the selection of the optimal demodulation band

The analytical results of Section 2.1 suggest a possible improvement in the choice of the optimal demodulation band by
means of kurtosis-based methods. As demonstrated above, the kurtogram, if calculated on the analytic signal, exactly
matches the sum of all peaks of the SES. Thus, this tool is a very good solution only if the bearing fault is the only source of
CS2 components.

Unfortunately, in complex industrial system, such as servomotors, traction systems, or pumping plants, CS2 sources may
be different and sometimes prevailing over incipient bearing fault symptoms. Moreover, if the carriers of such
“disturbances” are different from those of the bearing signal in terms of spectral support, the kurtogram may lead to a
wrong selection of the band.

This problem may be strongly reduced by looking at the contribution to the kurtosis of a specific band, symptomatic of a
bearing fault, rather than at the raw value of the kurtosis itself.

A cyclic band kurtosis may be defined, by extending the definition of the full kurtosis of Eq. (12) as follows:

κp;ql;h ¼
∑
q

k ¼ p
SESl;h½k�

RMS4l;h
ð21Þ



where l;h represent the spectral filtering of the signal, while the cyclic bands p; q limit the integration of the SES. Therefore,
this index represents the normalized sum of the SES peaks in the cyclic range p; q. If a narrow cyclic band is chosen around
the characteristic frequency of a bearing damage, the result will be a good estimate the total amount of second order
cyclostationarity associated to the bearing.

It is important to underline the substantial difference in the two domains of definition of l;h and p; q: if the first range
corresponds to a sets of discrete spectral frequencies, i.e. in the classical Fourier approach to signal analysis, the second
range represents a set of cyclic frequencies, identifying periodicities not in the signal itself but in its second statistical
moment, i.e. Fourier transform of the signal's power.
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Fig. 2. Block diagram for the calculation of the RCC index.



Thus, the ratio of cyclic content (RCC) associated to the cyclic band ðp; qÞ, with a spectral support on ðl;hÞ may be
expressed as follows:

RCCp;q
l;h ¼

κp;ql;h

κl;h
¼

∑q
k ¼ pSESl;h½k�

∑h� l
k ¼ 0SESl;h½k�

ð22Þ

where ðl;hÞ are the lower and upper bounds of the spectral filter applied to calculate the envelope signal, while ðp; qÞ
delimitate the normalized cyclic frequency range for the integration of the kurtosis contribution.

The calculation of such index does not require the full computation of the SES, which would make it a trivial a posteriori
tool. In fact the procedure may be simplified significantly considering that the kurtosis of the raw signal is in general very
similar to the kurtosis of the corresponding analytic signal. Therefore, an estimate of RCC is obtained by applying fast
Fig. 3. Numerical simulation of a bearing signal: (a and b) impulse train with 5% (standard deviation) jitter in time and frequency domain, (c and d) 1 d.o.f.
impulse response and frequency response function, (e and f) time and frequency domain signal obtained by convolution of (a) and (c) with additional noise,
(g and h) time and frequency domain representation of the signal (e) after band-pass filtering in the range [1900 2100], and (i and j) envelope and squared
envelope spectrum.
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Fig. 4. Numerical simulation of a bearing signal: (a) band kurtosis and (b) band RCC in the cyclic range [40:60].

Fig. 5. Test-rig: (a) traction motor, (b) gearbox, (c) additional gearbox, and (d) breaking motor.
band-pass filters, designed for instance with Butterworth's approach:

RCCp;q
l;h �

1
N∑

N
n ¼ 1fðjx½n� � FILTERðl;hÞj2Þ � FILTERðp; qÞg2

1
N∑

N
n ¼ 1ðjx½n� � FILTERðl;hÞj2Þ2

ð23Þ



Fig. 6. Damage on the inner ring.

Fig. 7. First test – (a) raw accelerometer signal, (b) zoom of the raw accelerometer signal, (c) raw tachometer signal, (d) zoom of the raw tachometer signal,
and (e) spectrum of the raw accelerometer signal.
Moreover, the spectral filter may be calculated only once and used for a series of ðli;hiÞ spectral pass-bands, in order to
obtain a kurtogram or protrugram. The procedure is detailed in Fig. 2.

