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Abstract

This work discusses the use of Lyapunov Characteristic Exponents to generalize rotorcraft sta-

bility analysis. Stability analysis of linear time invariant and time periodic systems relies on the

eigenanalysis of special state transition matrices, which require the simplification of the nonlinear,

time-dependent equations that govern rotorcraft aeromechanics. Lyapunov Characteristic Exponents

provide quantitative information on the stability of nonlinear, time-dependent but not necessarily pe-

riodic dynamic systems without requiring a special reference solution. Results are consistent with

the eigensolution of linear time invariant and Floquet-Lyapunov analysis of linear time periodic sys-

tems. Thus, the proposed approach represents a natural generalization of conventional stability anal-

ysis. The Discrete QR method is used to practically estimate Lyapunov Characteristic Exponents; its

economy-size variant is considered to reduce the computational cost for large problems. The method

is applied to rotorcraft-related problems; when possible, results are compared with usual methods for
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linear time invariant and time periodic problems.

Notation

A linear state space matrix

B exponent matrix of Floquet-Lyapunov solution

c non-dimensional chord

C ′ lift deficiency function

Cd nominal blade damping constant Nms rad−1

CL damping at zero lag rate of nonlinear damper Nms rad−1

ef flap hinge offset m

f differential problem

fc control moment Nm

fd damping moment Nm

H monodromy Matrix

I identity matrix

Ib
∫ R

0
r2mdr blade inertia per unit length kgm

Iθ distribution of blade feathering inertia per unit length kgm

Îf
∫ R

0
Iθdr/Ib non-dimensional feathering inertia

Îx
∫ R

0
xIrmdr/Ib, non-dimensional inertial coupling

Îβ
∫ R

ef
xIrmdr/Ib non-dimensional flap inertia

Kp tan δ3, structural pitch-flap coupling

m mass distribution per unit length kgm−1

m♠ non-dimensional pitching moment with respect to (♠)

M♠ non-dimensional flap moment with respect to (♠)

P(t) periodic matrix of Floquet-Lyapunov solution

Q orthogonal matrix satisfying QR = M of a generic matrix M

R upper triangular matrix satisfying QR = M of a generic matrix M
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RΠi
accumulated matrix R of discrete QR algorithm

r radial coordinate r m

rii ith diagonal element of matrix R

t time s

T fundamental period of a periodic system s

x vector of state variables

Y state transition matrix

ix ith state variables vector of problem linearized about fiducial trajectory

xA non-dimensional aerodynamic center offset

xI chordwise center of mass offset m

β flap angle rad

γ Lock number

δFP half freeplay region rad

δ3 structural pitch-flap coupling angle rad

ζ lead-lag angle rad

θ control surface deflection rad

θl, θu lower and upper boundaries of freeplay rad

λi ith Lyapunov Characteristic Exponent (LCE) s−1

µ advance ratio

νβ non-dimensional flap frequency

ξA xA/c, non-dimensional aerodynamic offset normalized by chord

χ coefficient of the quadratic term of nonlinear damper Nms2/rad2

χ̄ saturation of nonlinear damper Nms2/rad2

ωθ non-dimensional pitch frequency

(♣)/(♠) partial derivative of (♣) with respect to (♠)
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Introduction

This work presents the use of Lyapunov Characteristic Exponents (LCE), or Lyapunov Exponents in

short, to evaluate the stability of solutions of aeromechanics problems entailing rotorcraft modeled as a

system of nonlinear, time-dependent (often termed non-autonomous) differential equations of the form

ẋ = f(x, t), (1)

with x ∈ R
n, f : Rn+1 → R

n and t ∈ R.

Stability is a key problem in rotorcraft aeromechanics. The modern stability theory is deeply rooted

into Aleksandr M. Lyapunov’s seminal work (Ref. 1). The theory of linear, time-invariant (LTI) and

time-periodic (LTP) problems

Ẏ(t, t0) = A(t)Y(t, t0), Y(t0, t0) = I (2)

with A(t) = f/x respectively constant or periodic (i.e. A(t + T ) ≡ A(t) ∀t ∈ R), is complete. Their

solution is a state transition matrix (STM) Y(t, t0) from time t0 to t, which is exponential (a space of

constant or periodic vectors representing the principal directions in the state space, each multiplied by the

corresponding characteristic exponential),

x(t) = P(t)eB(t−t0)x0 (3)

with x0 = x(t0), P(t + T ) = P(t) and P(0) = I, and B constant. The evolution of a perturbed solution

is determined by the real part of the exponents that characterize the solution, i.e. the eigenvalues of the

constant matrix B, which is equivalent to matrix A for LTI problems, and, according to the Floquet-

Lyapunov theory for LTP problems, is the matrix that characterizes the monodromy matrix H = eBT ,

which corresponds to the STM over one period T , namely H = Y(t+ T, t).

The stability of equilibrium points of nonlinear, time-invariant problems can be evaluated by consid-

ering a linearization about the points themselves, according to the Hartman-Grobman theorem (Ref. 2),

when the real part of the eigenvalues of f/x is non zero; the Center Manifold theorem (Ref. 3) can be used

otherwise. Similarly, when the problem is nonlinear and time-dependent but specifically time-periodic,

the stability of periodic orbits can be evaluated using the Floquet-Lyapunov theory after linearization

about those orbits.
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This is well known in the rotary wing community since LTI and LTP approximations are often consid-

ered acceptable, especially when stability is addressed. The seminal work of Parkus (Ref. 4), who first

used Floquet-Lyapunov analysis in blade flapping aeromechanics, thanks to the advent of digital comput-

ers was later applied by Peters and Hohenemser (Ref. 5) to practical models, followed by others, see for

example References 6–8. However, LTI and LTP approximations may not be always acceptable; further-

more, the related methods require the knowledge of special solutions (equilibrium points or orbits) and,

in the case of LTP problems, of the period of the system, which may not be always readily available.

