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12.1 INTRODUCTION

Masonry structures are comprised of units (such as bricks and/or stones), more
or less regularly spaced, and usually bonded with mortar.

Predicting the global (or macroscopic, or effective) mechanical properties
of masonry according to the mechanical and geometrical properties of units and
mortar is a goal that many authors have tried to achieve.

Two approaches are mainly used in the literature for the description of the
mechanical behavior of masonry, usually known as macro- and micromodel-
ing.

Macromodeling (see, e.g., Berto et al., 2002; Lourenco, 1996, 1997;
Lourengo et al., 1997; Pela et al., 2011, 2013; Ushaksaraei and Pietruszczak,
2002, just to quote a few) does not make any distinction between bricks and
joints, and “smears” the effects of mortar through the formulation of a ficti-
tious homogeneous material. The advantage of macromodeling is linked to the
ability of analyzing entire buildings using large-size finite elements (FEs), to-
tally disregarding the actual layout of the units. Unfortunately, it usually re-
quires that many mechanical parameters available be available: they can be
obtained by best fitting data provided by costly experimental campaigns per-
formed on full-scale masonry specimens, which require cumbersome devices.
On the other hand, specimens sufficiently large to be representative of the
global behavior of masonry are virtually impossible to extract and submit to
laboratory tests, especially in the case of historic buildings. In addition, the
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analysis of a different masonry material or brick pattern would require a new
calibration of the model parameters and hence new experimentations.

The alternative micromodeling approach (see, e.g., de Felice, 2011; de
Felice and Giannini, 2001; Gilbert et al., 2006; Lotfi and Shing, 1994;
Lourenco and Rots, 1997; Macorini and Izzuddin, 2011; Milani, 2008; Minga
et al., 2018a,b; Portioli et al., 2013; Sutcliffe et al., 2001; Shieh-Beygi and
Pietruszczak, 2008) is a distinct representation of mortar joints and bricks. The
calibration of the mechanical parameters is easier and less expensive, because
only laboratory tests on brick and mortar small samples have to be performed.
In order to limit the number of degrees of freedom (DOF) in structural analy-
ses, joints are usually reduced to zero-thickness interfaces, but still the numer-
ical effort remains proportional to the number of units in the structure: accord-
ingly, this approach is feasible for small structural elements (e.g., panels or sin-
gle piers).

Homogenization (see, e.g., Anthoine, 1995, 1997; Casolo and Milani, 2010;
Cecchi et al., 2005, 2007; Cecchi and Milani, 2008; Cluni and Gusella, 2004;
Dallot et al., 2008; de Buhan and de Felice, 1997; Kawa et al., 2008; Luciano
and Sacco, 1997, 1998; Milani, 2009, 2011a,b,c, 2015; Milani et al., 2006a,b,c;
Milani and Taliercio, 2015, 2016; Milani and Tralli, 2012; Mistler et al., 2007;
Pande et al., 1989; Pegon and Anthoine, 1997; Pietruszczak and Niu, 1992;
Sab, 2003; Sab et al., 2007; Sacco, 2009; Stefanou et al., 2015; Taliercio, 2014,
Zucchini and Lourengo, 2002, 2007) is an interesting compromise between mi-
cro- and macromodeling, because it allows a structure to be roughly discretized,
but at the same time accounts for the mechanical behavior at the mesoscale at
each Gauss point accurately. The practical advantage of homogenization stands
is therefore the fact that only the mechanical parameters of the constituent ma-
terials (brick and mortar) are required to estimate the average behavior of ma-
sonry to be used in structural analyses. Additionally, in large-scale computa-
tions FE meshes unrelated to the brick size can be used.

From a macroscopic point of view, if units are arranged according to a reg-
ular pattern, masonry is an orthotropic medium.

The macroscopic behavior of masonry beyond the elasticity limit was math-
ematically described by Pietruszczak and Niu (1992), assuming bricks to be
elastic-brittle and mortar to be elastoplastic and hardening. Their approach al-
lowed macroscopic failure surfaces for different orientations of the principal
stresses to the bed joints to be determined. Damage effects in the constituents
were taken into account (e.g., by Luciano and Sacco, 1997; Shieh-Beygi and
Pietruszezak, 2008; Zucchini and Lourenco, 2007) to describe the brittle post-
peak behavior experimentally observed in tests on masonry specimens. More
recently, Sacco (2009) predicted the macroscopic behavior of 2D brickwork in
the nonlinear range by assuming damage and friction effects to develop only
in the mortar joints, and applying classical homogenization techniques for pe-
riodic media to any represenvative volume element (RVE). The major limi-
tation of homogenization is related to nonlinear FE computations, because a
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continuous interaction between meso- and macroscale is needed beyond the lin-
ear range. This issue involves a huge computational effort, since the field prob-
lem has to be solved numerically at each loading step and at all Gauss points.

Apart from the prediction of the incremental inelastic response of
large-scale masonry structures, from an engineering point of view it is interest-
ing to get direct information on the behavior of masonry at failure (Gilbert et
al., 2006; Milani, 2008, 2009, 2011a,b,c). The aim is to provide designers with
reliable and efficient tools for fast estimates of the load-carrying capacity and
the active failure mechanisms.

In this framework, limit analysis combined with homogenization theory is
an interesting technique that straightforwardly predicts the ultimate behavior
of entire structures. This approach requires only a reduced number of mater-
ial parameters to be known, avoids units and joints to be separately modeled,
and allows analyses at the meso- and macroscales to be independently per-
formed. In other words, at a first step homogenized failure surfaces for masonry
can be estimated at the mesoscale, without nesting the mesoscale into the FE
code used at the macroscale. This is a remarkable advantage that has recently
allowed a specific research stream to be developed, to derive advanced mod-
els for the evaluation of macroscopic strength domains for masonry walls un-
der in- and out-of-plane loads; see, for example, Cecchi et al. (2007), Cecchi
and Milani (2008), de Buhan and de Felice (1997), Luciano and Sacco (1997),
Milani (2009, 2011a,b,c), Milani et al. (2006a,b), Milani and Taliercio (2015,
2016), Milani and Tralli (2012), Sab (2003), Sab et al. (2007), and Stefanou et
al. (2015). The second step is the implementation of these domains at the struc-
tural scale, to perform FE limit analyses on entire buildings (see, e.g., Milani et
al., 2006b; Milani, 2015): limit load multipliers, failure mechanisms, and stress
distributions at collapse, at least at critical sections, can be obtained.

Focusing on the mesoscale, assuming mortar and bricks to be rigid-perfectly
plastic with associated flow rule, and within the basic assumptions of homoge-
nization theory for periodic media, macroscopic strength domains for masonry
can be estimated using the classic upper and lower bound theorems of limit
analysis applied to an elementary cell (Suquet, 1983, 1987). In particular, the
lower bound approach requires statically and plastically periodic microstress
fields to be considered, and allows lower bound estimates of the actual homog-
enized failure domain to be obtained by means of the constrained maximiza-
tion of the macroscopic stresses. Dually, the upper bound approach requires
kinematically admissible, that is, strain rate-periodic, velocity fields to be dealt
with, and allows the upper bound of the actual homogenized failure domain to
be obtained using the constrained minimization of the total internal power dis-
sipation. In both approaches, the mechanical problem is matched by (non)linear
mathematical programming problem, where the total number of optimization
unknowns is extremely reduced.
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This chapter is aimed at critically reviewing some available recent and ef-
fective models, with a comparison of their numerical performances. In particu-
lar, four different strategies for the evaluation of the homogenized strength do-
main of running or header bond masonry under in-plane and out-of-plane loads
are discussed and critically compared.

Two of these models give lower bounds on the macroscopic strength do-
main of periodic masonry, and two give upper bounds. The first lower bound
model (Milani et al., 2006a,c) subdivides the elementary cell into a few rectan-
gular subdomains, in which the microstress field is expanded using polynomial
expressions. In the second lower bound procedure (Milani, 2011a,c), joints are
reduced to interfaces and bricks are subdivided into a few constant stress trian-
gular (CST) elements: closed-form estimates of the homogenized strength do-
main can be determined. The third procedure (Cecchi et al., 2007; Cecchi and
Milani, 2008) is a “compatible identification” approach, with joints reduced to
interfaces and bricks assumed to be infinitely resistant. The velocity field is
assumed to be a linear combination of elementary deformation modes applied
to the elementary cell. The last model is a kinematically admissible procedure
based on the so-called Method of Cells (MoC; see Milani and Taliercio 2015,
2016), where the elementary cell is subdivided into six rectangular subcells
with prescribed polynomial strain rate-periodic velocity fields. The first and lat-
ter approaches have the advantage that the finite thickness of the joints is ex-
plicitly taken into account. In the second approach, although joints are reduced
to interfaces with frictional behavior, failure inside bricks can be accounted for.
The third approach is the most straightforward, but is reliable only in the case
of thin joints and strong blocks. A critical comparison of the pros and cons of
all models is discussed, with reference to some examples of engineering inter-
est.

