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1. Introduction

Carrier companies are faced with the daily challenge of deliver-
ing goods to customers in a cost-effective manner. Often, these
companies must adhere to customer service requirements. In this
environment, customer service requirements are mainly reflected
by the Vehicle Routing Problem with Time Windows (VRPTW).
This problem can be observed in bank deliveries, postal deliveries,
and school bus routing (see Hashimoto et al. [19]). Given a set
of customers, the VRPTW consists of finding least cost routes
such that each customer is visited within a predetermined time
window by a single vehicle. Furthermore, a vehicle must deliver a
quantity not exceeding its capacity, the vehicle should also start
and end its route at a given depot. The vehicle is permitted to
arrive before the opening of the time window, and wait at no cost
until service becomes possible, but it is not permitted to arrive
after the time window closes (see Bräysy and Gendreau [4]).

The definition of the VRPTW implies that time windows are
treated as hard constraints, the relaxation of which may lead to
reducing the total distance traveled while using fewer vehicles. A form
of time window relaxation is considered in the Vehicle Routing
Problem with Soft Time Windows (VRPSTW). This problem assumes
that some or all customer time windows are soft and can be violated
by paying appropriate penalties (see Balakrishnan [1]). The penalty
structure associated with soft time windows essentially allows serving

a customer at any point of the planning horizon. This mechanism is
due to the penalty policies, which dictate that early arriving vehicles
must wait or incur a penalty, while any late arrival is permissible at a
cost. Therefore, when compared to the VRPTW, the VRPSTW operates
on a much larger feasible solution space.

In several real-world situations, time window constraints can be
violated to a certain extent. Therefore, in this paper we aim to assess
the operational gains obtained by employing a fixed relaxation of the
time window constraints. Namely, we study the Vehicle Routing
Problemwith Flexible Time Windows (VRPFlexTW), in which vehicles
are allowed to deviate from customer time windows by a given
tolerance. This flexibility enables savings in the operational costs of
carriers, since customers may be served before and after the earliest
and latest time window bounds, respectively. As time window
violations affect customers satisfaction, they are penalized. Further-
more, as in the VRPTW we allow early arriving vehicles to wait at
no cost until the earliest allowable service time is reached. The
VRPFlexTW is distinct from the VRPSTW in that the former considers
a restriction on the feasible time window violation. Therefore, when
compared to the VRPSTW, the VRPFlexTW operates on a smaller
feasible solution space.

The main contributions of this paper are threefold:

1. We introduce and model the VRPFlexTW.
2. To produce high-quality solutions, we develop an effective solution

procedure which comprises three phases: (i) initialization,
(ii) improving, (iii) scheduling.

3. We conduct a series of numerical experiments on benchmark
instances, and assess the operational gains of using flexible time
windows.
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The remainder of this paper is organized as follows. The
relevant literature is reviewed in Section 2. Section 3 introduces
the model. The solution procedure is then described in Section 4.
This is followed by computational results provided in Section 5
and by conclusions given in Section 6.

2. Literature review

The daily distribution task faced by many freight transports is
captured by the Vehicle Routing Problem (VRP). In its classical
definition, the VRP minimizes the total travel cost incurred by a set
of homogeneous vehicles that deliver customer demands. Each
customer is to be visited by a single vehicle, each vehicle starts and
ends its route at a depot and delivers a quantity not exceeding its
capacity. The VRP has been widely studied for over 50 years (see,
e.g., Laporte [24]). In an attempt to better link the VRP to realistic
applications, a number of extensions have been proposed in the
literature (see, e.g., Toth and Vigo [32], and Golden et al. [18]). One
of the most extensively studied variants of the VRP is the VRPTW,
in which time windows ensure that each customer must be visited
within a given interval. Over the years, a number of exact and
heuristic solution procedures have been proposed for the VRPTW.
Bräysy and Gendreau [4] review the literature on route construc-
tion and local search algorithms for the VRPTW. The authors
also survey metaheuristics for the same problem (see Bräysy
and Gendreau [5]). Baldacci et al. [3] provide a recent review of
mathematical formulations, relaxations and exact methods for
the VRPTW.

The VRPTW treats time windows as hard constraints. However,
some practical applications imply that customer time windows
can be treated as soft constraints, i.e., may be violated at a cost.
This setting gives rise to the VRPSTW, which is significantly less
studied than the VRPTW. The VRPSTW considers the existence of
time windows, however it assumes that customers are available at
any moment in time to receive their goods. Therefore, vehicles
incur penalty costs for time window violations. As such, the
VRPSTW is a special case of the VRPFlexTW, where the relaxation
of time windows is unbounded, i.e., infinite flexible bounds. The
majority of the literature on the VRPSTW considers a linear
penalty function for time window deviations. Balakrishnan [1]
develops three heuristics for the VRPSTW based on the nearest
neighbor Clarke–Wright savings and space–time rules. Koskosidis
et al. [23] propose a heuristic algorithm for the VRPSTW. Their
algorithm decomposes the problem into an assignment compo-
nent and a series of routing and scheduling components. Min [25]
considers the VRPSTW for a single vehicle where the problem is
solved for small-sized instances. Taillard et al. [30] propose a tabu
search heuristic to solve the VRPSTW. Calvete et al. [6] consider a
general medium-sized VRPSTW and propose a goal programming
model. Aside from minimizing the operational cost and time
window violations, the authors consider avoiding underutilization
of vehicles and labor. The solution approach first computes
feasible routes and then selects the set of best ones.