The dynamics of rotorcraft is generally described by nonlinear, time-dependent equations (Ref. 9); its

representation as LTI and LTP systems imply simplifications for nonlinear and aperiodic systems. In fact,

rotorcraft can be considered periodic systems only when their rotors operate at constant angular velocity.

Moreover, in case of rotors operating at different angular velocities, as for the conventional main/tail

rotor arrangement, the actual period is the least common multiple of all rotors’ periods. In special cases,

e.g. when limit cycle oscillations (LCO) arise, the periodicity resulting from the time dependence of the

problem is destroyed by the presence of natural oscillations with a period that is usually incommensurable

with that of the problem itself. The interest for this kind of problems is growing also in the rotorcraft

industry (Ref. 10).

A method is sought that: 1) provides information about the stability of arbitrary solutions of non-

linear, time-dependent systems, 2) is consistent with usual criteria for LTI and LTP problems, and 3) is

computationally robust. LCEs satisfy these criteria (Ref. 11). Specifically, LCEs can estimate the stabil-

ity properties of generic solutions of the problem directly during their computation. Despite possessing

many of the desired characteristics, to the authors’ knowledge they have not yet been used to evaluate the

stability of rotorcraft problems.

This work briefly presents the theory of LCEs and practical algorithms for their estimation, discussing

improvements needed to meet the requirements and outlining strategies for their achievement. Stability

analysis using LCEs is illustrated for typical rotorcraft aeromechanics problems; the resulting stability

indicators are compared with the corresponding ones obtained by conventional methods, when possible.
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Lyapunov Characteristic Exponents

LCEs represent the rate of expansion or contraction of perturbations of a generic solution along inde-

pendent directions in the state space. As such, they represent stability indicators associated with each of

these directions.

Consider a solution x(t) of Eq. (1) for t ≥ t0, often called ‘fiducial trajectory’, and a solution ix(t) of

the problem

iẋ = f/x
∣

∣

x(t),t i
x, ix(t0) = ix0 (4)

for arbitrary ix0. LCEs are defined as

λi = lim
t→∞

1

t
log ‖ix(t)‖ , (5)

where each λi is calculated from one of n linearly independent ix0 that represent the equivalent of the

principal directions of an LTI problem. Since Eq. (4) is linear time-dependent, its solution can be written

as

ix = Y(t, t0) ix0 (6)

where Y(t, t0) is the solution of Ẏ = f/x
∣

∣

x(t),t
Y, with Y(t0, t0) = I, namely the problem’s STM from

t0 to t. Then Eq. (5) is equivalent to

λi = lim
t→∞

1

t
Re (log (eig (Y(t, t0)))) . (7)

When all LCEs are negative, the solution is exponentially stable. When at least one LCE is positive, the

solution is unstable, or leads to a chaotic attractor. When the largest LCE is zero, or the largest LCEs

are zero, a LCO is expected; i.e., there exists a direction in the state space along which the solution

neither expands nor contracts. In case of multiple largest LCEs equal to zero, a higher order periodic or

quasi-periodic attractor exists, e.g. a torus.

Note the analogy with the LTI case, since Y(t, t0)
LTI
≡ eA(t−t0) and thus λi

LTI
= Re(eig(A)), and with the

LTP one, in which

λi
LTP
=

1

T
Re (log (eig (Y(t0 + T, t0)))) . (8)
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LCEs are often called the ‘spectrum’ of a problem, inasmuch as the eigenvalues of matrix A = f/x define

the spectrum of a LTI problem.

Eq. (7) is not practical, because usually the elements of the STM either contract to zero or expand

to infinity, depending on the (lack of) stability of the solution, thus either over- or underflowing. The

practical computation of LCEs requires one to exploit re-orthogonalization of local directions of evolution

of the solution, as proposed in the seminal work of Benettin et al. (Ref. 12), which first showed that

the computation of LCEs could be practically and effectively achieved. Alternative formulas have been

proposed, based on well known orthogonal decompositions (SVD and QR, respectively):

λi = lim
t→∞

1

t
log (svd (Y(t, t0))) = lim

t→∞

1

t
log (diag (qr (Y(t, t0)))) , (9)

Efficient algorithms are available; for example, the continuous SVD and QR methods, and the discrete

QR method (Refs. 12–14). However, those decompositions have trouble with LCEs of multiplicity greater

than one. This case, frequent in mechanics, intuitively corresponds to subcritically damped oscillatory

systems, whose complex conjugated eigenvalues share the same real part. As discussed in Ref. 15, the

computability of an LCE requires that the problem possesses the property of exponential dichotomy,

which in turn requires an appropriate separation from the other LCEs.

The possibility to extend the approach to systems of differential-algebraic equations, as outlined for

example in Refs. 16–21, represents a promising development, in view of their use in the formulation of

modern multibody dynamics.