12.2 FUNDAMENTALS OF HOMOGENIZATION FOR
PERIODIC MEDIA

When heterogeneous media are dealt with, it is customary to replace the real
medium Q by a “homogenized” one and define its global (or macroscopic)
properties through the analysis of a RVE. The RVE is the smallest part of the
real medium that contains all the information required to completely character-
ize its average mechanical behavior. If the medium is periodic a single “unit
cell” (Y) can be used as RVE. Y and Y will denote the parts of the cell occu-
pied by mortar and brick, respectively.

Masonry is a composite material, usually made of units bonded with mortar
joints; in several instances, units and mortar are periodically arranged. Due to
its periodicity, an entire masonry wall Q can be seen as the spatial repetition of
unit cells (see Fig. 12.1). If a running- or header-bond bond pattern is consid-
ered, a possible choice for the unit cell is a rectangle, as shown in Fig. 12.1.
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FIGURE 12.1 Typical running bond assemblage of bricks and mortar and possible unit cell.

For periodic arrangements of units and mortar, homogenization techniques
can be used both in the elastic and inelastic range, taking into account the mi-
crostructure only at a cell level. This leads to a significant simplification in the
numerical models adopted for studying entire walls, especially for the inelastic
case.

The basic idea of any homogenization procedure consists in defining
macroscopic stresses and strains (denoted by E and X, respectively) that repre-
sent the corresponding microscopic quantities ¢ and € averaged over the cell:

E=(e)=1 / e(u)dY
Y
1
E=<6>=Z/chY

where A is the area of the elementary (2D) cell, u is the microscopic displace-
ment field, and (*) is the averaging operator.
Suitable periodicity conditions are imposed on ¢ and u, that is:

u=Ey+uP" uP on 9Y
on anti —periodic on dY

(12.1)

(12.2)

where yper is the periodic part of u and 0Y is the boundary of Y.

Assume both materials to be rigid-perfectly plastic and to obey an associ-
ated flow rule. Let S™, S?, and shom denote the strength domains of mortar,
units, and homogenized material, respectively. It was proved by Suquet (1983)
that the static definition of ghom in the space of the macroscopic stresses reads:

r r 3

z=<6>=%/YGdY (a)

dive =0 (b)
hom __ 2 . .
S = 13 B [[6]] nlnt — 0 on So- (C) ¢ (12
on anti —periodic on 0Y (d)

s(y)eS" Vyel" o(y)es” Vyel (o)

S -

where [[6]] is the jump in microstresses across any discontinuity surface S,
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and pint is the normal to S, at any point. Condition (12.3b) imposes the microe-
quilibrium, condition (12.3d) derives from periodicity, and condition (12.3¢)
represents the yield criteria for the components (brick and mortar).

Any point of the homogenized failure surface can be determined by pre-
scribing a direction in the homogenized stress space by means of a unit vector
Ny and solving the following constrained maximization problem:

/{n2= %AGdY

on anti —periodic on dY i
dive = 0 (124
. [ Sifyer?

-

Find max {4} : |5

L

where Ang is a macroscopic stress on the boundary of ghom belonging to a
straight line, oriented as Dy. If masonry is assumed to be in a state of plane
stress in the plane (x;,x,), ny = [a i y] T'is a unit vector in the macroscopic
stress space (X, X4, 219); see Fig. 12.2A.

A dual kinematic definition of ghom_ also due to Suquet (1983), can be de-
rived through its support function 7hom(p) as follows:

T :D<zo™D) VD e R°

N
ghom _ )y .|] 7"°"(D) = inf {P(v) :’D =1 /a Yv®ndS}

P(v) = /ﬂ'(d)dY+ /ﬂ([[V]] ;N,)dS
Y S

(12.

where v = Dy + vP*' is the microscopic velocity field, and yper is its periodic
part; d and D are the microscopic and macroscopic strain rates, respectively; S
is any discontinuity surface for v in Y, and n, is the normal to S; é denotes the

(A) 5 (B) M

“xy w0
1 Macroscopic strength domain /L ) Homogenized strength domain
3 / -

A AN

Ang

s

%
=yx

FIGURE 12.2  (A) In-plane homogenization problem. Meaning of the multiplier 4 in the homog-

enized stress space (X;,=2,,=a, £,,=%,,=f and £,,=X,,=y). (B) Out-of-plane homogenization prob-
lem. Meaning of the multiplier A in the optimization problem and angles ¥ and 9.
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12.3 PES MODEL: POLYNOMIAL EXPANSION OF THE
MICROSTRESS FIELD

12.3.1 Homogenized yield surface under in-plane loads

The first micromechanical model presented in this chapter for the limit analy-
sis of masonry walls under in- and out-of-plane loads was proposed by Milani
et al. (2006a). The model requires a subdivision of the unit cell into 36 subdo-
mains, as shown in Fig. 12.3, in which polynomial microstress fields are de-
fined. Equilibrium inside each subdomain and at the interface between contigu-
ous subdomains is prescribed, together with antiperiodicity conditions for the
microscopic stress vector along the boundary of the unit cell.

In each subdomain y#, any stress component P

i is expressed as a polyno-

mial of degree m and can be written as follows:

a;@ =X(y)S] ye¥ (12.6)
where XMW=l y » »¥ ywn »n .} and
S; = [Slg_l) Sfj2) S;,'S) Si(jf‘) Sl(.j.S) ng) ] is an array of

N = (m+ D(m+2)/2 entries, representing the unknown stress parameters.
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FIGURE 12.3  Subdivision of the unit cell. Left: subdivision and geometrical characteristics of
one-fourth of the cell. Right: subdivision of the entire cell into 36 subdomains.
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Prescribing equilibrium with zero body forces within every subdomain,
continuity of the stress vector at any interface, and antiperiodicity of on
strongly reduces the total number of independent stress parameters.

In detail, equilibrium within each subdomain reads ag;?(yl, ¥)=0,i=1,2

. V(y1,y,) € Y*. Since ch) is a polynomial expression of degree (m), any lin-

ear combination of its derivatives (7;yg®)) is a polynomial of degree (m—1).
This gives 2 N linear independent equations in the stress coefficients, where
N=(m=-172/2)+@m-1)/2)+1

= (m(m +1)/2) '

Continuity of the stress vector across any internal interface between two
contiguous subdomains (y*, y") sharing a common interface of normal n reads

ag‘)nj - ol(jr)nj =0, i=1,2, yy* y (see Fig. 12.4A). The stress component
polynomial expressions of degree m along the interface, other 2 additional
equations, with N/ = m + 1, are obtained (see Fig. 12.4B).

Antiperiodicity of on on gY gives 2’ additional equations per each pair of
external faces (m,n) (Fig. 12.5C), where the outward unit normal vectors (n,
n,) are opposite.

Finally, some automatically performed elementary assemblage operations
on the local variables allow the stress vector within every subdomain to be ex-
pressed as follows:

0 =XPW8 k=1, (12.7)

where g is the array of the in-plane stresses within the k-th subdomain; § is
the array gathering the »,,, independent unknown stress parameters; f((k) ) isa
3xN,, matrix that contains only geometrical coefficients; its elements are poly-
nomial forms in the microscopic coordinate y.

The approximated stress field defined in Eq. (12.7) is a statically admissi-

ble stress field, so that the constrained maximization problem (12.4) that de-

(A) ¥ (B) Quadratic interpolation for @ (or 1)

| " j-th sub domain: frame of reference Local frame of reference "
LT 3
N (k-r) interface

v
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H? L@ (g) Y

(q-k) interface (g) |

Equilibrium to check in 3 points

FIGURE 124  Contiguous subdomains. (A) Geometry and reference system for each subdo-
mains and interfaces between adjacent subdomains. (B) Example of equilibrium conditions along a
horizontal interface for the normal stress and quadratic expansion of the microstress field.
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(A) Subdivision of masonry (B) Subdivision of each (C) Internal equilibrium,
thickness in layvers layer in 36 equilibrium on interfaces and
sub domains anti periodicity
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FIGURE 12.5 Micromechanical model proposed for transverse loads. (A) Subdivision of the
unit cell into layers along the thickness. (B) Subdivision of each layer into subdomains. (C) En-
forcement of equilibrium and periodicity conditions.

fines the macroscopic yield surface in plane stress conditions point by point can
be further specialized as follows:

-

max {4}
ax ~(k) ~
g = L3 / X" y)Sdy (a)
Y
1 such that y~e(k§ﬂ ~ (b) (12.8)
=X (y)S (©)
sy)eS k=1,..., 4™ ()

where S stands for the failure domain of the component (unit or mortar) be-
longing to the ith subdomain.