Ibaraki et al. [21] propose an efficient algorithm to deal with
general time window constraints. The cost function considered for
time window violations can be non-convex and discontinuous as long
as it is piecewise linear. Furthermore, one or more time slots can be
assigned to each customer. Building upon the model proposed in [21],
Hashimoto et al. [19] define the travel time as a variable representing
the difference between the starting times of services at two con-
secutive customers, and introduce its cost function.

A main difference of our model and those presented in the
recent papers (e.g., Fagerholt [12], Chiang and Russell [7], Fu et al.
[14], Figliozzi [13]) lies in the way of allowing time window
violations. More specifically, our problem has a different structure

in which vehicles are allowed to provide both early and late
services with a penalty limit, and to wait in case of early arrival
(until the enlarged lower bound) without any waiting time limit.
Note that the most similar structure employed in [12] with a
waiting time limit defined for the whole route (not separately for
each customer) whereas the authors focus on a multi-ship pickup
and delivery problem. Another algorithmic difference of our
method between the recent algorithms is the application of a
schedule optimization phase. In our paper, we apply a scheduling
method in two ways: (i) as a last phase to improve the solution
generated by the tabu search method and (ii) every iteration in
the tabu search method as an improvement step. Moreover, we
compare the computational results provided by our solution
procedure for the classical VRPTW not only with the solutions
obtained by the existing (meta)heuristic algorithms but also with
the optimal/best-known solutions.

One of the underlying assumptions in VRPSTW is that the
deviations from time windows are essentially unbounded, imply-
ing that any feasible VRP solution is feasible in the VRPSTW as
well. The VRPFlexTW proposed in this paper bounds the lower and
upper time window deviations, and hence allows a predetermined
amount of flexibility in adhering to time windows. Qureshi et al.
[26,27] develop a column generation based exact algorithm for the
Vehicle Routing and scheduling Problem with Semi Soft Time
Windows (VRPSSTW). This problem considers an upper bound on
the tardiness time window deviation, and thus may be viewed as a
special case of the VRPFlexTW. The solution approach is shown to
be efficient on medium-sized instances. Tang et al. [31] study the
VRP with fuzzy time windows where the authors consider the
multi-objective problem of minimizing travel time and maximiz-
ing customer service level, similar to the VRPTW. The authors take
into account a limited allowable deviation from time windows
and solve their multi-objective model with a two-stage algorithm
which yields Pareto solutions.

3. Model formulation

Formally, the VRPFlexTW can be represented by a connected
digraph G¼ ðN;AÞ where N¼ f0;1;…;n;nþ1g is the set of nodes
and A¼ fði; jÞji; jAN; ia jg is the set of arcs. Nodes 0 and nþ1
correspond to the starting and ending nodes of each route, respec-
tively (the central depot). Let C ¼N\f0;nþ1g denote the set of
customers. For each customer iAC, we have a positive demand qi,
a time window ½li;ui� and fractions pi

l and pi
u which are used to

set the maximum allowed violations, leading to the flexible time
window. The time window at the depot, ½l0;u0� (or equivalently
½lnþ1;unþ1�), corresponds to the feasible scheduling horizon for each
vehicle route. For each node i, a flexible time window ½l0i;u0

i] is
generated with respect to the length of the original time window,
where l0i ¼ li�pliðui� liÞ, and u0

i ¼ uiþpui ðui� liÞ. Additionally, Q repre-
sents the capacity given for each vehicle vAV where V denotes a
homogeneous fleet.

Associated with each arc ði; jÞAA, tij and dij represent the travel
time and the distance along that arc, respectively. Note that the service
time at node i, zi is included in tij. A fixed cost cf is incurred for using a
vehicle. Time window violations, i.e., serving a customer within ½l0i; li�
or ½ui;u0

i� are penalized by ce and cd for one unit of earliness and one
unit of delay, respectively. Moreover, ct is the cost paid for one unit of
distance. In the early servicing case, service at the customer starts
between the flexible earliest time and the original earliest time. In the
late servicing case, service takes place between the original latest time
and the flexible latest time. Note that vehicles wait at customers (at
least) until the flexible timewindow is reached if they arrive early, and
they cannot serve after the customer flexible time window closes.
Following the commonly used assumption in the classical VRPTW, we



assume that waiting in the VRPFlexTW brings no penalty cost. The
latter assumption enables vehicles to wait at customer locations even
if they arrive within the flexible time windows, and to generate cost-
efficient routes. In this way, a balance between early and late servicing
is provided. Fig. 1 depicts the possible arrivals and their corresponding
penalty cases at customers.