The Discrete QR Method

The definitions of Eqs. (7) and (9) can hardly be applied to the practical estimation of LCEs, because

some sort of orthogonalization is needed to prevent the solution for each axis of the ellipsoid from inter-

fering with the others. Numerical methods have been devised for this purpose. One of the most popular

is the so-called Discrete QR method. It is based on incrementally updating the LCE estimates with the

diagonal elements of the upper-triangular matrix R obtained from the QR decomposition of the STM

between two consecutive time steps.

Given the previously mentioned STM Y(t, tj−1) from time tj−1 to an arbitrary time t, set Yj =
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Y(tj, tj−1). Consider then the QR decomposition (Ref. 22) of YjQj−1, starting from Q0 = I, which

implies QjRj = YjQj−1. Now, after defining RΠj
= Πj

k=0Rj−k, one can show that

YjQj−1RΠj−1
= QjRjRΠj−1

= QjRΠj
. (10)

This way, YjQj−1RΠj−1
can be used to construct the QR decomposition of the STM from t0 to tj as

Y(tj, t0) = QjRΠj
by only considering incremental QR decompositions over YkQk−1, i.e. with limited

contraction/expansion in matrices Rk. The LCEs are then estimated from RΠj
as

λi = lim
j→∞

1

tj
log rii(tj), (11)

where j ∈ N and rii(tj) are the diagonal elements of matrix R(tj) = RΠj
, since the product of two upper

triangular matrices C = AB is also an upper triangular matrix, whose diagonal elements are cii = aiibii.

Thus the logarithm of cii can be incrementally computed as log(aiibii) = log(aii) + log(bii). This helps

preventing overflow/underflow in numerical computations. Furthermore,

rii(tj) = Πj
k=0r(j−k)ii , (12)

thus

log (rii(tj)) =

j
∑

k=0

log(rkii), (13)

which leads to

λi = lim
j→∞

1

tj

j
∑

k=0

log(rkii). (14)

Care must be taken to ensure that the diagonal elements of Rj are positive, which can be satisfied by

changing the sign of the corresponding column of the Q matrix.

The need to perform lengthy simulations to attain convergence of LCE estimates is perhaps the main

limitation to the practical usage of the proposed approach. In terms of comparison, LTI problems only

require the computation of the eigenvalues of a matrix, whose cost is of the order of n4 for a dense matrix

of size n. LTP problems additionally require the computation of the monodromy matrix, whose cost,

when performed using explicit schemes, is O(n2p), being p the number of time steps in which the period

is divided. The cost of the discrete QR algorithm is that of time integration over several periods, and of

repeated QR decompositions. The latter is O(n3). When n is large, this problem can be mitigated using
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the so-called economy-size QR decomposition, also called the thin (Ref. 22), or reduced (Ref. 23) QR

decomposition. As discussed for example in Ref. 24, consider the QR decomposition of a rectangular

matrix M ∈ R
n×q, with q < n such that n represents the size of the problem and q is the number of

required LCE estimates. Then

QR = M =

[

Q′ Q′′

]







R′

0






= Q′R′ (15)

where the prime (′) indicates matrices associated with an arbitrary q-sized subspace of the state space of

the problem. The economy-size QR decomposition is represented by M = Q′R′, where Q′ ∈ R
n×q and

R′ ∈ R
q×q.

Consider now the economy-size QR decomposition of a partial STM Y′
j ∈ R

n×q obtained by inte-

grating the evolution of a set of orthogonal vectors Q′ that span an arbitrary subspace of the state space

of the problem, i.e. formally the solution of integrating the problem Ẏ
′
= AY′ from tj−1 to tj with

initial conditions Y′(tj−1) = Q′
j−1. In principle, Y′

j = Y(tj, tj−1)Q
′
j−1. The diagonal elements of ma-

trix R′
j , accumulated according to the formula R′

Πj
= Π1

i=jR
′
i, thus evolve towards an estimate of the

largest diagonal elements of matrix RΠj
that refers to the complete state. An example that investigates

the convergence and time saving issues of economy size QR decomposition is provided in next section.

Another problem that is common to all algorithms proposed so far for practical LCE estimation is

related to the multiplicity of LCEs. Estimates of LCEs with multiplicity greater than one show a slow

convergence rate and can, in some cases, fail to converge (Ref. 15). In problems of interest of mechanical

and aerospace engineering it is common to have STMs with complex conjugated eigenvalues, which

intuitively correspond to subcritically damped oscillators. Those cases lead to multiple LCEs, since they

are related to the logarithm of the modulus of such complex conjugated eigenvalues.

It has been observed that in those cases considering the average of LCE estimates that appear to con-

verge to the same value gives a much better estimation for lower values of the time at which estimation

is truncated. Some of the numerical examples reported in the following make use of this technique to

improve the estimation of LCEs which appear as pairs. More robust approaches for the detection of LCEs

with multiplicity greater than one are being formulated by the authors.
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Applications

In this Section, LCEs are applied to the study of the stability of rotorcraft-specific problems. The

discrete QR method is used. The problems are first integrated in time using the implicit, second-order ac-

curate, A/L stable (i.e. unconditionally stable, with algorithmic dissipation) multistep integration scheme

recently discussed in [25]. Subsequently, the incremental STM across each time step is computed using

a ‘leapfrog’ variant of the implicit second-order accurate, A-stable (i.e. unconditionally stable) Crank-

Nicolson scheme: considering xk+1/2 = xk−1/2 + hẋk, where h is the time step, ẋk = A(tk)xk, and

xk = (xk+1/2 + xk−1/2)/2. In short,

xk+1/2 =

(

I−
h

2
A(tk)

)−1 (

I+
h

2
A(tk)

)

xk−1/2, (16)

where the matrix at the right-hand side is a second-order accurate approximation of the STM from tk−1/2

to tk+1/2 of a linear, time invariant problem, as discussed in [21]. Although this scheme is implicit, no

iteration is needed because the problem is linear. Of course, other, more accurate schemes can be used as

well.