The optimization problem given by Eq. (12.8) is generally nonlinear as a
consequence of the (possible) nonlinearity of the yield surfaces of the compo-
nents. In addition, condition (12.8d) has to be checked at every point of the do-
main Y. Nevertheless, a continuous check is avoided using classic collocation,
that is, imposing plastic admissibility only where the stress is higher. This pro-
cedure provides a rigorous lower bound only for polynomial models of order 0
and 1; in all other cases, collocation consists in enforcing, in every subdomain,
the admissibility condition on a regular grid of »xg “nodal points.”

Adopting a regular grid, the optimization problem takes the following dis-
cretized form:
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max {4}

g =1y, / X y)Say
y = nodzfl point (12.9)
& =X )8
des j=1,..1q
k=1,..,4k™*

P
such that<

L
\

Standard linearization of the yield surfaces of brick and mortar allows the prob-
lem to be solved by linear programming.

Sections of the in-plane failure surface of masonry can be represented at
different angles, 9, between a bed joint and the macroscopic horizontal stress (
211). By keeping 9 fixed and varying the angle w=tan '2,,/%;, where X, is
the macroscopic vertical stress, any section is drawn. Accordingly, the director
cosines of vector Ny can be expressed as:

ng; = 2(cosy(l +cos(29)) + sin (1 — cos(29)))
Ny, = E(COS w (1 —cos(29)) + sin w(1 + cos(29))) (12.10
Ny 5 = 3(cos y — sin y)sin(29)

The numerical failure surfaces can be therefore obtained by solving the
optimization problem given by Eq. (12.4), where the direction of the “load”
[211 PN 212] Tdepends on the orientation 9 of the principal stresses to the

joints.

12.3.2 Extension to transverse loads

In order to account for loads acting transversely to a wall, within the frame-
work of the previous discretization into subdomains and polynomial expan-
sions of the stress field, the unit cell is subdivided into a fixed number of layers
along its thickness, as shown in Fig. 12.5A. In other words, the out-of-plane
model requires a subdivision of the wall into n; layers of equal thickness
A; =t/ny (Fig. 12.5A). According to classical limit analysis for thin plates,
the out-of-plane components 0;3 (i=1,2,3) of the microstress tensor ¢ vanish,
so that each layer is subjected only to in-plane stresses 0; with i,j=1,2. These
stresses are assumed to be uniform along the thickness of each layer, that is, in
each layer 6;; = 6;i(y1,2) is a polynomial expansion in the in-plane geometric
variables (see Milani et al., 2006a,c and Fig. 12.5B).

Under the same hypotheses done for in-plane loads, any point belonging to
the boundary of the homogenized flexural strength domain can be evaluated by
solving the following (non)linear optimization problem:
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L

<
such that<

max {4}
N= / " aydy,
ki
M = y3’6(k,lL)dey3

ki
M = M, M, — cos(y) cos(9) sin(9)
My, My, sin(9) sin(y) cos(9)
w=[0; 2z] 0=[0; =n/2]
gk = X4 (3
kD) e gkir)

k=1,..., number of sub —domains; i; = 1,...,number of lay

where 4 is the load multiplier along any radial path in the space of the bending
and twisting moments (M, M,,, M,,; see Fig. 12.2B); v and 9 are spherical

coordinates in the space (M, M, M},), given by tan 9 = M, /4 /Mlz1 + Mzz2

,tan w = M,, /M, ; s*-ip) denotes the (nonlinear) strength domain of the con-
stituent material (mortar or brick) corresponding to the j# subdomain and itLh

layer; § collects all the unknown polynomial coefficients (of all subdomains,
of all layers).

It is worth noting that:

For the sake of simplicity, membrane actions are assumed to be constant
and independent from the load multiplier. Hence, in estimating the load-
bearing capacity of transversely loaded walls, in-plane actions are only as-
sumed to modify the flexural strength domain of masonry. This assumption
is rigorous for laboratory wallettes, where a fixed in-plane vertical com-
pressive load is always applied before any out-of-plane actions, which is
then increased to failure. It also acceptable in the analysis of real buildings,
which always withstand vertical, in-plane dead loads.

Condition (f) should be checked at every point of the domain Y, but this
is impossible for polynomial expansions of degree higher than 1. The ap-
proach used is thus based on collocation, that is, admissibility is checked on
a regular grid of “nodal points.”

Similar to the in-plane case, the nonlinearity in the terms g#iL) ¢ g(kir)
, due to the (possible) nonlinearity of the strength domains of the compo-
nents, can be avoided by a classical piecewise linearization of the domains.
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12.4 EQUILIBRATED MODEL WITH JOINTS REDUCED TO
INTERFACES AND CONSTANT STRESS TRIANGULAR
DISCRETIZATION OF THE BRICKS

12.4.1 Homogenized yield surface under in-plane loads

The second homogenization model presented is also based on a static lower
bound approach, in which the unit cell is roughly discretized into FEs, as de-
picted in Fig. 12.6.

Unlike the previous model, joints are reduced to interfaces of vanish-
ing thickness, and units are discretized using a coarse mesh of three-node
plane—stress elements (CST), as schematically sketched in Fig. 12.6. The
choice of meshing 1/4 of the brick through at least three triangular elements is
due to the need of capturing the presence of shear stresses in the bed joint under
horizontal stretching (element 2 in Fig. 12.6). The interfaces within the bricks
allow, in principle, failure of the units to be captured.

Here, 24 CST elements are used for the discretization of the unit cell
(Fig. 12.6). The superscript (n) denotes any stress component belonging to the
n-th element. Assuming plane—stress conditions, the nonvanishing components
of the Cauchy stress tensor g(n) within the n-th element are O-Y{) (horizontal

stress), o—;’;) (vertical stress), and aﬁ’? (shear stress). The total number of un-

1. Reduction of joint 1o interfaces
12 2. Subdivision of the REV into triangular FEs
"\1 5: Masonry middle plane 3. Nonlinarity concentrated on brick-brick and
mortar interfaces
€, Amntiperiodicity of microstress and periodicity of displacement

y2
/ “.A ar &0 Periodic fluctuation

[

0 ) s [ 7
Gy ' Irl:l'ﬂtpl }é P u"{P, ’é
r—

REV a7z5=20 cm | REV Stress acting on elements and equilibrium on
) hAz20-30em . 4T g interfaces e,
a2 [B753 I[':"-L"/:zT"\-':' i i AR i
- e e
.

- — — |
(6T~ [5/'-4-1'4 E}"i“- []’/ﬁ'” =

1% 5} — R 1
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@
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FIGURE 12.6 Lower bound approach with CST discretization of the bricks. Subdivision of the
REV into 24 CST triangular elements (and 1/4 into six elements) and antiperiodicity of the mi-

crostress field (60'=6"), 6{1'=6{, 1W=5").



Homogenized limit analysis of periodic masonry using simplified ... Chapter | 12 13

knowns is 73, that is, 72 stress components (three per element), and the load
multiplier A.

Equilibrium within each element (gjye = () is a priori fulfilled, because
CSTs are used. On the contrary, two equality constraints must be imposed for
each internal interface, to ensure continuity of the normal and tangential com-
ponents of the stress vector across the interface between contiguous elements.

Antiperiodicity constraints for the stress vector are written for the pairs of
triangles 1-6, 1'-6', 7-12, 7'-12', 1-7’, 3-9’, 4-10', and 6—12'. For instance, for
the pairs 1-6 and 1-7’, the following equality constraints must be prescribed:

6( . 0'(6)
Jh_ o i=12 (12.12)
2i 21

Assuming the strength of both the interfaces and the triangular elements to
be limited, the in-plane homogenization problem can be rewritten as follows:

max {A}

Ao = —’ 4 IE;I)A

_ Zz 1 EZZ)A
AP = ab

— &= 1 EIZ)A

subject tos Ay = 2ab (12.13)

Aé X = bé
APX = b

eq eq

fio\ oW 6D <0 vi=1,..,24
ﬁwﬂ,%<0 Vi=1,..,32

The symbols used in Eq. (12.13) have the following meaning:

e o, f, and y indicate the director cosines of the unit vector ny (see Fig.
12.2,A) in the space of the homogenized membrane stresses. The solution
of the optimization problem allows a point on the homogenized failure sur-
face, with coordinates X;,=4a, X,,=Af, and X,,=1y, to be determined.