Given the previously mentioned definition, the mathematical
model for the VRPFlexTW is formulated as follows:

min ct ∑
iAN

∑
jAN

∑
vAV

dijxijvþcf ∑
jAC

∑
vAV

x0jv

þce ∑
iAN

∑
vAV

eivþcd ∑
iAN

∑
vAV

hiv ð1Þ

subject to ∑
jAN

∑
vAV

xijv ¼ 1; iAC; ð2Þ

∑
iAN

xikv� ∑
jAN

xkjv ¼ 0; kAC; vAV ; ð3Þ

∑
iAC

qi ∑
jAN

xijvrQ ; vAV ; ð4Þ

∑
jAN\f0g

x0jv ¼ 1; vAV ; ð5Þ

∑
iAN\fnþ1g

xi;nþ1;v ¼ 1; vAV ; ð6Þ

sivþtij�u0
0ð1�xijvÞrsjv; iAN; jAN; vAV ; ð7Þ

l0irsivru0
i; iAN; vAV ; ð8Þ

eivZ li�siv; iAN; vAV ; ð9Þ

hivZsiv�ui; iAN; vAV ; ð10Þ

eivZ0; iAN; vAV ; ð11Þ

hivZ0; iAN; vAV ; ð12Þ

xijvAf0;1g; iAN; jAN; vAV : ð13Þ
In our model, xijv is equal to 1 if vehicle v serves node j

immediately after node i and 0, otherwise. siv denotes the time
that vehicle v starts serving node i. Furthermore, eiv and hiv
represent the earliness and the delay at node i in case it is served
by vehicle v, respectively. The objective (1) is to minimize the total
cost which consists of traveling costs, fixed costs of vehicles used
for service, and penalty costs incurred for early and late servicing.
The constraints (2) and (3) guarantee that exactly one vehicle
arrives at each customer location and leaves it. The constraints (4)

ensure that the vehicle capacity is not exceeded. The constraints
(5) and (6) indicate that each vehicle route starts and terminates at
the depot. The constraints (7) represent the relationship between
the starting time of service at a customer and the departure time
of vehicle from its predecessor. In this set of constraints, we
employ the upper bound of the flexible time window at the
central depot which is sufficiently large for our problem, i.e.,
u0
0ZmaxiACu0

i. The constraints (8) ensure that the service takes
place at each customer with respect to the customer (flexible) time
window. The constraints (9) link the earliness and the beginning
of service; similarly, the constraints (10) link the delay and the
beginning of service. The constraints (11) and (12) ensure that we
have non-negative values for the earliness and the delay. The
constraints (13) indicate that there is no partial servicing.

4. Solution methodology

For the VRPFlexTW formally described above, we propose a
solution procedure that includes three main phases. In the first
phase, an initial feasible solution is constructed. This solution is
then improved by applying a tabu search metaheuristic in the
second phase. These two stages lead to the assignments of vehicles
and the sequences of customers in these assignments. In the first
and second phases, vehicles are allowed to wait at customer
locations only in case they arrive early (until the flexible time
window is reached). If a vehicle arrives at a customer within its
flexible time window, then service takes place without waiting. The
latter situation leads to the immediate service with some penalty
costs. In the third phase, the solution obtained by the tabu search
algorithm is further improved by solving a Linear Programming (LP)
model. This phase calculates the optimal starting time of each
vehicle route from the depot, and optimal times that each vehicle
should start serving the customers in its route. The objective
function of the LP minimizes the total penalty cost of the vehicle
route with respect to the sequence of customers given in that route.

4.1. Initial feasible solution

We apply the time-oriented nearest neighbor heuristic pro-
posed by Solomon [28] to generate our initial routes. This heuristic
first finds the customer closest to the depot where the closeness
is defined by a function. At each iteration, it searches for the
customer which is (i) not yet covered, (ii) feasible to be inserted,
(iii) closest to the last customer in the current route. The feasibility
is checked with respect to the flexible time window at the
customer considered, the flexible time window at the depot and
the capacity of the vehicle. If we cannot find any feasible customer
for the current vehicle route, a new partial route is then initialized
by inserting the customer closest to the depot. This procedure
terminates when all customers are assigned to a vehicle.

We now describe the function used in the time-oriented
nearest neighbor heuristic briefly explained above. Suppose that
we have a partial route for vehicle v in which the last demand
location is node i, and node j is any node that can be visited by that
vehicle after node i. Following Solomon [28], we use a function to
calculate the cost value of node j in case it is visited by vehicle v

immediately after node i. This function uses three measures to
evaluate the insertion of node j (with respect to the last node) into
the partial route. The first measure is the distance between node i
and node j. The other two measures are formally given as follows:

Tjv ¼ sjv�ðsivþziÞ; ð14Þ
and

rjv ¼ u0
j�ðsivþtijÞ: ð15Þ

Earliest
allowable time
forservice, li

Latest
allowable time
forservice,ui

Flexible earliest
allowable time for
service, l'i

Flexible latest
allowable time for
service, u'i

Waiting Servicewith
penalty

Service without
penalty

Service with
penalty No service

Fig. 1. Possible arrivals and their corresponding penalty cases at any customer i.