Flapping Dynamics of a Helicopter Blade

The LCEs estimated for this linear time periodic example are compared with the characteristic expo-

nents of the Floquet-Lyapunov Method. Under simplifying assumptions, the flapping of a single rigid

rotor blade can be formulated as a second order single degree of freedom LTP problem (from Ref. 26).

Since the purpose of this example is to compare LCEs and Floquet exponents for LTP systems, only pe-

riodicity is retained instead of using a more realistic but complex helicopter blade dynamics model. The

model is simplified by linearizing the dynamics, using quasi-static aerodynamics and neglecting reverse

flow conditions. The dots represent differentiation with respect to the azimuth angle t (in this context, it

represents non-dimensional time). The equation of motion is

β̈ +
γ

8

(

1 +
4

3
µ sin(t)

)

β̇ +

(

ν2β +
γ

8

(

4

3
µ cos(t) + µ2 sin(2t)

))

β = 0 (17)

It represents the flapping of a rigid helicopter blade, where β is the blade flap angle, γ is the Lock number

(the non-dimensional ratio between aerodynamic and inertial flapping loads, which in the present context
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Fig. 1: Blade flapping: estimates of LCEs with respect to advance ratio µ.

is roughly proportional to 16 times the damping factor), µ is the advance ratio (the ratio between the

helicopter forward velocity and the blade tip velocity in hover, which weighs the periodic part of the

coefficients) and νβ is the flapping frequency non-dimensionalized using the rotor angular velocity Ω.
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Fig. 2: Blade flapping: time evolution of LCE estimates and zoomed plot after convergence,

µ = 0.15

In order to illustrate the trend of LCE estimates with respect to a parameter, the advance ratio µ is

chosen. The values of the Lock number and flapping natural frequency are set to γ = 12 and νβ = 1

respectively, whereas the rotor angular speed is considered as a normalized value, Ω = 1. The LCE
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estimates are compared in Fig. 1 with the corresponding values obtained using the Floquet-Lyapunov

theory for a range of advance ratio 0 ≤ µ ≤ 1.5. Note that advance ratios in excess of 0.5 are way beyond

the maximum values of conventional helicopters, but may be of interest for slowed rotors. Both results of

Floquet-Lyapunov and LCE methods are in good agreement. Up to µ = 0.22 the system has two complex

conjugated characteristic exponents, whose equal real parts do not depend on µ. Beyond that value of µ,

the periodic nature of the system leads to distinct real parts for the two LCEs, which vary with µ. Now

the stability of one of the characteristic solutions increases, whereas that of the other one reduces.

The time evolution of LCE estimates associated with complex conjugated eigenvalues for µ = 0.15

are shown in Fig. 2a; a detailed view is shown in Fig. 2b. Although each LCE estimate in Fig. 2a shows

a rather erratic behavior, slowly converging to the corresponding Floquet exponent, their average appears

to be much more regular. Owing to periodicity, it oscillates with the period of the system, T = 2π, about

the expected value. The slow, hyperbolic decay is caused by the division by t that occurs in Eq. (5).

Computing the average of two LCE estimates corresponds to computing the evolution of

λ1 + λ2
2

= lim
t→+∞

log(r11) + log(r22)

2t
= lim

t→+∞

log(r11r22)

2t
(18)

which can be interpreted as the rate of evolution of a subvolume of the state space consisting of the product

of two directions, divided by the number of directions. When both directions evolve at the same rate, i.e.

the LCE has multiplicity equal to 2, the average is exactly the value of the LCE.

In order to have an accurate estimate of the LCEs, integration needs to be performed for a long enough

non-dimensional time to let the oscillations vanish; hence, such pairing of LCE estimates can help im-

proving the convergence and robustness of the estimation. Computing the average of two LCE estimates

is always legitimate; however, its interpretation is only meaningful when both LCE estimates converge to

the same value. A development in this sense is being considered for a future work.

Helicopter Ground Resonance with Nonlinear Lead-Lag Dampers

Helicopter Ground Resonance (GR) is a mechanical instability associated with the in-plane degrees

of freedom that describe the lead-lag motion of the rotor blades (see the seminal work by Coleman and

Feingold, Ref. 27). The combination of the in-plane motion of the blades causes an overall in-plane
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motion of the rotor center of mass which couples with the fixed frame pitch and roll dynamics of the

airframe and undercarriage system. For this reason, the damping of the in-plane motion of the blades can

be critical in articulated and soft-inplane rotor designs. Such damping is usually provided by lead-lag

dampers.

The suitability and soundness of the proposed approach for the stability evaluation of non-trivial lin-

ear, time periodic problems was already illustrated in Ref. 28 by comparing LCEs with Floquet exponents

for the dissimilar damper case proposed in Ref. 6. A distinctive advantage of LCEs is their capabil-

ity to analyze and quantify the stability of generic trajectories of nonlinear, time-dependent dynamical

systems. Among phenomena that are characteristic of nonlinear systems, LCOs are defined as isolated

closed trajectories of nonlinear dynamical systems; when an LCO develops, the system oscillates in a self-

sustained manner without the need of an external input, as described in Ref. 29. Being LCO bounded,

at a first glance they seem to be less malign than the classical instability of linear systems, with respect

to system integrity, in the sense that oscillations do not grow unbounded in amplitude. Nonetheless, the

occurrence of LCOs can affect structural life, flight safety, and ride comfort of rotorcraft. As in the case

of nonlinear phenomena, the occurrence of LCOs can only be detected considering the nonlinearity of the

problem (Ref. 30). The proposed GR problem highlights the capability to determine the stability of the

problem, including that of Limit Cycle Oscillations (LCO), without prior knowledge of any special (e.g.

steady, or periodic) solution.