A; is the area of the i-th element (ab/8 or ab/16).
X is an array of 73 entries, which collects all the optimization unknowns
(elements stress components and collapse multiplier).

° Aé qX = bﬁ g is a set of linear equations corresponding to equilibrium con-
straints on all interfaces. Since 32 interfaces are present in the discretized
unit cell and two equality constraints have to be fulfilled at each interface,
Al is a 64x73 matrix and bl is an array of 64 zero entries.
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e Ag X =bg, collects antiperiodicity conditions, and it is therefore a set of
16 equations. Thus, A/ is a 16x73 matrix, and by} is an array of 16 zero

entries.

° fé(aiil)’agz)’aiiz)) <0, i=1,...,24, is a set of nonlinear inequalities defin-
ing the strength domain of the i-th element. Within a linear programming
scheme, the yield surface is linearized a priori: linearization is usually per-
formed so as to get a safe approximation of the strength domain, to ensure
that a strict lower bound estimate of the collapse load is obtained using a
static approach. This can be easily obtained using a Delaunay tessellation.

. fj(o-gi),fgi)) <0, i=l,..., 32 are inequalities that play the role of f- <0

for the interfaces. Two typologies of interfaces are present in the model,

namely interfaces within bricks and interfaces corresponding to mortar
joints.

o—;") and T;i) indicate the normal and shear stress acting on interface ;, re-

spectively.

Eq. (12.13) is a standard linear programming problem that allows the collapse
loads of in-plane loaded masonry structures to be estimated using an FE ap-
proach.

12.4.2 Extension to transverse loads

The generalization of the model to out-of-plane actions (under the Kirch-
hoff-Love hypothesis for thin plates) is performed in the same way followed
for the polynomial expansion of the stress field in Par. 3.2, namely with a sub-
division of the wall thickness # into n; layers of equal thickness A; = t/n;.
Within these assumptions, similar to the in-plane case any point of the failure
surface in the bending-twisting moment space can be estimated by solving the
following linear programming problem:
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max {4}
Zjn:L] i(HAL jAL>21241 oWA; ZnLALE 4,
Aa = 2ab ’ N = 2alb] - =
A i Q
EJZLIAL<H L /AL>Z, 105 4; SLAL YR 054,
"= A 2ab ’ Ny ===z )
n t+ i 4
subject to = Ej:liAL< L /AL>EI 1017 4; N SILAL TS A,
r= 2ab AI’X b112 - 2ab i
53 _ 5Z
X =Db,
GRS "”)<0 VizLo2d V= Lo,
{ 1@\, §’J’)go Vi=1,..32, ¥j=1,...n

where all the symbols have already been defined in the previous section.
Compared to the in-plane case, the following key issues are worth noting:

e} is the load multiplier along any radial path in the (M 11, Moy, M, 12) space;

e q«, f, and y are the director cosines of the unit vector Dy in the
(M), My, M),) space (see Fig. 12.2B).

e X is an array that collects all the unknown stresses in all the FEs of all lay-
ers. Therefore, X is an array of 3 X 24 X n; entries.

° Aé qX = bé g collects equilibrium constraints at the interfaces of all layers.

Since no shear stresses are transferred between contiguous layers, for each
layer these constraints are the same as in Eq. (12.13). Aé q is a 64nx(72n,

+1) matrix, and b[ is an array of 64n; zero entries.

e Similar remarks apply to the set of equations Aap X = bap which collects
antiperiodicity and equilibrium conditions for all layers. Aeq is now a 167,
X(72n1+1) matrix, and by is an array of 165, zero entries.

e Unlike the in-plane case, three additional equality constraints have to be
imposed to ensure that the homogenized membrane forces (N, Ny, Ny5)

vanish.

Similar to the procedure followed with the previous lower bound model,
membrane actions are kept constant and independent from the load multiplier.
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12.5 COMPATIBLE IDENTIFICATION MODEL WITH
JOINTS REDUCED TO INTERFACES AND INFINITELY
STRONG UNITS

12.5.1 Homogenized yield surface under in-plane loads

The third model briefly recalled here is based on a kinematic approach, in
which bricks are supposed to be infinitely resistant and joints are reduced to in-
terfaces with cohesive frictional behavior.

At the microscale, a full description of the model can be given considering
a RVE consisting of a central brick and six adjacent bricks. In Fig. 12.7 a RVE
is subjected to three elementary in-plane homogenized strains, namely horizon-
tal normal strain (A), shear (B), and vertical normal strain (C). Note that when
the RVE is subjected to horizontal in-plane stretching, head and bed joints con-
tribute both to the ultimate strength, whereas in vertical stretching only the bed
joints experience a nonvanishing jump in displacement.

The real continuum is replaced by a standard 2D Cauchy continuum, iden-
tified by its midplane S of normal e;. The homogenization procedure is a
so-called “compatible identification,” which is based on the equality of the in-
ternal power dissipated in the 3D discrete system and in the equivalent 2D con-
tinuum.

The velocity at any point & of one of the bricks (4) is expressed in terms of
velocity (VCA) of the brick centroid, ¢4, and rotation rate of the brick (g4).

When € lays on any interface between two contiguous bricks 4 and B, its
velocity can be expressed in terms of kinematic unknowns of both bricks as fol-
lows:

V(&) = v + M@ - C)

12.15
vE@© = v + M(@F)(E — CP) (1219

(A) (B)

y

L}‘II .I"_':.".j"'léll r‘_—:.'_‘-l

FIGURE 12.7 Deformation modes considered in the compatible identification model.
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The jump in velocity [[V(é)“ at & is therefore given by:

[v®]] = v'® - v*©)
=v¢ — v L M@ - ) (12.16)
- M(@*)(& - C5)

The power dissipated at the interface is:

T = / [t1®) - v + t2©) - vE(©)] as
! (12.17)
= /, t1@) - [v(®)] dS

where t4(&) = [713(8)  153(8) 533(g)]T is the stress vector at & and

t1©) = —t7(©)-

The velocity of a point P=(x ,xg ,x§ ) in the equivalent continuum corre-
sponds to the velocity W(X) = (wy, w;)=(w,, w,) of the point x = (xf xg ,0)
laying in the midplane of the wall.

The power dissipated in the equivalent continuum is = =NTE, where

E= [E“ Ep+ Ey Ezz]T is the array of the in-plane strain rates, and
N=[Ny N sz]T is an array collecting the homogenized membrane

forces.

In the so-called compatible identification, the power dissipated in the het-
erogeneous assemblage of blocks and interfaces is assumed to be equal to that
dissipated in the equivalent model.

To this end, fields w(x) corresponding to possible actual failure mechanisms
are a priori chosen as combinations of elementary deformation modes of the
unit cell. From a practical point of view, a field w(x) corresponding to each
elementary deformation mode is obtained by alternatively taking one of the
macroscopic strain—rate components equal to unity and by setting all the other
components equal to zero: w(x) is then given a simple polynomial expression.
Once that w(x) is known, the rotation rates and velocities of each brick belong-
ing to the RVE in the heterogeneous model are determined, by assuming as
point x the centroid of the brick under examination.

12.5.2 Extension to transverse loads: Reissner—Mindlin model

In the Reissner—Mindlin (RM) plate model the angular velocity (@) of any seg-
ment perpendicular to the midplane is independent of the transverse velocity,
ws. The Compatible Identification approach can be extended to masonry walls
obeying the RM model and subjected both to in-plane and transverse loads, by
applying suitable homogenized curvature and transverse shear rates, as shown
in Figs. 12.8 and 12.9.
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FIGURE 12.8 Elementary homogeneous deformations applied to the representative volume el-
ement. (A) @1 = 711; (B) @25 = ¥22; (C) @2,1; (D) @12.

Yis =wy, o, Fay =Wy, t @,

FIGURE 12.9  Shear deformation rates. (A) 713; (B) 723

Fig. 12.8A shows the effect on the brickwork of a homogeneous curvature
rate y1; = @y, all the other generalized strains being set to zero. In this case,
both head and bed joints are involved in the dissipation induced by this defor-
mation mode.

Fig. 12.8B shows the effect of a homogeneous curvature rate y,, = @,,,
. It is interesting to note that only the bed joints exhibit a jump in velocity
between adjacent bricks. Similarly, in Figs. 12.8C and D the cases in which
only w,,#0, and w,,;#0 are nonvanishing are examined: combining these two
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cases, the deformation mode under homogeneous twisting curvature rate
X12 = W1, + @,,; can be obtained. In the first case, no bending moment exists
in the head joints, whereas bed joints experience twisting. Conversely, in the
second case, torsion is present in the head joints and the bed joints experience
bending.