In Eq. (15), rjv can be thought of as the urgency of the delivery
served by vehicle v to customer j. sjv, which is the time that vehicle
v starts serving customer j, is calculated by

sjv ¼maxfl0j; sivþtijg: ð16Þ

The cost value is then calculated by the following equation:

cjv ¼ β1dijþβ2Tjvþβ3rjv; ð17Þ
where β1Z0, β2Z0, β3Z0 and β1þβ2þβ3 ¼ 1 (following
Solomon [28]).

4.2. The tabu search for the VRPFlexTW

The tabu search metaheuristic has been extensively applied to
the classical VRP and its extensions, such as stochastic VRP and
VRPTW. Some tabu search methods proposed for the VRP are
given by Gendreau et al. [16,17]. The interested reader is referred
to Garcia et al. [15], Taillard et al. [30], Hertz et al. [20] and Cordeau
et al. [10] for implementations of tabu search in the VRPTW. Our
tabu search algorithm is based on the work of Taş et al. [29]. In this
study, the authors focus on a VRP with stochastic travel times and
soft time windows. Travel times on each arc are given with a
known probability distribution. Soft time windows allow both
early and late servicing with some penalty costs. The latter enables
vehicles to start serving a customer after its time window closes.
Moreover, vehicles do no wait at customer locations, leading to
immediate service regardless of the arrival time. We adapt this
algorithm to our problem where we have deterministic travel
times and flexible time windows. Each time window is relaxed
with given fractions pil and pi

u for each customer i. The flexible time
boundaries can be thought of as the hard time windows defined in
the classical VRPTW where vehicles are not permitted to serve
before or after these intervals.

The overall tabu search procedure is described in pseudo-code
as Algorithm 1. In this algorithm, y and z(y) denote the current
solution and its total cost value, respectively. The latter value is
obtained by Algorithm 2 which calculates the total cost value of
each route m in solution y. In this algorithm, penalties incurred
due to violations of the original time windows are computed with
respect to the Earliest Possible beginning of Service (EPS) heuristic.
This heuristic allows waiting at a customer only if the assigned
vehicle arrives before the flexible time window is reached. If that
vehicle arrives within the customer's flexible time window, then it
starts serving immediately. Note that in the tabu search method, a
solution y is only taken into consideration in case all routes in this
solution are feasible with respect to the flexible time window
constraints.

The neighborhood of the current solution y, which is repre-
sented by g(y), is generated by two types of operators: (i) changing
the location of the customer within the route, (ii) removing
the customer from a route and locating it into another route. Each
solution y0 in g(y) is evaluated with respect to cðy0Þ, which is
calculated as follows:

cðy0Þ ¼ zðy0Þþνqðy0Þ; ð18Þ
where qðy0Þ is the total demand of routes in solution y0 exceeding
the vehicle capacity and ν is the cost paid for one unit of excess
demand. This calculation is operated in line with Cordeau et al.
[10] and Taş et al. [29]. The parameter ν is adjusted after each
iteration with respect to the total demand of routes in the current
solution. If the current solution is feasible with respect to the
vehicle capacity constraint, the value of ν is divided by ð1þφÞ;
otherwise it is multiplied with ð1þφÞ.

In Eq. (18), an additional cost is added to cðy0Þ of any solution y0

such that cðy0ÞZcðyÞ. This mechanism provides diversification
during the search. In our paper, a similar function to that given

in [29] is applied to calculate additional costs. Note that the latter
function uses a constant parameter (μ) to calibrate the intensity of
the diversification. In [29], expected overtime of drivers working
on each vehicle route is also considered to compute the total cost
since there is no limit on the total route duration. This cost
structure is different from that considered in our paper, and thus
affects the diversification part of the algorithm (which highly
depends on the total cost of routes).

In Algorithm 1, we apply two criteria following Taş et al. [29]
where the algorithm terminates either because it reaches the
maximum number of given tabu search iterations (θ) or because
the best feasible solution did not change for a threshold number of
iterations (τ). To identify the solutions that are tabu, we employ a
list which includes the customers forbidden to relocate for a
number of iterations. Note that the size of this list is denoted by ϑ.

The interested reader is referred to [29] for the details about
medium-term memory applied in Algorithm 1, which is based on
directing the search to the promising regions of the neighborhood
generated by the best feasible solution. The medium-term mem-
ory, which contributes to a good solution quality in [29], is applied
in this paper with a different criterion. In case the best feasible
solution has not been improved for α

ffiffiffi

κ
p

iterations, then the
algorithm returns back to that solution to search the promising
regions in the corresponding neighborhood. The value of α is
determined by performing a number of preliminary experiments
(see Section 5.1). Implementing the parameter α and tuning its
value with respect to the sensitivity analyses make our algorithm
different from that developed in [29] in which α is set to 1.0 with-
out carrying out any parameter calibration procedure. As another
difference from [29], vehicles are allowed to wait in case of
early arrivals. This framework enables us to employ the EPS
heuristic to compute the penalties incurred due to time window
violations.