Alternatively, if the cyclic pass-band is composed by few cyclic frequency lines, it is possible to exactly calculate the
numerator of Eq. (22) by exploiting the relationship between the envelope spectrum and the spectral correlation [25].



In particular:

RCCp;q
l;h ¼ 16∑q

n ¼ p ∑h�k
k ¼ lX½k�Xn½kþn�

		 		2
1
N∑

N
n ¼ 1ðj ~xl;h½n�j2Þ2

; X k
� �¼DFT x n½ �� � ð24Þ

where the coefficient 16 is due to the fact that the DFT of the signal x½n� is here used instead of the DFT of the analytic signal
~x½n�. The numerical efficiency of this procedure, working for all spectral bands on the same X½k�, has to be compared with the
fully time-domain process presented in Fig. 2. The best choice depends strongly on the implementation of the two and on
the width of the cyclic pass-band.

4. Numerical validation

A 10,000 point long numerical signal, simulating the real behavior of a rolling element bearing, was generated in order to
provide a first validation of the analytical results produced in the previous sections. First of all, an impulse train was
obtained with an average period of 200 points (non-dimensional frequency of 50) and a zero-mean, delta correlated jitter,
whose standard deviation has been set to 5% of the period (see Fig. 3(a) and (b)). This impulse train has been convolved with
the typical impulse response a 1 d.o.f. mechanical system, with natural non-dimensional frequency of 2000 and damping
ratio of 0.5% (Fig. 3(c) and (d)). The so-obtained signal is represented in Fig. 3(e) and (f), after the addition of a background
noise with zero- mean and 0.8 standard deviation. The correct pass-band for the calculation of the SES is in this case known,
given the exact knowledge of this simple system, and has a central frequency that coincides with the natural frequency of
the frequency response function (2000). A bandwidth of 201 spectral points has been chosen for the band-pass filter,
representing a number sufficiently greater than the cyclic frequency of the phenomenon (50). The result of the filtering
operation is shown in Fig. 3(g) and (h). Finally the envelope of Fig. 3(i) is calculated by the Hilbert transform and the SES of
Fig. 8. First test – band selection for the calculation of the SES: comparison among kurtosis and RCC method (ideal digital filters have been used). (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 11. First test – comparison: (a) normalized SES for different demodulation bands, (b) corresponding kurtosis of the band-pass filtered analytic signal,
and (c) corresponding RCC of the cyclic band 9.18–9.48 Nx.
Fig. 3(j) is obtained, with the clear peak corresponding to the cyclic frequency of 50.
If the system properties were not known, it would have been necessary to select the band for the demodulation on the

basis of a data-driven index, such as the kurtosis or the RCC. In this case a protrugram based, respectively, on the kurtosis
and on the RCC has been calculated, keeping fixed the spectral band amplitude (201 spectral points). The RCC was calculated
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Fig. 12. First test – comparison of the FFT-IFFT method vs. time domain filtering method: (a) kurtosis and (b) RCC. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
on the basis of 21 points around the expected cyclic frequency of 50. The results are shown in Fig. 4. It is clear how the RCC
(b) shows clearly the best central frequency for the demodulation band, while the kurtosis does not give any clear
indication, and rather presents a minimum in correspondence of the optimal frequency. This can be explained by the fact
that the impulse response strongly resembles a sinusoidal function, with a lower kurtosis value than noise.
5. Experimental endurance tests of rolling element bearings

In order to further prove the validity of the analytical study presented in the previous sections, the results of an extensive
experimental activity on rolling element bearings are presented in this section.
5.1. First test

The test-rig of this experimental activity [26] is presented in Fig. 5. Its main subsystem is represented by a traction
system taken from a high speed train, and consisting of a 265 kW asynchronous motor (a) and its 26:85 gearbox (b). The
output shaft of the gearbox, corresponding to the axle of the bogie in the real application, is here connected to an additional
71:27 gearbox (c), in turn joint to a second asynchronous motor acting as a brake (d). The main subsystem is equipped with
a rich set of IEPE accelerometers (100 mV/g sensitivity and 0–10,000 Hz frequency range), in proximity of each bearing, and
a tachometer installed on the dummy axle.

A series of test campaigns have been performed on this test rig: on each campaign a different damaged bearing was
installed in one of the seven positions available:
1.
 Motor back: ball bearing.