Finally, Fig. 12.9 refers to the evaluation of the behavior of masonry un-
der transverse shear strain rates, 7;3 = Ws; + @;, i=1,2. In particular, Fig. 12.9A
shows the effects of the 75 component, whereas Fig. 12.9B shows the effects
of the 7,3 component.

Here, a numerical procedure for obtaining macroscopic homogenized fail-
ure surfaces for running bond masonry is presented. The procedure is devel-
oped under the hypotheses of RM plate theory, assuming bricks to be infinitely
resistant and joints to be reduced to rigid-perfectly plastic interfaces with an as-
sociated flow rule.

As the problem is dealt with in the framework of linear programming, for
each interface / of area 4’ a piecewise linear approximation of the failure sur-
face @ = @(o) is adopted. The surface is defined by 7, planes of equation
@)Te=c! 1<i<ny, where 6 =[o3; 013 0] 03 being the normal
stress on the interface and 0,3, 0,5 the transverse shear stresses along two per-
pendicular directions, all. is a 3x1 vector of the coefficients of the i-th lineariza-
tion plane, and cll is constant term of the equation of the i-th linearization plane.

Since the jump in velocity at the interfaces is assumed to vary linearly in
the discrete model (see Eq. 12.16), for each interface 3xn;, independent plastic
multiplier rates are assumed as optimization variables.

At each interface /, the following equality constraints between plastic mul-
tiplier rate fields jll, (&, &,) and jump in velocity [w &, 52)] are imposed:

"in

: 4]
W8] = YA a5t (12.18)
i=1

where (&,,5,) is a local reference frame laying on the interface plane, so that
&; is orthogonal to the interface; [W(fl’ 52)] — [ Awsy; Awyy Aw23]T is the
jump in velocity at the /-th interface; any component Aw3 corresponds to the
jump along the direction j; w is linear in (£,,55); }ll{ (&,,&,) 1s the i-th plastic mul-
tiplier rate field of the interface /, associated with the i-th linearization plane of
the failure surface; also /'11{ is linear in (&},$)).

Eq. (12.18) is nothing but the specialization, for the interface 7, of the
well-known normality rule £; = A(d¢/do;;), where €;; is the plastic strain rate,

} 1s the plastic multiplier, and ¢ is the failure surface, which coincides with the
plastic potential in the case of associated plasticity.
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In order to satisfy Eq. (12.18) at any point of any interface /, nine equality
constraints have to be imposed, corresponding to Eq. (12.18) evaluated at three
different points P, = (gp k. gpk) of the interface 7. Explicitly:

RGO Zi’(é‘] 8022 k=123 (12.19)

The power dissipated at the /-th interface, defined as the dot product of the
interface tractions for the jump in velocity, is evaluated using the following

equation:
ni’m=/[w]rc dA’

nin T
=/2“‘51’52)[ ] o dd! (12.20)

"lm

= —ZC’ZA’@I 504"
i=1

The external power can be written as 7,,, = (£) + AX])D, where X, is the
array of the dead loads; A is the multiplier of the live loads; X is the array
gathering the reference values of the live loads (which defines the optimiza-
tion direction in the space of the macroscopic stresses); and D is the array of
the generalized macroscopic strain rates. D collects in-plane deformation rates
(£, E\, Ey,), curvature rates (711 ¥12 ¥22), and transverse shear strain rates (
Y13 723); see Figs. 12.7-12.9. Introducing the classic normalization condition
of the failure mechanism 21T D = 1, the external power becomes linear in D and
o Zg D+ A

The core of the Compatible Identification approach is to assign prescribed
microscopic strain-rate periodic velocity fields to the unit cell (represented in
Figs. 12.7-12.9). As a consequence, for each interface / a linear relationship
can be written between D and the jump in velocity as follows:

[w&).8)] = G'(£,,&,)D, (12.21)

where G/(&;,&,) is a 3x10 matrix that depends only on the geometry of the in-
terface under consideration.

By assembling the equality constraints (12.18)—(12.21), and using the kine-
matic formulation of classic limit analysis, the following constrained minimiza-
tion problem is finally obtained to evaluate a point of the failure surface:

A and can be written as 7,
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I
A= min ¥ al —Z[D
%= [D,zlf. (Pk)]
D=1 (12.22)

GPID = [wpy) = T A EHSE Prel

where 7/ is the total number of interfaces considered and g is the array of all
the optimization unknowns. Similar to the homogenization models previously
presented in this chapter, problem (12.22) can be easily handled numerically
using either one of the well-known simplex and interior point methods, due to
the very limited number of optimization unknowns involved. In fact, § collects
only 3xny;,xn’ plastic multiplier rates and the macroscopic kinematic variables
D.

Problem (12.22) is written in general form, as it covers both in-and
out-of-plane loads, and allows interaction failure surfaces of masonry to be es-
timated through a kinematic approach.

Denoting by = (N1, Nyp, Nyn, M1y, M5, My, T13, Tr3) an array gathering
all the generalized stresses, and by &5(2) the macroscopic failure polytope for
masonry, a 2D representation of ¢ for any couple of variables %; and X, can be
obtained by fixing a direction defined by a unit vector Ny in the 8D X space,
so that ng(i) = cos y and ny(j) = sin y (with tan y/:Zj/Ei), and solving the
following optimization problem:

. nl
) min {4} = DT —ng '
ny'D=1 ns@) =cosy ng()= smau/ (12.23)
in il P P
G/(PYD = [w(Pp)] = Xy k6,628
where 1 denotes the load multiplier for a prescribed radial load path in the
(Z,%;; see also Fig. 12.2); i and j denote the axes of projection of .

12.6 METHOD OF CELLS: A METHOD OF CELLS-TYPE
APPROACH

12.6.1 Homogenized yield surface under in-plane loads

The so-called MoC was originally proposed by Aboudi (1991) for unidirec-
tional composites reinforced by a regular pattern of long, parallel fibers. The
MoC has been recently extended to masonry by Taliercio (2014, 2016) to eval-
uate in closed form the macroscopic elastic and creep coefficients, and by
Milani and Taliercio (2015, 2016) to estimate macroscopic strength domains.
The method, applied to running- or header-bond, consists of subdividing the
unit cell into rectangular subcells, as shown in Fig. 12.10A. In each subcell,
the velocity field is approximated using two sets of strain rate-periodic, piece-
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FIGURE 12.10

(A) RVE adopted in the MoC-type approach and subdivision into subcells. (B

and C) Strain-periodic kinematically admissible velocity field under horizontal or vertical macro-
scopic stresses (A) and shear (B).

wise-differentiable velocity fields: one for normal deformation modes and one
for a shear-type deformation mode.

Denting by ”(1i) and u(;) the horizontal and vertical velocity fields in the i-th

cell, under macroscopic vertical and horizontal normal strains (Fig. 12.10,B)
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the velocities inside each subcell are given by:

n(l) X n(]) X
=2U, u -2V
15, Ty

2 b
bb
(2) (UZ_UI) T (2) (1)
A n2) _ n
Iy hy
) o (U1(1+2ab)—U2) ) (3) V=" JCZ—— n(l)
n —_.n _ n N 7
u, T = . -V + 7
hb
4 1 R (4) (3)
n4) _ n n4d) _ n
ul = ul + th u2 = u2 (1/
(U1(1+2ab)—U2) 3 —X X -5 (UI_UZ) xl—T

bt b

hb (}lz_b+hm_x2>

20—y,

Uy -U-
<U1+ 2I"‘b2><x _Tb) ©
) = -V,

h
(Vl—Vz)(xz—Tb)
|t

hy, 27 Ay,

n6) _ ~ X
Ml —25 Ul_

The fields in Eq. (12.24) depend on four DOFs, Uy, U,, V}, and V,, with a
clear physical meaning as shown in Fig 12.10B. The reference system (x;,x,)
and the meaning of the geometrical parameters 4, b;, etc., is provided in Fig.
12.10A. a;, = b,, /b, is the ratio of the bed joint thickness to the brick height. It
is interesting to note that the velocity fields inside each subcell are either linear
(cells 1, 3, 4) or bilinear (cells 2, 5, 6).

When a shear deformation mode is applied to the RVE, the velocity fields
in the subcells are expressed as:

bb
1) _ X 1) _ t2) _ (1) tH2) _ X|——5-
u = 2U3—h2 uy ' =0 u” =u; Uuy” = v, 2

e
WD s U () ey iy
T\ o =T,
@ t<4> )
“ e (122
(o2 )( ()
X1— 2= —hm X|——~
O NG R C) N vy

) = | 2 By

A
41© = ut1(3) t(6)

1
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In Eq. (12.25) the symbols u’l(i) and utz(i) denote the horizontal and vertical

velocity fields in the i-th subcell under macroscopic shear. The meanings of the
three independent DOFs, Us, Uy, and V3, are shown in Fig. 12.10C (V, = V3/2

).