Algorithm 1. The tabu search algorithm for the VRPFlexTW.



Algorithm 2. EPS heuristic to calculate z(y).

In Algorithm 2, v denotes the vehicle that operates route m.
Moreover, ajv and sjv represent the arrival time and the beginning
of service of vehicle v at node j, respectively.

4.3. Scheduling method

Recall that in the first and second phases of our solution
methodology, service takes place immediately in case a vehicle
arrives at a customer within its flexible time window. In the third
phase, we solve the following LP model to obtain the optimal
times that each vehicle starts serving the customers in its route.
The interested reader is referred to Vidal et al. [33] for a
classification of problems and methods addressing the scheduling
and timing perspectives. The model presented below is operated
for each vehicle v which is used for service in the solution
generated by the tabu search algorithm. In this model, A0DA is
the ordered set of arcs traversed by vehicle v and N0DN is the set
of nodes visited in the route of that vehicle.

min ce ∑
iAN0

eivþcd ∑
iAN0

hiv ð19Þ

subject to sivþtijrsjv; iAN0; jAN0; ði; jÞAA0; ð20Þ

l0irsivru0
i; iAN0; ð21Þ

eivZ li�siv; iAN0; ð22Þ

hivZsiv�ui; iAN0; ð23Þ

eivZ0; iAN0; ð24Þ

hivZ0; iAN0; ð25Þ
where the objective is to minimize the total penalty cost of the
route operated by vehicle v.

Our solution procedure with three phases in which the sche-
duling method is applied in the last stage yields computational
results given in Sections 5.2–5.6. Additionally, we perform the
scheduling method every iteration in the tabu search algorithm as
an improvement step. The latter implementation leads to a
solution approach with two phases and its corresponding compu-
tational results are presented in Section 5.7. Note that, a schedul-
ing method is applied only as a post-optimization phase in Taş
et al. [29] since the stochastic problem is rather complicated.

5. Numerical results and insights

We perform our computational experiments on the well-
known data sets given by Solomon [28]. We consider 29 problem
instances with 100 customers and tight time windows (sets R1, C1
and RC1). Each instance has one depot as the central location of
the homogeneous fleet of vehicles, where the vehicle capacity Q is
200 units. We set the cost coefficients (ct, cf, ce, cd) to (2.0, 400, 0.5,
1.0). For each node iAN, we employ a symmetric violation with a
fraction pi (pil¼pi

u¼pi) which is set to 0.05.
Following [28], we use four parameter sets given in Table 1 to

generate the Initial Feasible Solution (IFS) for each problem
instance. Among the four solutions constructed by the initializa-
tion algorithm, we select the solution with the minimum total cost
value calculated with respect to the EPS heuristic, and we set the
IFS as the selected solution. The algorithms proposed in our
solution procedure are coded in JAVA and the LP model is solved
by using IBM ILOG CPLEX 12.5 [22]. All experiments are conducted
on an Intel(R) Xeon(R) CPU X5675 with 12-core 3.07 GHz and
96 GB of RAM (by using a single thread).

The rest of this section is organized as follows. Section 5.1 provides
the analysis for determining the parameters of the algorithm. Further
experimentation with the stopping criteria is presented in Section 5.2.
Section 5.3 highlights the operational advantages of the VRPFlexTW
compared to the VRPTW. Further comparison with the VRPSTW is
presented in Section 5.4. Section 5.5 evaluates the solutions obtained
by our solution algorithm with respect to those obtained by solving
the formulation (1)–(13) within CPLEX [22]. Section 5.6 analyzes the
effects of implementing larger flexibility fractions with different cost
coefficients. Finally, applying the scheduling method at every iteration
in the algorithm is presented in Section 5.7.

5.1. Sensitivity analyses and parameters for the tabu search

A number of tests are performed to tune the parameters employed
in the tabu search algorithm. For the parameters μ, ϑ andφ, we apply
a similar procedure to that given in Cordeau et al. [8] and that applied
in Taş et al. [29]. In the preliminary experiments, the original VRPTW
and the VRPFlexTW are considered separately since the former
problem does not include any flexibility for time windows. To
determine the most appropriate value of a parameter, we test its
different values over an interval by keeping the other parameters
unchanged. In our preliminary experiments, three main sets of results
are obtained for each problem considered where the parameters μ, ϑ
and φ are examined in [0.005,0.025], ½2:5 log 10jNj;12:5 log 10jNj� and
[0.25,1.25], respectively. According to the results of the preliminary
tests, for the original VRPTWwe set the values of μ, ϑ and φ to 0.010,
2:5 log 10jNj, and 0.75, respectively. For the VRPFlexTW, we set the
values of μ, ϑ and φ to 0.020, 5 log 10jNj, and 0.50, respectively.