2.
 Motor front: cylindrical roller beating.

3.
 Gearbox input shaft, driven end: cylindrical roller bearing.

4.
 Gearbox input shaft, non-driven end: cylindrical roller bearing.

5.
 Gearbox input shaft, non-driven end: ball bearing.

6.
 Gearbox output shaft (dummy axle), left: tapered roller bearing.

7.
 Gearbox output shaft (dummy axle), right: tapered roller bearing.
For each campaign, a series of tests in different operating conditions (speed/torque) were performed and vibration data
measured and stored. A first example is taken in the case of inner ring damaged bearing installed in position 5 (ball bearing
at the non-driven end of the input shaft of the gearbox). The damage, shown in Fig. 6, was produced by electro-discharge
machining with a maximum size of approximately 3.6 mm.
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Fig. 13. Second test – (a) raw accelerometer signal, (b) zoom of the raw accelerometer signal, (c) raw tachometer signal, (d) zoom of the raw tachometer
signal, and (e) spectrum of the raw accelerometer signal.
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Fig. 14. Second test – band selection for the calculation of the SES: comparison among kurtosis and RCC method (Butterwoth 4th order filters have been
applied to the raw signal for the spectral and cyclic filtering operations).
The test here shown is performed at a constant speed of 16.17 Hz at the dummy axle (52.85 Hz at the gearbox input shaft/
motor shaft). The raw vibration signal (a and b) and 1X rev. tachometer signal (c and d) are reported in Fig. 7, together with
the spectrum of the raw vibration signal (e).



The vibration data were transformed to the angular domain by means of computed order tracking [27], and then
envelope analysis was applied. In this case, given the almost constant speed of the test, the classical envelope procedure was
preferred to that proposed in [17], which is more complex and significantly more performing only in case of large speed
variations. The resampling was made choosing 1237 samples per revolution, the closest number to the actual average
sample rate (20 kHz of sample frequency and 16.17 Hz of 1X rev. speed), in order to reduce to the minimum the distortion
introduced in the signal.

The bands were defined for the analysis of the signal with a constant bandwidth 0.15 times the Nyquist frequency, and
with an overlap between two subsequent bands of 2/3 the bandwidth.

The kurtosis and RCC for each band were calculated by means of a series of ideal filters in spectral domain and a single
ideal filter in the cyclic domain. The results are shown in Fig. 8, respectively, in blue circles-line for the kurtosis and red
crosses-line for the RCC. The spectrum in the bands identified by the highest kurtosis and RCC is shown in Fig. 9, in
comparison with the one obtained on a healthy bearing. Despite the absence of clear damage specific symptoms, the rise of
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Fig. 15. Second test – normalized SESs of (a) optimal RCC band and (b) optimal kurtosis band.
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Fig. 16. Test-rig for the endurance tests on rolling element bearing – Politecnico di Milano.
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Fig. 17. Third test: (a) raw signal, (b) 5-revolutions zoom of the raw signal, and (c) spectrum of the raw signal.
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Fig. 18. Third test – band selection for the calculation of the SES: comparison among kurtosis and RCC method (Butterwoth 4th order filters have been
applied to the raw signal for the spectral and cyclic filtering operations).
the overall energy level and, more significantly, the presence of a recurrent peak (or hill) pattern in the case of damaged
bearing suggest that the band carries important diagnostic information.

This is confirmed in Fig. 10(a), which shows the NSES, i.e. standard SES divided by the SES at zero cyclic frequency
(Eq. (14)), for both the maximum RCC band (in red line) and the maximum kurtosis band (blue line). The typical peak
pattern around the theoretical BPFI clearly identifies the type of damage [17] in both NSESs, however, RCC is characterized
by a slight improvement in the amplitude of BPFI peak, sidebands and multiples, with respect to the max kurtosis band. In
diagram (b) the cumulate sum of the normalized SESs of diagram (a) is shown moving along the order axis (blue and red
lines, respectively, for maximum kurtosis and maximum RCC bands). As demonstrated analytically, the total sum of the
peaks of the two normalized SESs converges to the kurtosis (dashed lines) of the corresponding filtered analytic signal.