Owing to its simplicity, Hammond’s model (Ref. 6) has been extensively used to study GR. The

schematic is presented in Fig. 3 and the corresponding numerical values are given in Table 1. In this

work, it is taken as the reference model with modified non-linear blade lead-lag damper characteristics.

The GR problem with nonlinear lead-lag dampers is of course nonlinear, although time-invariant due

to the symmetry of the rotor when isotropic, i.e. having equally spaced blades with identical properties.

Hammond’s model is modified by using the nonlinear damper constitutive law illustrated in Ref. 31 and

modified by adding a linear term to the quadratic one, namely

fd =















χζ̇|ζ̇|+ CLζ̇ |ζ̇| < |ζ̇L|

χ̄ζ̇L|ζ̇L| |ζ̇| ≥ |ζ̇L|

(19)
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y
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CyKy

Kd, Cd

hub

lag hinge

Fig. 3: Schematic of Hammond’s helicopter ground resonance model; one blade is presented for clarity.
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Table 1: Ground resonance: numerical values of Hammond model parameters (Ref. 6)

Number of blades N 4 —

Blade static moment Sζ 189.1 kg·m

Blade moment of inertia Jζ 1084.7 kg·m2

Lag hinge offset e 0.3048 m

Lag spring Kd 0.0 N·m·rad−1

Lag damper Cd 4067.5 N·m·s·rad−1

Hub generalized mass Mx 8026.6 kg

My 3283.6 kg

Hub damper Cx 51078.7 N·s·m−1

Cy 25539.3 N·s·m−1

Hub spring Kx 1240481.8 N·m−1

Ky 1240481.8 N·m−1

where χ = χ̄−CL/ζ̇L; numerical values are given in Table 2. The slope at zero lag rate, CL, is varied from

zero to the nominal value Cd of Hammond’s model (Ref. 6). This problem has been selected to obtain

a system with LCO in an otherwise reasonably realistic model (with more than one degree of freedom)

and to test stability indications of LCE estimation with a nonlinear rotorcraft-related problem that may

include LCO, exponential stability, and unstable equilibria.

Table 2: Helicopter ground resonance with nonlinear blade damper: saturated hydraulic damper parame-

ters, data from Ref. 31.

χ̄ 1.2203× 106 N·m·s2·rad−2

ζ̇L 1.0 deg·s−1

Figure 4 shows the lag motion of one blade for the cases that experience LCO (CL = 0, Fig. 4a)

and exponential stability (CL = Cd, Fig. 4b). Both plots show simulations starting from different initial

conditions. The curves in Fig. 4a oscillate with the same period and amplitude; hence they converge to



16 A. TAMER, P. MASARATI JOURNAL OF THE AMERICAN HELICOPTER SOCIETY

0 5 10 15 20 25
−0.030

−0.015

0.000

0.015

0.030

Revolution(rev)

ζ 
(d

eg
)

 

 
ζ

0
=0.030 deg

ζ
0
=0.005 deg

(a) LCO (CL = 0)

0 5 10 15 20 25
−0.030

−0.015

0.000

0.015

0.030

Revolution(rev)

ζ 
(d

eg
)

 

 

ζ
0
=0.030 deg

ζ
0
=0.005 deg

(b) Exponentially stable (CL = Cd)

Fig. 4: Helicopter ground resonance with nonlinear blade damper: blade lag motion starting from different

initial conditions.

the same LCO, although a phase difference can be observed as a consequence of the initial conditions. It

is worth noticing that the trivial solution ζ = 0 is also an equilibrium solution; however, since solutions

obtained with initial conditions close to ζ = 0 converge to the LCO rather than vanishing, ζ = 0 is

topologically an unstable equilibrium point. The present analysis for such fiducial trajectory estimates a

positive largest LCE, confirming its instability when CL = 0. On the contrary, Fig. 4b shows that when
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Fig. 5: Helicopter ground resonance with nonlinear blade damper: largest two LCE estimates vs. damper

slope at zero lag rate CL.
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CL = Cd, the resulting curves converge to ζ = 0, confirming that such fiducial trajectory is now a stable

point.

LCE estimates equal to zero are expected for systems with an LCO. LCEs are estimated for a range of

damper slope at zero lag rate, CL (CL = 0 was used in Ref. 31) and presented in Fig. 5. It can be observed

that the largest LCE is zero up to CL/Cd ≈ 35%, indicating LCO for this range of the parameter. For

larger values of CL, the two largest LCEs (nearly) merge (i.e. they become quite close from a numerical

point of view) and the fiducial trajectory becomes exponentially stable with all LCEs negative. This is

verified in Fig. 4a: the largest LCE estimate equal to zero indicates convergence to a stable LCO with

magnitude 0.015 deg, with the corresponding time evolution of the largest two LCEs given in Fig. 6a. In

Fig. 4b, with all LCEs negative, the motion is exponentially stable. The time evolution of the largest two

LCEs for this case is presented in Fig. 6b.
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Fig. 6: Helicopter ground resonance with nonlinear blade damper: time evolution of largest two LCE

estimates.