The velocity field over the RVE under any macroscopic strain can be ex-
pressed as the sum of Eqs. (12.24) and (12.25), that is, u(l’) = u’l’(’) + ”[1(1) and
u;i) = u;(i) + utz(i) where the superscript (7) indicates the (i)-th subcell.

At each point of any subcell, the associated flow rule corresponds to three
equality constraints. Denoting by é;’; the plastic strain rate in the (i)-th subcell,
the flow rule can be written as

(0 - [al o o o] 005"
pl ox;  o0xy,  0xy | ox oo

)

where j(® (>0) is the plastic multiplier and gb.m is the (non) linear yield surface
of either bricks (b) or mortar (m).

As outlined in the preceding paragraphs, the yield surfaces of bricks and
mortar are usually linearized by m planes, so that each strength criterion is de-
fined by a set of linear inequalities of the form §0m = Ai"g < . As 821) varies
at most (bi-)linearly within each subcell, plastic admissibility is checked only
at three of the corners. Hence, nine linear equality constraints per subcell are
introduced in matrix form as AZI(Z.)U + Aj’gi)k(l) = 0, where U is an array col-
lecting the 7 DOFs describing any microscopic velocity field (i.e., U={U,, U,,

; . . AT
Us, Uy, Vy, Vo, V33D, A2 = [';»S)T }»g)T x(é)T] is an array of 3 m entries,

collecting the rates of the plastic multipliers X(Ji) at three of the corners of the
rectangular subcell (J=4, B, C), and Aqu(i), A%) are a 9x7 and a 9x3 m ma-

trix, respectively. The plastic admissibility conditions are then assembled cell
by cell, leading to the following system of equality constraints:

AJU+ATL=0 (12.26)
T T
eq_[yeq T eq T 5 _ [ (DT 5 (6T eq
where A} [AU(I) Al ] s A= [)» e A ] ,and A7 is a
(6:9)x(6:3 m) block matrix, which can be expressed as:
eq _ peq eq eq
A —AA(I)GBAW)EB“-EBAM), (12.27)

the symbol @ denotes direct sum.

Let B and C be a couple of corners at the opposite ends of one of the diag-
onals of the (i)-th rectangular subcell. The internal power dissipated within the
subcell can be written as:
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. W ;o N
7 = 2 (073 + b0
m m

mo2 (12.28)
Q¥ OT +OT] 3O '
=5 [0 07 B[R0

where 0,,,, is an array of m zero entries and () is the area of the (i)-th subcell.
The power dissipated inside the whole RVE is obtained as the sum of the con-
tributions of the single subcells:

6
Qb )T T 50
Ty = Z‘T [ T P (12.29)
=

The “external load” applied to the RVE is the macroscopic stress, corre-
sponding to a point of the homogenized failure surface. The array of the macro-
scopic stress components can be expressed as ¥ = 1[(1 g y] T where A is a
load multiplier and a, f, y are, as usual, the director cosines defining the direc-
tion of ¥ in the space of the homogenized in-plane stresses. Accordingly, the

power of the external loads can be written as:

Tp=Ala B y]|D (12.30)

In limit analysis a normalization condition is needed because the shape of
the failure mode is identified, but its amplitude is undetermined:

[« p y]D=1 (12.31)

In the framework of the upper bound theorem of limit analysis, any point of
the homogenized failure surface is determined by using following constrained
minimization problem:

Find min r;,
[« 8 y]D=1 (@

A‘z;]U + Aqu = 0 (b) (12 32)
subject to D=1 / vé)ndS (©) |
4 Joy
A>0 )

where Eq. (12.32a) is the normalization condition (12.31); Eq. (12.32b) is the
set of equations representing the admissibility of the plastic flow, Eq. (12.26);
and Eq. (12.32¢) links the homogenized strain rate with the local velocity field.
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12.6.2 Extension to transverse loads

Under transverse loads, the wall is supposed to behave as a Kirchhoff-Love
plate. Hence, only the transverse velocity field, w(x,,x,), has to considered.
Assuming the wall undergoes bending moments acting about the head joints
(M,,) and/or about the bed joints (M,,), it is possible to define a C I_type trans-
verse velocity field defined by four parameters (or DOF, W,...W,) as follows:

4w x; .\ 4W,x;

(12.1) _
Wh - 2 7 (12333)
b? n
w. < by +x >2
3\ ™5 1
W@ =D 44 2 (12.33b)
n n (bb _ bm) bm
3) N W4(hb - 2X2)2
T
" 4 (12.33¢
_ W3 (bb + bm +4x1) (hb = 2XZ) (hb + 3hm - 2x1)
4 (by—b,)h
Wy (hy —2x,)°
WS‘) = Wgzl) + : ;hz -
" (12.33d

W3 (bb + bm — 4)61) (hb - 2X2)2 (hb + 3hm - 2X2)
4(bb_bm)hfn
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—2¢)? _ by* + by, (b,, —
o) (2002, (o7

8n2, by — b,
w®
2
_ 4 Ml —200)°
" 8h2, (12.339)

W3 (bbbm - 4x?) (hb - 2X2)2 (hb + 3hm - 2x2)
4 (by—b,,) bl

For the sake of clarity, Fig. 12.11 shows a wall deformed according to the
previous equation assuming W,=W,=W,=0. Zoomed details of the deformed
wall are also shown in subfigures (B) and (C), to highlight twisting in the bed
joints.

When the RVE is subjected to torsion (M,,=M,,), a C’-type piecewise dif-
ferentiable velocity field defined only by two parameters W5 and W is as-
sumed:

(A) (B)

©

FIGURE 12.11 (A) Deformed masonry wall subjected to bending curvature about the head
joints and (B) details of a deformed REV. (C) Details of mortar joints deformation. Brick deforma-
tion is neglected.
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a2.1) _ 4Wsx x,

b
w (-2
0,0, 6( 2 +x1>x1x2 (12.34b)
e bmhb
b,+b,)h, +4(h,+h hy, —2
w = wil) — 6(< b+ bn) by +4 (hy + hy) x1) (hy = 235) (12.340)
4 (by +b,,) hyhy,
by+b )Vhy —4(hy+h hy -2
w§4)=w§”+W6(( b ) iy =4 () 1) (B = 2) (12.34d)

4 (bb + bm) hyh,,

hb (bmhb - bb (l’lb + 2hm)) (bb + bm - 2X1) bb (bbhb -
+ 20,
4b,, (by + b,,) hyh,,

(C)RENC)
w=w, + Wy

(bbhb - bm (hb + th))xl <—hz—b +XZ>

bm (bb + bm) hbhm

(12.34f)

© _ (1)
w,=w, = W

Fig. 12.12A and B show a wall deformed under torsion and neglecting brick
deformation (W5=0). Some details of the deformed shape are shown in Fig.
12.12C and D to show how joints are subjected to twisting.

The procedure to estimate a point belonging to the out-of-plane homoge-
nized failure surface is identical to that used for the in-plane case, and is omit-
ted for the sake of brevity. It is only worth noting that, after a suitable assem-
blage of the constraints, the constrained minimization problem can be written
as follows:

e 6 7]X=1 @
AJW+AYL=0  (b)

1 . 1 . S
min II,, < subject to = |_%| v®nds (o) (12.35)
AN
A>0 (d)

where Eq. (12.35a) is the normalization condition, Eq. (12.35b) is the set of
equations representing the admissibility of the plastic flow, and Eq. (12.35¢)
relates the homogenized strain rate with the local velocity field.
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(A)

(B)

(&] _ (D)

FIGURE 12 (A and B) Deformed masonry wall subjected to twisting. (C) Detail of two de-
formed RVEs. (D) Detail of joints deformed shape. Brick deformation is neglected.

Note that the independent variables entering the optimization problem
(12.35) are the three components of the macroscopic curvature rate X, the plas-
tic multipliers j , and the six DOFs defining the microscopic velocity field. Via
the normalization condition, and equating the internal power dissipation to the
power of the external loads, it can be easily shown that the collapse multiplier
A is equal to min IT,,,.

12.7 HOMOGENIZED STRENGTH DOMAINS: IN-PLANE
LOADED MASONRY

Some case studies are considered in this section in order to evaluate the capa-
bilities and the limitations of the four limit analysis homogenization strategies
considered in this chapter.