The correlation of the kurtosis vs. the amplitude of the envelope peaks is also shown in Fig. 11. The evolution of the
envelope as a function of the central frequency of the band is tracked in diagram (a), obtained by calculating the normalized
SES on a constant bandwidth of 15% the Nyquist frequency, sliding with a step of 5% the Nyquist frequency. It is evident how
the symptoms of the damage (peaks around the theoretical BPFI) arise only when the selected band-pass filter is very close
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Fig. 19. Third test – comparison worn (inner ring damaged) vs. new bearing: (a) full spectrum, (b) zoom in the optimal spectral band indicated by RCC, and
(c) zoom in the optimal spectral band indicated by kurtosis.
to the Nyquist frequency. The correlation of this qualitative information with the kurtosis of diagram (b) is a further proof of
the equivalence of the two indicators. Moreover, the RCC index is reported in diagram (c), in this case giving similar
information to the standard kurtosis.

In Figs. 8, 10 and 11 all the indexes were obtained by means of ideal filters, thus, using FFTs and IFFTs. This, as anticipated
above, may be computationally very expensive for the evaluation of a detailed protrugram and can be substituted by the
procedure shown in Fig. 2.

To show the effectiveness of the procedure, a series of digital IIR 4th order Butterworth filters has been designed for the
spectral bands described before and an additional digital IIR 4th order Butterworth filter has been obtained for the cyclic
filtering of the squared signal in the cyclic range 9.18–9.48 Nx of the gearbox input shaft (30–31 Nx of the wheel axle), just
about the expected bearing cyclic order of 9.36 Nx of the gearbox input shaft (30.61 Nx of the wheel axle). The raw (fully
real) signal has been used instead of the analytic signal, to avoid any transform from and to frequency domain. The results of
such estimation are shown in Fig. 12, for the kurtosis (a) and for the RCC (b), obtained by ideal filtering both in spectral and
cyclic domain and using the analytic signal (blue lines) and by butterworth spectral and cyclic filters on the raw signal
(red crosses). It is clear from diagram (a) that, disregarding a scaling factor of 1.5, due to the application to complex vs. real
signals, the kurtosis of each band is very accurately estimated by the filter-bank method. The RCC trend is also correctly
estimated (b), with a similar average ratio between the results of the two methods.

In this case, the results of the application of a standard kurtogram or protrugramwould have been very similar, owing to
the fact that the two indexes indicated as optimal two very close bands, as shown in Fig. 10.
5.2. Second test

A second example, regarding vibration measurement taken on the electric motor of the same test rig, will show the
increased effectiveness of an RCC-based band selection.

In this case, a naturally developed damage was present on the outer ring of the cylindrical roller bearing installed at the
motor driving end (DE). In this case the signal is much more disturbed, as clearly visible in Fig. 13(a) and (b), even if in the
same conditions of the previous test: the speed is constant at 16.17 Hz of the dummy axle, as it is visible from diagram
(c) and (d). The increased noise is probably due to strong electromagnetic fields in proximity of the motor windings.

In order to show the effectiveness of the proposed procedure, the fast version of the algorithm for the calculation of
kurtosis and RCC has been directly applied, i.e. applying digital Butterworth filters for both the spectral and the cyclic band-
passing and using the raw (real) signal instead of the analytical version. In this case an outer ring damage was expected,
with a BPFO at the cyclic frequency of 7.21 Nx of the motor shaft (23.56 Nx of the dummy axle), therefore, the cyclic filter
was set to band-pass in the cyclic range 7.04–7.22 Nx of the motor shaft (23–23.6 Nx of the dummy axle). The choice of a
band not centered on the theoretical frequency of the damage is due to the fact that deviations of the actual characteristic
frequencies of cylindrical roller bearing from the theoretical ones are generally one sided and, for BPFO always negative [17].
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The results are displayed in Fig. 14, where it is clear that the two methods suggest the selection of far different spectral
bands for the demodulation of the signal. The very high value of the maximum kurtosis already shows a possible
malfunctioning of this criterion.

The SESs calculated on the two different bands are shown in Fig. 15, respectively, for the optimal RCC band (a) and the
optimal kurtosis band (b). The improved effectiveness of the RCC is evident.