Helicopter Ground Resonance with Dissimilar Nonlinear Lead-Lag Dampers

In order to apply the proposed approach to a nonlinear time-dependent problem, one of the dampers

of the previous nonlinear damper example is removed from the system to break the symmetry. The linear
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term of the damper constitutive law, CL, is selected as the parameter for the remaining operative dampers.

Stability analyses are performed for the range of parameter values considered in the previous example.

The two largest LCEs are shown in Fig. 7 as functions of the percentage of linear damping CL. For CL/Cd

up to 75%, the largest LCE is greater than zero and remaining ones are negative. Since for a nonlinear

system a positive LCE indicates chaos, as discussed for example in Ref. 32, a chaotic behavior can be

expected in this parameter region. For CL/Cd greater than 75%, the two largest LCEs merge and both

become negative and tend to reduce further, indicating that the fiducial trajectory is now exponentially

stable.
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2
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 × 100

Fig. 7: Helicopter ground resonance with dissimilar nonlinear blade damper: largest two LCE estimates

vs. damper slope at zero lag rate CL.

In order to verify the chaos and stability indications of LCE estimates, we further analyze the two

extreme points of Fig. 7. Fig. 8a shows the lag motion of one blade (only one blade is presented for

simplicity) for null slope at zero lag rate (CL = 0) compared with the corresponding result of Fig. 4a, i.e.

the case of an isotropic rotor with identical nonlinear dampers. The solution appears to be unstable in the

sense that it does not converge to an equilibrium point or a periodic orbit but, at the same time, remains

within a bounded region of the state space. In fact, this is a distinctive property of chaos, namely a never

repeating bounded trajectory, as explained in Refs. 29 and 32. Hence, the presence of a positive largest

LCE and the chaotic motion of the blade are in agreement. The time evolution of LCEs for this case,

given in Fig. 9a, clearly shows convergence to two separate LCE estimates.
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Fig. 8: Helicopter ground resonance with dissimilar nonlinear blade damper: blade lag motion starting

from different initial conditions, compared with the isotropic rotor case.
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Fig. 9: Helicopter ground resonance with dissimilar nonlinear blade damper: time evolution of largest

two LCE estimates.

On the contrary, Fig. 8b presents the lag motion of one blade for the case of the remaining dampers

having nominal slope at zero lag rate (CL = Cd). Again, there appears to be no dominant period in the

response, but this time the amplitude (slowly) converges to zero, indicating exponential stability of the
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fiducial trajectory. The corresponding evolution in time of the LCE estimates is presented in Fig. 9b,

showing two LCEs converging to the same value, thus leading to a largest LCEs with multiplicity 2.

Freeplay Nonlinearity in the Control System

Freeplay is a discontinuity which can occur in control systems; it represents an important source of

nonlinearity, which may possibly result in instability, limit cycle oscillations (LCO), and chaotic or quasi-

periodic motions in control surfaces. When the position of a control systems falls in the freeplay region,

the control is disconnected from its actuation, as it re-connects once the deflection of the control surface

exceeds the freeplay limit (Ref. 33). Among the possible mathematical representations, a continuous

and differentiable one can be obtained using hyperbolic functions, as done for example in Ref. 34. The

proposed function is

fc(θ) =
1

2
[1− tanh(ε(θ − θl))](θ − θl) +

1

2
[1− tanh(ε(θ − θu))](θ − θu), (20)

where θ is the pitch angle, and θl and θu are the lower and upper boundaries of the freeplay region. The

tuning parameter ε determines the accuracy of the representation. A generic example is given in Fig. 10;

increased values of ε better represent the nonlinearity.
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θ

0.0f c

θl θu

Fig. 10: Freeplay nonlinearity: representation using hyperbolic function.
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In Refs. 34 and 35 this hyperbolic representation is used to model the freeplay discontinuity in the

classical pitch-plunge aeroelastic model. Chaotic motion and LCO are observed as a consequence of

control system freeplay. In rotating blades, even in the absence of control system stiffness, the propeller

moment provides residual stiffening effect on the blade pitch rotation. For this reason, pitch-flap coupling

is introduced using the δ3 angle since, as stated in Ref. 36, pitch-flap coupling can result in LCO in tail

rotor blades which make use of large values of δ3 angle to reduce flapping amplitude. This example

investigates the detection of limit cycle oscillations using Lyapunov Characteristic Exponents and the

verification with the blade response of a tail rotor blade with freeplay nonlinearity and pitch-flap coupling.

The tail rotor of the Westland Lynx helicopter is modeled using data from Ref. 37. Unavailable parameters

are estimated for a typical tail rotor blade; their values are reported in Table 3.