First, the lower bound convergence of the PES model as the degree of the
approximating polynomials increases is discussed for running bond masonry
made of common Italian clay bricks (250x120x55 mm?), with 10 mm-thick
joints. The mechanical properties are listed in Table 12.1.

Convergence of the model to the actual solution was demonstrated in Milani
et al. (2006a), to which readers are referred to for further details. Obviously
convergence occurs from the safe side, as the PES model is based on a
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TABLE 12.1 Plane-stress Mohr—Coulomb mechanical properties adopted for
joints to test the PES model (bricks are assumed to be infinitely resistant).

Friction angle, ® Cohesion, ¢
36° 0.1 MPa

__ 2c cos(P) __ 2c¢ cos(®)
fi= 1+sin(®) Je= 1—sin(d)

static approach. In Fig. 12.13A comparison with a standard elasto-plastic FE
solution is provided in the tension—tension region, assuming one of the princi-
pal stresses, X, to be parallel to the bed joints.

It can be noted that both the P3 and P4 models match the FE results fairly
well, whereas for PO orthotropy at failure is completely lost. Due to the bound-
ary conditions to be imposed over the RVE, the results for P1 coincide with
those given by P0. As the P3 model is sufficiently accurate, from here onward
it will be used for comparison with the other models discussed in the chapter.

For all models, the mechanical properties adopted are those summarized
in Table 12.1. When joints are reduced to interfaces, that is, for the lower
bound CST discretization and the Compatible Identification approach, a
Mohr—Coulomb failure criterion with tension (f;) and compression ( f,,) cutoff
is adopted for the interfaces. The values assumed for f; and f,. are reported
in Table 12.1, and were obtained from the friction angle @ and the cohesion
¢ adopted in the PES and MoC models (i.e., with thick joints in plane-stress
conditions). Fig. 12.14 shows the homogenized failure surfaces obtained with
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FIGURE 12.13  PES model, convergence of the different polynomial expansions masonry mate-
rial of Table 12.1 and direction of the principal axes parallel to that of material axes (9=0°, £,=%,,,
L=%y).
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the four models, at three orientations 9 of the bed joints to one of the macro-
scopic principal stresses (0 degree, 22.5 degree, and 45 degree). In particular,
subfigure (A) refers to the PES (P3) approach; (B) to the CST equilibrated
model and the compatible identification model (which provide the same re-
sults); and (C) to the MoC-type approach. Note that, as the models to which
Fig. 12.14B refer give in principle a lower and an upper bound to the real
macroscopic strength domain, for brickwork consisting of rigid units and infi-
nitely thin joints the exact solution is obtained.

Fig. 12.14 points out the considerable dependence of the homogenized yield
surfaces from the joint thickness (compare, for instance, subfigures (C) and
(B)). Thick joints give smoother and nonlinear yield surfaces. Conversely,
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if joints are reduced to interfaces, multilinear yield surfaces are obtained, as
predicted by de Buhan and de Felice (1997).

The maximum horizontal strength is obtained at 9=0 degree, but is much
lower in the case of thick joints (0.26 MPa) than in the case of infinitely thin
joints (0.31 MPa), the percentage difference being of the order of 15%.

When joints are reduced to interfaces in the MoC model, the theoretical
predictions match those given by the compatible identification (or CST equi-
librated model; see Fig. 12.16A and B): this is a proof of the good predictive
capabilities of the MoC.

As the MoC approach and the PES are the only two models capable of tak-
ing the finite joint thickness into account, and as they give, respectively, up-
per and lower bounds to the real macroscopic strength domain of masonry, it
is interesting to assess the convergence of both models to the exact solution.
Referring to the same example as before, the results shown in Fig. 12.15 are
obtained. It can be noted that P2 is rather inaccurate, whereas P3, as already
pointed out, provides acceptable results from an engineering standpoint (also in
terms of numerical efficiency). The actual macroscopic yield surface is some-
where between the results given by P4 and the MoC, so that the exact strength
domain can be quite strictly bounded. The highest discrepancy occurs at 9=0
degree and y=arctg(X,,/%,,)=0 degree, the difference between the strength pre-
dicted by the MoC and PES-P4 being of about 5%—a result that is fully satis-
factory for practical purposes.

Replacing joints by interfaces, the homogenized strength under horizontal
stretching increases to about 0.32 MPa, and the kinematic Compatible Identifi-
cation approach provides everywhere results that are superimposable to those
given by the static CST approach: this means that the exact solution is captured
by both models (see Fig. 12.16A and B).

In Fig. 12.16C, the collapse deformation mode of the RVE predicted by the
MoC is also represented at 9=0 degree and y=0 degree. Similar to the predic-
tions of all the alternative homogenization models, it can be noted that head
joints are subjected to simple tension, whereas bed joints undergo pure shear.
Cross-joints, conversely, exhibit a mixed failure mode, but it does not affect the
ultimate homogenized strength significantly, due to their negligible size.

12.8°. HOMOGENIZED STRENGTH DOMAINS: OUT-OF-
PLANE LOADED MASONRY

In this section, the performances of the different models in the case of transver-
sally loaded masonry are discussed.

First of all, the PES and CST models are applied to the prediction of the
ultimate uniaxial bending moment of wallettes loaded in four-point bending,
with a bending moment acting about an axis that forms an angle 9 with respect
to the bed joints. The results are shown in Fig. 12.17 and compared with ex-
perimental data (Gazzola et al., 1985) and numerical results (Lourengo, 1997)
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reduced to interfaces. (A) Equilibrated CST discretization and Compatible Identification model
(Z=Z15 Z,,725,); (B) MoC model; (C) MoC deformed shape for horizontal stretching.

with a macroscopic elasto-plastic orthotropic model: subfigure (A) refers to the
PES model and subfigure (B) to the CST model. On the vertical axis, the flex-
ural strength, computed as the ultimate bending moment divided by /6, is re-
ported: a fictitious linear elastic triangular distribution of the stress across the
thickness is assumed.

The input data adopted for the constituent materials are slightly differ-
ent between PES and CST (as can be seen at 9=0 degree, where the flexural
strength of masonry is that of the bed joint). As a matter of fact, a slight up-
date of the input data was implemented for the CST model, due to a more re-
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FIGURE 12.17 Comparison among experimental results by Gazzola et al. (1985), plasticity
model by Lourengo (1996) and PES (A) or CST (B) in uniaxial bending, at different orientations 9
of the bed joints to bending moment axis.

fined analysis of the experimental literature available. Interested readers are
referred to Milani et al. (2006c) and Milani and Tralli (2011) for further de-
tails. Nevertheless, three main issues are worth noting: (1) the rather good ex-
perimental data fitting; (2) the capability to reproduce the anisotropic behav-
ior under out-of-plane loads correctly; and (3) the slight overestimation of the
strength with the CST model, which is a consequence of the reduction of joints
to interfaces.

Consider now the homogenized biaxial flexural behavior. Assume joints
to be interfaces obeying a classic Mohr—Coulomb failure criterion. If the wall
is sufficiently thin, the Compatible Identification model reduces to a Kirch-

hoff-Love plate model, for which an analytical solution due to Sab (2003)
is avail-
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able in the absence of twisting moments. Provided that the number of layers
into which the wall thickness is divided is sufficiently high, the safe approxi-
mations given by the CST and PES models match quite well the analytically
predicted orthotropic multilinear failure surface. It is found that a subdivision
into 10 layers is suitable for both the PES (Fig. 12.18) and the CST (Fig. 12.19)
model. This applies also in presence of a twisting moment: in Fig. 12.19B the
results obtained with the CST model are compared with those obtained by the
Compatible Identification approach in the horizontal bending-twisting moment
plane (M,,,M,,), for different numbers of layers across the wall thickness.

The results presented so far were obtained in the absence of vertical mem-
brane compressive loads (N,,=0), a situation which occurs only in laboratory
tests on small-size walls. In this case, no perceivable difference is observed
between results provided by the models with joints obeying a Mohr—Coulomb
failure criterion with and without compression cap, as the compressive strength
of masonry has little effects under pure bending.

For practical purposes, it is more interesting to predict the flexural strength
of masonry in presence of vertical compressive loads. Let us consider again a
running bond masonry built with common Italian clay bricks and joints reduced
to interfaces obeying a Mohr—Coulomb failure criterion with tension cutoff and
linear compressive cap; its mechanical properties are listed in Table 12.2. Ho-
mogenized out-of-plane yield surfaces are evaluated at fixed, increasing values
of the vertical load, in order to have an insight into the effects of a prestress on
the overall flexural strength. The results are summarized in Fig. 12.20, where
sections of the macroscopic yield surface are shown under biaxial bending (Fig.
12.20A) and horizontal bending and twisting (Fig. 12.20B), at increasing val-
ues of the vertical membrane stress N,,.