5.3. Third test

The technique has been also applied to a much smaller test rig to test its validity on bearings with totally different size.
This test-rig, shown in Fig. 16, is driven by a 1.75 kW asynchronous motor. The rotating shaft, connected to the motor pulley
by a timing belt, is supported by two bearings with double row cylindrical rolling elements lodged in two housing fixed on
the external structure. The bearing under test a single row cylindrical roller bearing, model SKF NJ 206 ECP, installed in the
middle of the rotating shaft. The casing in which this bearing is installed is connected to a pneumatic cylinder, providing the
static load needed to induce internal stresses in the bearing. Vibrations are measured in the radial direction in



correspondence of the bearing by means of a single-axis IEPE accelerometer, with 100 mV/g sensitivity and 0–10,000 Hz
frequency range. Signal records are saved at regular intervals of 100,000 cycles with a sample frequency of 25.6 kHz. The
speed of the shaft is set to 1000 rpm and the load on the bearing is set to 7500 N.

The analyses have been made on the 5 s signal record of Fig. 17. In this case no order tracking technique has been applied
and all the analyses were performed in the actual time/frequency domains.

The results of the application of the 4th order Butterworth filters to the raw signal for the calculation of kurtosis and RCC
are shown in Fig. 18. The spectral pass-bands have been defined as before, with a width of 15% of the Nyquist frequency and
with an overlap of 2/3 of the bandwidth. For the calculation of the RCC a very narrow band has been chosen from 129 to
131 Hz, expecting a BPFI of 129 Hz and very low upwards deviations of the actual damage frequency (load is high).

The diagrams of Fig. 18 show again significantly different indications for the choice of the bands. Looking at the two
bands in Fig. 19(b) and (c) it is difficult to have an assessment of the effectiveness of the two indicators, but it seems that
some pattern is present in the RCC optimal band, while a simple increase in the overall spectrum is present for the kurtosis
optimal band. The result is clear in the very different quality of the corresponding normalized SESs. In Fig. 20(a), obtained by
demodulation of the optimal RCC band, symptoms of inner ring damage are clearly identifiable, while in diagram (b),
obtained by demodulating the optimal kurtosis band, no BPFI harmonics is detected.

5.4. Prognostic campaign

This tool has also been applied on the same test rig of the third test, with the same bearing and in the same conditions,
tracking the evolution in time of the parameters. The evolution of the two indexes, maximum band kurtosis and maximum
RCC, is shown in Fig. 21(a), and can be compared with the evolution of the RMS of the signal. It is clear that the bearing
failure, which happened after approximately 47 mln cycles is detected first by the RCC, approximately after 40 mln cycles,
and only later by the kurtosis, which sees a significant increase only after 45 mln cycles.

6. Conclusions

This paper allowed the explicit expression of the strong relationship among squared envelope spectrum, kurtosis and
cepstrum pre-whitening. This result could provide a theoretical starting point for the derivation of new indexes and tools for
the diagnostic of rolling element bearings and other 2nd order (pseudo-) cyclostationary signals. In particular, in this study
it has been used for the selection of a new index, the RCC, able to identify the optimal band for the calculation of the SES
itself. The RCC has proven not only more robust than the kurtosis for the selection of the optimal spectral band for
demodulation, but also a well performing prognostic tool, able to identify in advance the development of a damage. The
narrow cyclic focus of the proposed index may as well entirely substitute the traditional SES, providing as well a much
simpler and fast index for an online automatic diagnostic/prognostic of rolling element bearings.

Appendix A

The proof of the equivalence of the zero-frequency SES value and the fourth power of the RMS is given in this appendix.
The starting point is the definition of the SES for a time domain signal x½n�, uniformly sampled

SES½k� ¼ jDFTfjx½n�j2gj2 ¼ jDFTfx½n�Uxn½n�gj2 ð25Þ
It is then possible to apply the convolution theorem, combined with the properties of the Fourier transform of a complex
conjugate quantity:

SES½k� ¼ jX½k� � Xn½�k�j2 ¼ ∑hX½h�Xn½h�k�
		 		2 ð26Þ

If the SES is then evaluated at zero frequency, the terms in the summation become simple squared magnitudes of the
spectrum

SES½0� ¼ ∑hX½h�Xn½h�
		 		2 ¼ ∑hjX½h�j2

		 		2 ð27Þ

Their sum represents the squared RMS, finally proving the identity:

SES½0� ¼ jRMS2x j2 ¼ RMS4x ð28Þ
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