The coupled aeroelastic pitch-flap equation in non-dimensional form (Ref. 38) is given as:







Îβ −Îx

−Îx Îf
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γmβ̇ γmθ̇













β̇

θ̇






+
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−Îx +KpÎfω
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2
θ + 1)− γmθ













β

θ






= 0, (21)

where Îβ and Îf are the flapping and feathering inertia, non-dimensionalized by Ib =
∫ R

0
r2mdr for radial

coordinate r and mass distribution m; Îx =
∫ R

0
xIrmdr/Ib with chordwise center of mass offset xI ; νβ

and ωθ are non-dimensional flap and pitch frequencies. There is an additional pitch-flap coupling term

Kp = tan δ3. The aerodynamic terms are weighed with the lock number γ and given in Ref. 38 for the
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hover condition as:

Mθ =
1

8
C ′(ke) (22a)

Mθ̇ =
c

24
(1 + 2C ′(ke) (1 + 2ξA)) (22b)

Mβ̇ = −
1

8
C ′(ke)

c2

64
(1 + 4ξA) (22c)

Mβ =
c

12
C ′(ke) (22d)

mθ = −
xA
6
C ′(ke) (22e)

mθ̇ = −
c2

32
(1 + 4ξA (1 + 2C ′(ke) (1 + 2ξA))) (22f)

mβ̇ =
xA
6
C ′(ke)−

c2

32

(

3

8
+ 2ξA (1 + 2ξA)

)

(22g)

mβ = −
c2

64
(1 + 8ξAC

′(ke)) (22h)

where c is the non-dimensional chord, xA is the non-dimensional aerodynamic center offset, ξA = xA/c,

and C ′(ke) is the lift deficiency function evaluated at reduced frequency ke. For simplicity, a quasi-static

approximation is assumed in this work, with C ′(ke) = 1.

In the model of Eq. (21) the stiffness of the control system is represented by the non-dimensional fre-

quency of the pitching motion about the feathering axis Îfω
2
θ . In order to introduce freeplay nonlinearity,

this term is replaced by the non-dimensional form of the nonlinear constitutive law given in Eq. (20).

In the analysis, a freeplay nonlinearity of 0.10 deg is assumed. The problem is analyzed to compute its

LCEs for a range of δ3 pitch-flap coupling from zero to 45 deg. The stability parameters with (δFP = 0.10)

and without freeplay (δFP = 0.00) for the prescribed δ3 range are shown in Fig. 11. The results indicate

LCO with zero-valued LCE for the model with freeplay when δ3 is present. The model without freeplay

is exponentially stable for the whole range of the parameter.

The LCO indications using LCEs can be verified by observing the blade response. When the system

experiences LCO, the blade motion is expected to approach the same orbit regardless of the initial con-

ditions. Fig. 12 presents the flapping and pitching motions of a blade having 0.10 deg freeplay and with

a pitch-flap coupling angle of 30 deg. Although a phase difference can be observed as a consequence

of the initial conditions, the blade responses computed from different initial conditions present the same



AHS Log No. xxxx 23

Table 3: Freeplay: tail rotor characteristics.

Radius∗ 1.105 m

Chord∗ 0.18009 m

Lock number∗ 1.752 —

Pitch-flap coupling∗, δ3 45 deg

Flapping frequency∗ 1.047 1/rev

Torsional frequency† 2.5 1/rev

Aerodynamic center offset† 0.0 m

Center of mass offset† 0.0 m

Ratio of pitch and flap inertia† Îf/Îb 0.005 —
∗Data related to Lynx tail rotor (Ref. 37)

†Assumed parameters
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Fig. 11: Freeplay nonlinearity: comparison of LCE estimates with control spring having freeplay (δFP =

0.10 deg) and without freeplay (δFP = 0.00 deg).

amplitude and period for both flap and pitch degrees of freedom. This observation confirms the LCO

indication given by the presence of a zero-valued largest LCE estimate. The time evolution of the corre-

sponding LCEs can be observed in Fig. 13. Initially, there exist four separate LCE estimates. The largest

and the smallest ones converge to separate values, whereas a pair of intermediate LCEs converge to the
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same value.

Economy-Size QR Decomposition Example

In order to quantify the potential benefit of using economy-size QR decomposition for LCE estimation,

a sample analysis based on the previously mentioned helicopter ground resonance problem with nonlinear
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Fig. 12: Freeplay nonlinearity: LCOs of the nonlinear system (δFP = 0.10 deg) with pitch-flap coupling

of δ3 = 30 deg.
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Fig. 13: Freeplay nonlinearity: time Evolution of the LCE estimates of the nonlinear system (δFP = 0.10

deg) with pitch-flap coupling of δ3 = 30 deg.
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dampers is considered. The size of the problem is n, and q is the number of required LCEs; thus, q = n

gives the full QR decomposition case. Fig. 14 shows the time evolution of LCEs for the cases where

LCOs exist for CL = 0 (left), and those where the system is exponentially stable CL = Cd (right). The

behavior of the economy QR decomposition for q = 2 (represented by λeco,1 and λeco,2) is very similar to

that of the full QR decomposition (λ1 and λ2); estimates converge to the same values for both values of

CL.

For the full QR decomposition, the initial conditions matrix Q0 is the identity, Q0 = I, which forms a

complete basis. However, when using the economy-size QR decomposition, the initial conditions matrix

can only span a subspace of size q < n of the state space, corresponding to the required number of

LCE estimates. The selection of the non-zero elements of the initial Q′ matrix, Q′
0, can affect the rate

of convergence. A comparison can be made between Figs. 14 and 15, which show two analyses starting

from different non-zero elements in matrix Q′
0. While the curves in Fig. 14 present a very good agreement

starting from t = 0, those in Fig. 15 require more steps to converge. Nevertheless, the LCEs converge to

the same results regardless of the initial vectors that are selected in matrix Q′
0.

In order to determine the possible time savings, consider the algorithm for a pre-integrated fiducial

trajectory x. The jth step for LCE estimation is

(a) compute the economy-size STM Y′
j (formally the solution from tj−1 to tj of Ẏ

′
= A(x(t), t)Y′, with

Y′(tj−1) = Q′
j−1);

(b) compute the QR decomposition of Q′
jR

′
j = Y′

j;

(c) update the LCE estimates using log(diag(R′
Πj
));

(d) go to substep (a).