In addition to the above procedure, we perform a number of
tests to tune the parameter α used in the medium-term memory
application. According to results of the preliminary tests, for the
original VRPTW the value of α is set to 1.50. For the VRPFlexTW,
we set the value of α to 2.00.

Table 1
Parameters used by the initialization algorithm to generate the IFS.

Tests β1 β2 β3

Test 1 0.4 0.4 0.2
Test 2 0.0 1.0 0.0
Test 3 0.5 0.5 0.0
Test 4 0.3 0.3 0.4



In the tabu search algorithm, we adjust the value of the
parameter ν at each iteration, which is the cost incurred for one
unit of excess demand. As a reasonable starting value for this unit
penalty cost, the initial value of the parameter ν is set to 1.

Recall that in the tabu search algorithm, we employ two
stopping criteria represented by θ (primary criterion) and τ
(secondary criterion). We obtain three sets of results by applying
three different sets of values for stopping criteria, in which (θ,τ)
are set to (104,103), (104, 5ð103Þ) and (105, 2:5ð104Þ). In the next
subsection, we present our results and discuss their details.

5.2. Results on stopping criteria

Table 2 provides the solutions generated by the initialization
algorithm for each problem instance. As previously mentioned, the
total cost of a solution involves traveling costs, fixed costs paid
for vehicles used, and penalty costs incurred for early and late
servicing (earliness and delay). In Table 2, we report the total delay
(Del.), total distance (Dist.), total earliness (Earl.), number of
vehicles activated for the service (#Veh.), and the objective
function value (Obj.). Since the computational time spent by the
initialization algorithm is almost 0 for each instance, we do not
report this value in Table 2.

Tables 3, 4 and 5 show the solutions obtained by the tabu
search algorithm, and the corresponding final solutions obtained
by solving an LP model in the scheduling method. In these tables,
values of (θ,τ) are equal to (104,103), (104, 5ð103Þ) and (105,
2:5ð104Þ), respectively. For the tabu search algorithm, we report
the CPU times in seconds and the improvement in total cost values
in percentages (Obj. Imp%), which is calculated with respect to the
IFS. For the LP model, improvement in total penalty cost incurred

Table 3
Details of solutions obtained by the tabu search algorithm and the scheduling method, where (θ,τ) are (104,103) and pi¼0.05, 8 iAN.

Ins. Solution of the tabu search algorithm Final solution

Del. Dist. Earl. # Veh. Obj. CPU Obj. Imp (%) Del. Earl. Pen. Imp (%)

C101 0.00 828.94 0.00 10 5657.87 17 0.98 0.00 0.00 0.00
C102 0.00 953.11 10.80 10 5911.62 29 15.37 0.00 0.00 100.00
C103 0.00 934.71 18.50 10 5878.67 100 23.35 0.00 0.00 100.00
C104 0.00 994.59 41.90 11 6410.12 55 22.09 0.00 0.00 100.00
C105 0.00 828.94 0.00 10 5657.87 29 3.59 0.00 0.00 0.00
C106 0.00 828.94 0.00 10 5657.87 35 10.69 0.00 0.00 0.00
C107 0.00 828.94 0.00 10 5657.87 30 7.05 0.00 0.00 0.00
C108 0.00 828.94 0.00 10 5657.87 30 6.98 0.00 0.00 0.00
C109 0.00 828.94 0.00 10 5657.87 51 21.51 0.00 0.00 0.00
R101 0.36 1669.34 63.20 19 10,970.64 43 4.82 0.36 1.10 97.15
R102 0.52 1498.14 46.47 18 10,220.04 70 9.69 0.52 1.18 95.33
R103 0.39 1317.05 23.27 14 8246.12 36 7.90 0.39 0.50 94.67
R104 0.74 1064.94 15.00 12 6938.13 37 9.94 0.74 0.00 90.98
R105 0.00 1430.86 78.75 15 8901.09 43 13.17 0.00 0.62 99.22
R106 3.61 1286.05 54.00 13 7802.72 85 14.74 3.61 9.73 72.30
R107 9.58 1106.46 39.50 12 7042.24 49 10.53 9.58 3.75 60.96
R108 0.04 966.93 21.00 10 5944.41 54 16.35 0.04 2.45 87.96
R109 2.95 1207.36 76.33 13 7655.84 46 6.97 2.95 12.70 77.38
R110 5.20 1163.48 63.37 13 7563.85 34 7.67 5.20 8.33 74.61
R111 0.03 1060.37 65.58 11 6553.55 74 17.13 0.03 14.76 77.42
R112 3.47 998.45 26.16 10 6013.44 69 17.10 3.47 7.09 57.64
RC101 2.10 1782.00 72.56 16 10,002.39 47 8.06 2.10 4.32 88.89
RC102 5.22 1570.16 38.08 13 8364.58 83 11.73 5.49 5.44 66.17
RC103 10.26 1297.73 49.52 12 7430.48 94 16.56 10.26 4.52 64.26
RC104 4.12 1190.63 23.40 11 6797.08 52 18.90 4.12 3.00 64.47
RC105 4.21 1583.10 54.76 15 9197.80 40 13.27 4.21 5.94 77.27
RC106 1.50 1442.94 72.40 13 8123.59 40 5.07 1.50 7.41 86.19
RC107 10.89 1252.13 84.85 11 6957.58 50 13.94 10.89 18.20 62.50
RC108 3.99 1203.51 72.34 11 6847.19 28 12.78 3.99 6.69 81.73

Avg. 2.39 1170.61 38.34 12.17 7231.74 50.00 12.00 2.40 4.06 64.73

Table 2
Details of initial feasible solutions obtained for all problem instances where
pi ¼ 0:05; 8 iAN.