It is possible to notice that vertical membrane loads affect not only the hor-
izontal bending moment, but also the vertical one, as bed joints are activated
also when masonry is subjected to vertical bending moments.
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FIGURE 12.18  Yield surfaces in the (M,,,M,,)=(M,,M5,) plane obtained using the PES model
with joints reduced to interfaces (number of layers n;,=10 or 100), and the Compatible Identifica-
tion model (which coincides with Sab model in case of Kirchhoff-Love plates).
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TABLE 12.2 Mechanical properties adopted for the out-of-plane numerical
simulations in the presence of vertical precompression (standard Italian clay

bricks).

Mortar joints reduced to interfaces (Mohr—Coulomb failure criterion with tension

cutoff and linearized compressive cap)
Cohesion (MPa)

Tensile strength (MPa)

Compressive strength (MPa)

Friction angle (degree)

Shape of the linearized compressive cap (degree)

c 1.4 f,
i 0.10
/. 4.0
() 37

@, 30
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From Fig. 12.20 it can be observed that at high membrane stresses (around
0.7-0.8 times the compressive strength of the joints), a drop in the out-of-plane
load bearing capacity of the wall occurs. In agreement with experimentation,
it is possible to spot out an optimal compressive load at which the highest
out-of-plane strength is attained. Beyond this optimum value, the out-of-plane
strength starts to decrease until membrane crushing occurs. Obviously, a clas-
sic Mohr—Coulomb failure criterion is incapable of reproducing this important
phenomenon, since failure in simple compression is not possible. In contrast, a
model with limited compressive strength is able to better capture the behavior
of masonry under combined in- and out-of-plane actions.
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An interesting issue to discuss is the influence of the joint thickness on
the out-of-plane homogenized failure surface. As already pointed out for the
in-plane case, reducing joints to interfaces results in a slightly overestimated
macroscopic strength. The MoC is a quite straightforward approach that allows
the role played by the joint thickness to also be quantitatively evaluated for
transversely loaded walls. In a further numerical example, the MoC is therefore
utilized both assuming joints to be infinitely thin, or 10 mm-thick. A running
bond wall built with common Italian clay bricks is considered, and the results
obtained reducing joints to interfaces are compared with those derived account-
ing for the actual thickness. The possibility of failure in the units is discarded.

Two different failure surfaces are adopted for thick and thin joints, as shown
in Fig. 12.21. Fig. 12.21A shows the plane stress multisurface failure criterion
used for thick joints. The strength domain is obtained as the convex envelope
of a Mohr—Coulomb failure criterion in plane strain conditions (characterized
by a cohesion ¢ and a friction angle ®); a Rankine failure criterion in tension
(characterized by a tensile strength f,); and a linearized compression cap (char-
acterized by three parameters, @,, p, and f;). The meaning of the symbols is
explained in Fig. 12.21A. The second failure criterion applies to joints reduced
to interfaces. In this case reference is made to the multilinear failure surface de-
picted in Fig. 12.21B, which is characterized by Mohr—Coulomb failure crite-
rion, supplemented by a linear cap in compression (identified by two mechan-
ical parameters, @, and f,, defining the shape of the compression cap and the
uniaxial compressive strength, respectively), and a tension cutoff (at a tensile
strength equal to f;). As can be noted from Fig. 12.21, the interface failure cri-
terion is the exact counterpart of the 2D one used for thick joints, with a slight
difference on the tension cutoff coming from the theoretical definition of the
Rankine criterion.

The mechanical properties adopted for mortar are summarized in Table
12.3. Again, bricks are assumed to be infinitely resistant: this is a reasonable

(A) Mohr-Coulomb failure Rankine compression | B) x’
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FIGURE 12.21 (A) Plane stress failure criterion adopted for thick mortar joints. (B) Interface
failure criterion adopted for joints reduced to interfaces.
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TABLE 12.3 Mechanical properties adopted for the out-of-plane numerical
simulations (MoC model) without vertical precompression.

Mortar joints reduced to interfaces or with thickness equal to 10 mm
(Mohr—Coulomb failure criterion with tension cutoff and linearized compressive
cap)

Cohesion (MPa) c 1.0 f;
Tensile strength (MPa) £ 0.28
Compressive strength (MPa) 1. 10.0
Friction angle (degree) [0} 36
Shape of the linearized compressive cap (degree) @, 10

p 0.5

assumption for clay brick masonry subjected to transverse loads, as failure is
usually a consequence of the limited tensile and shear strength of the joints.

It is interesting to point out that the compressive strength assumed for mor-
tar is sufficiently high to limit mortar crushing in the compressed fibers under
bending. As a consequence, the homogenized out-of-plane strength basically
depends only on the tensile and shear strength of mortar, so that the role of the
joint thickness can be better understood.

In Fig. 12.22, three sections of the failure surface obtained with the MoC are
represented, both for thin and thick joints. Subfigures (A)—(C) depict sections
in the planes (M,,,M,,), (M;,,M,,), and (M,,,M,,), respectively. A 3D repre-
sentation of the whole failure surface in the (M, ,M,,,M,,) space is finally pro-
vided in Fig. 12.23: subfigure (A) refers to thin joints, whereas subfigure (B)
refers to thick joints.

As can be noted, the failure surface obtained by the MoC closely matches
that found by the Compatible Identification approach, as well as with the CST
and PES lower bounds. The ultimate bending moment about the bed joints can
be easily estimated by hand calculation as M,,=f;*/2. Both in the presence of
thin and thick joints, the prediction given by the MoC is in agreement with the
theoretical value.

The same remarks apply to the ultimate twisting moment, which is simply
given by M,,=ct*/4. In the presence of joints reduced to interfaces, the analyt-
ical prediction is perfectly matched, whereas when the joint thickness is taken
into account, a slight underestimation is observed. This can be explained re-
membering that the state of stress in thick bed and cross-joints is more complex
than that in an interface.

The role played by the actual thickness of the joint is similar to that ob-
served by Milani and Taliercio (2015) for the in-plane case and recalled in
the previous section. Assuming comparable failure surfaces for thick and thin
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FIGURE 12.23 3D representation of the out-of-plane homogenized failure surfaces obtained by
the MoC: (A) joints reduced to interfaces; (B) joint of finite thickness.

joints, a nonnegligible reduction in the out-of-plane homogenized strength is
observed, especially in bending about the head joints (similar to what occurs for
in-plane loads). As already pointed out for a twisting moment, this discrepancy
is obviously a consequence of the complex state of stress in the bed joints under
bending moment M, which cannot be effectively captured reducing joints to
interfaces.

For some combinations of twisting (M},) and bending moments about the
bed joints (M,,), an extra strength is obtained taking the joint thickness into
account (see Fig. 12.22C). This is likely to be a consequence of the different
failure criteria adopted for thin and thick joints. Finally, note the apparent non-
linearity of the homogenized failure surface in the presence of thick joints (Fig.
12.23A) and the reduction to a multilinear yield surface when joints are reduced
to interfaces (Fig. 12.23B).
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12.9 CONCLUSIONS

Four simple homogenization models were proposed to derive homogenized
strength domains for in- and out-of-plane loaded periodic brickwork. The first
two procedures give lower bounds, whereas the last two approaches give upper
bounds to the actual macroscopic strength domain.

In the first model, the elementary cell is subdivided into a few rectangular
subdomains, where the microstress field is expanded using polynomial expres-
sions. Four expansions were investigated in detail (PO, P2, P3, P4). P3 and P4
proved good convergence either to the actual solution in the case of joints re-
duced to interfaces, or to alternative upper bound approaches and FEM. Also,
the second one yields a lower bound, where joints are reduced to interfaces
and bricks are subdivided into a few CST elements. The third procedure is a
kinematic compatible identification, which yields an upper bound to the macro-
scopic strength domain, where joints have been reduced to interfaces and bricks
have been assumed to be infinitely resistant. The last model, MoC, is again a
kinematic procedure where the elementary cell has been subdivided into six
rectangular cells with preassigned polynomial periodic velocity fields. The first
and latter models allow thick joint brickwork to be analyzed. A detailed com-
parison of the results provided by all models was given, both for under in-plane
and out-of-plane loads, focusing in particular on the role played by the joint
thickness.

All the proposed models give predictions that match available experimental
results fairly well. Also, the numerical results obtained by the refined FE mod-
els can be reproduced at a much lower computational cost. In conclusion, the
proposed models can be conveniently used to predict the loadbearing capacity
of masonry structures. The choice of either one of the models depends on the
joint thickness and the required degree of approximation.
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