The main time savings in the algorithm occur in the QR decomposition Q′
jR

′
j = YjQ

′
j−1, as the required

number of ‘flops’ (floating point operations) for a QR decomposition is approximately 2nq2 − 2/3q3

(Ref. 23). As a reduced number of LCEs are computed, at each time step 4/3n3 − 2nq2 + 2/3q3 flops

can be saved. Or, put in another way, a fraction 3/2(q/n)2 − 1/2(q/n)3 of the flops required to estimate

all LCEs is needed when only q of them are estimated, only counting the flops required for the QR
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decomposition. As an example, the time saving in the GR case is shown by calculating the required

CPU times corresponding to the number of LCEs estimated using the previously illustrated algorithm,

which are reported in Table 4. The reference time (tr) that is used to normalize the results excludes the

QR decomposition, substep (b), but solves the problem for the same time range (substeps (a), (c), and

(d)); thus, it corresponds to computing no LCEs, q = 0. The results show that non-negligible CPU time

can be saved with the implementation of the economy-size QR method. This improvement is important

considering the steps required for the estimation of LCEs, especially for large scale problems, when only

few of the largest LCEs are required.
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Fig. 14: Comparison of the time evolution of the largest two LCE estimates for complete and economy-

size discrete QR method applied to helicopter ground resonance with nonlinear blade damper.

Conclusions

For several aerospace related applications including rotorcraft aeroservoelasticity, time dependence,

often in conjunction with non-strict periodicity and quasi-periodicity, as well as nonlinearity, cannot be

neglected. A natural generalization of rotorcraft stability analysis using Lyapunov Characteristic Expo-

nents has been presented.
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Fig. 15: Comparison of the time evolution of the largest two LCE estimates for complete and economy-

size discrete QR method for different values of initial matrix Q′
0.

1) Lyapunov Characteristic Exponents correspond to the real part of the eigenvalues for Linear Time

Invariant problems, and to the Floquet exponents for Linear Time Periodic problems; hence, they

represent a natural generalization of stability indicators that are familiar in current engineering

practice. They extend the definition of spectrum to nonlinear, time-dependent problems.

2) The suitability of the discrete QR algorithm for the practical estimation of Lyapunov Characteristic

Exponents has been illustrated.

3) The results of the proposed method have been verified by comparison with corresponding results

from linear time invariant and time periodic analyses when possible, and with perturbative analysis

of time marching simulations of typical rotorcraft problems of practical interest.

4) Lyapunov Characteristic Exponents estimation may require the computation of long time series

resulting from the integration of linear, time variant problems. This process can be substantially

longer and more computationally demanding than the one required for conventional stability analy-

sis. Significant time savings can be obtained by using the economy-size QR decomposition to only

estimate the largest exponents when large problems are considered.
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Table 4: CPU times of economy-size QR decomposition.

q,# of LCEs Relative computational time

0 1.0000

2 1.0970

4 1.1644

6 1.2183

8 1.3450

10 1.4528

12 1.5876

It is believed that a robust and cost efficient estimation of Lyapunov Characteristic Exponents, with the

increasing power of computers, can make this technique a standard stability evaluation practice in the field

of rotorcraft aeromechanics.

Appendix: Ground Resonance Equations

Using the classical second-order linear differential equation format, the minimal system of nonlinear

equations that governs the ground resonance phenomenon in the non-rotating reference frame can be

written as

Mq̈+Cq̇+Kq = m(q, q̇, t), (23)

where the vector q is composed of all the multiblade coordinates and the two components of the he-

licopters rotor hub displacement x and y. All multiblade coordinates are needed since the problem is

nonlinear. In the present case, the nonlinearity is related to the lead-lag dampers. Thus, the complete

lead-lag motion is needed to determine the actual amplitude of the lead-lag moment they provide, which

is collected in vector m. In the present analysis, a four-blade rotor is considered, without loss of generality.

The coordinates vector is thus q = {ζ0; ζ1c; ζ1s; ζ2; x; y} = T−1{ζ1; ζ2; ζ3; ζ4; x; y}, a transformation from

rotating frame to non-rotating frame, where T being the multi-blade transformation matrix, as explained
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in Ref. 39. The matrices are

M =

































Jζ 0 0 0 0 0

0 Jζ 0 0 0 Sζ

0 0 Jζ 0 −Sζ 0

0 0 0 Jζ 0 0

0 0 −2Sζ 0 Mx 0

0 2Sζ 0 0 0 My

































(24)

C =

































CL 0 0 0 0 0

0 CL 2ΩJζ 0 0 0

0 −2ΩJζ CL 0 0 0

0 0 0 CL 0 0

0 0 0 0 Cx 0

0 0 0 0 0 Cy

































(25)

K =

































Kd 0 0 0 0 0

0 Kd − Ω2Jζ ΩCL 0 0 0

0 −ΩCL Kd − Ω2Jζ 0 0 0

0 0 0 Kd 0 0

0 0 0 0 Kx 0

0 0 0 0 0 Ky

































(26)

m = −T−1
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where, in addition to all the parameters defined in Tables 1 and 2, ψ is the azimuth angle of the first blade,

and fdq,i is the quadratic part of the nonlinear damping moment given in Eq. (19) that corresponds to the

ith blade.
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