Ins. Initial feasible solution

Del. Dist. Earl. # Veh. Obj.

C101 0.00 855.07 7.30 10 5713.78
C102 35.39 1263.54 45.70 11 6985.31
C103 159.93 1530.61 96.20 11 7669.26
C104 226.46 1789.19 45.00 11 8227.33
C105 0.00 934.36 0.00 10 5868.71
C106 6.32 1164.45 0.00 10 6335.23
C107 14.72 1033.36 11.52 10 6087.20
C108 2.60 1038.91 4.20 10 6082.52
C109 10.31 1357.11 167.55 11 7208.30
R101 0.09 1948.05 60.20 19 11,526.29
R102 63.01 1816.10 42.30 19 11,316.36
R103 135.35 1601.99 29.00 14 8953.83
R104 121.20 1387.88 14.00 12 7703.96
R105 0.15 1706.48 75.03 17 10,250.64
R106 64.38 1736.24 30.66 14 9152.19
R107 119.97 1464.20 45.53 12 7871.13
R108 86.87 1301.18 33.50 11 7105.97
R109 9.47 1487.61 90.35 13 8229.86
R110 29.17 1470.03 46.76 13 8192.61
R111 72.83 1500.50 68.65 12 7908.16
R112 55.27 1390.12 36.44 11 7253.73
RC101 1.65 2020.20 73.37 17 10,878.73
RC102 66.69 1891.19 54.00 14 9476.07
RC103 77.29 1803.36 43.20 13 8905.62
RC104 89.29 1735.92 39.75 12 8381.01
RC105 12.18 2081.24 61.75 16 10,605.55
RC106 5.50 1664.48 45.34 13 8557.13
RC107 20.88 1610.98 83.95 12 8084.82
RC108 17.62 1507.50 35.73 12 7850.48



Table 4
Details of solutions obtained by the tabu search algorithm and the scheduling method, where (θ,τ) are (104,5(103)) and pi¼0.05, 8 iAN.

Ins. Solution of the tabu search algorithm Final solution

Del. Dist. Earl. #Veh. Obj. CPU Obj. Imp (%) Del. Earl. Pen. Imp (%)

C101 0.00 828.94 0.00 10 5657.87 44 0.98 0.00 0.00 0.00
C102 0.00 838.04 15.12 10 5683.65 104 18.63 0.00 0.00 100.00
C103 0.00 864.64 0.00 10 5729.29 189 25.30 0.00 0.00 0.00
C104 0.00 875.33 30.10 10 5765.71 171 29.92 0.00 0.00 100.00
C105 0.00 828.94 0.00 10 5657.87 130 3.59 0.00 0.00 0.00
C106 0.00 828.94 0.00 10 5657.87 149 10.69 0.00 0.00 0.00
C107 0.00 828.94 0.00 10 5657.87 139 7.05 0.00 0.00 0.00
C108 0.00 828.94 0.00 10 5657.87 139 6.98 0.00 0.00 0.00
C109 0.00 828.94 0.00 10 5657.87 151 21.51 0.00 0.00 0.00
R101 0.36 1669.34 63.20 19 10,970.64 139 4.82 0.36 1.10 97.15
R102 0.57 1517.50 43.27 17 9857.20 209 12.89 0.57 0.82 95.58
R103 0.00 1274.87 24.35 14 8161.91 190 8.84 0.00 0.00 100.00
R104 0.81 1029.86 10.00 11 6465.53 191 16.08 0.81 0.50 81.81
R105 2.15 1420.29 79.80 15 8882.63 195 13.35 2.15 7.04 86.51
R106 2.41 1292.15 37.18 13 7805.30 182 14.72 3.16 3.58 76.45
R107 0.30 1108.13 32.86 11 6633.00 181 15.73 0.30 3.75 87.00
R108 2.55 984.24 24.50 10 5983.28 178 15.80 2.55 4.28 68.30
R109 5.88 1168.69 87.81 13 7587.18 189 7.81 5.88 15.27 72.84
R110 2.12 1099.59 65.39 12 7034.01 171 14.14 2.12 10.85 78.32
R111 2.46 1077.80 56.59 12 6986.35 160 11.66 2.46 5.83 82.54
R112 5.16 1001.40 54.20 10 6035.06 147 16.80 5.16 3.10 79.20
RC101 4.92 1644.31 71.72 16 9729.40 212 10.56 4.92 7.12 79.21
RC102 10.53 1589.89 40.60 13 8410.61 220 11.24 10.80 9.13 50.18
RC103 16.01 1288.75 45.00 12 7416.01 187 16.73 16.01 7.50 48.69
RC104 5.06 1170.77 16.61 10 6354.90 176 24.18 5.06 3.00 50.92
RC105 2.53 1561.52 71.65 15 9161.39 203 13.62 2.53 7.90 83.11
RC106 1.96 1349.07 63.13 12 7531.67 181 11.98 1.96 7.67 82.71
RC107 0.33 1237.61 95.88 12 7323.49 121 9.42 0.33 4.69 94.45
RC108 12.76 1130.88 64.57 10 6306.81 180 19.66 12.76 16.97 52.83

Avg. 2.72 1143.73 37.71 11.97 7095.25 166.48 13.61 2.75 4.14 60.27

Table 5
Details of solutions obtained by the tabu search algorithm and the scheduling method, where (θ,τ) are (105,2.5(104)) and pi¼0.05, 8 iAN.

Ins. Solution of the tabu search algorithm Final solution

Del. Dist. Earl. #Veh. Obj. CPU Obj. Imp (%) Del. Earl. Pen. Imp (%)

C101 0.00 828.94 0.00 10 5657.87 87 0.98 0.00 0.00 0.00
C102 0.00 838.04 15.12 10 5683.65 492 18.63 0.00 0.00 100.00
C103 0.00 864.64 0.00 10 5729.29 629 25.30 0.00 0.00 0.00
C104 18.95 848.98 17.70 10 5725.77 1468 30.41 18.95 0.00 31.83
C105 0.00 828.94 0.00 10 5657.87 637 3.59 0.00 0.00 0.00
C106 0.00 828.94 0.00 10 5657.87 709 10.69 0.00 0.00 0.00
C107 0.00 828.94 0.00 10 5657.87 593 7.05 0.00 0.00 0.00
C108 0.00 828.94 0.00 10 5657.87 539 6.98 0.00 0.00 0.00
C109 0.00 828.94 0.00 10 5657.87 503 21.51 0.00 0.00 0.00
R101 0.36 1669.34 63.20 19 10,970.64 570 4.82 0.36 1.10 97.15
R102 0.07 1509.70 43.27 17 9841.11 726 13.04 0.07 0.22 99.17
R103 3.24 1232.08 23.09 14 8078.95 1539 9.77 3.24 0.48 76.45
R104 12.19 994.97 10.00 10 6007.14 1644 22.03 12.19 1.21 25.55
R105 1.06 1370.79 91.90 15 8788.59 1395 14.26 1.81 4.97 90.87
R106 1.13 1240.71 54.00 13 7709.56 1413 15.76 1.13 5.07 86.96
R107 0.26 1091.73 22.85 11 6595.14 1079 16.21 0.26 3.75 81.74
R108 2.48 952.87 18.00 10 5917.22 786 16.73 2.48 4.28 59.73
R109 3.35 1163.73 74.93 13 7568.28 1069 8.04 3.35 8.10 81.87
R110 7.12 1073.11 67.56 11 6587.13 1456 19.60 7.12 11.22 68.87
R111 2.46 1077.80 56.59 12 6986.35 460 11.66 2.46 5.83 82.54
R112 0.00 967.98 39.81 10 5955.86 673 17.89 0.00 5.41 86.41
RC101 6.73 1629.99 64.19 15 9298.79 1190 14.52 7.14 8.17 71.08
RC102 17.04 1493.60 54.59 13 8231.53 1078 13.13 17.51 5.32 54.51
RC103 17.89 1265.89 34.29 11 6966.82 775 21.77 17.89 7.29 38.54
RC104 5.06 1152.08 14.67 10 6316.55 1428 24.63 5.06 3.00 47.07
RC105 2.36 1538.94 50.78 15 9105.63 1321 14.14 2.36 8.44 76.30
RC106 1.79 1341.22 64.88 12 7516.66 777 12.16 1.79 9.25 81.26
RC107 15.58 1194.74 100.15 11 6855.14 775 15.21 15.58 28.25 54.76
RC108 12.93 1113.39 85.45 10 6282.43 1989 19.97 12.93 19.29 59.43

Avg. 4.55 1124.14 36.79 11.79 6988.46 958.62 14.84 4.61 4.85 53.52



for early and late services is given in percentages (Pen.Imp%) and
this value is calculated with respect to the solution obtained by the
tabu search algorithm. Moreover, we present the average values
(Avg.) over all problem instances provided both by the tabu search
algorithm and by the scheduling method.

Solutions in Table 3 show that in all problem instances the tabu
search algorithm decreases the total distance with respect to the
initial solutions. These reductions may be achieved by an increase
in the delay or in the earliness, e.g., we have higher total delay in
two instances (R101, RC101) and higher total earliness in ten
instances (R101, R102, R104, R105, R106, R110, RC103, RC106,
RC107, RC108) compared to that given by the IFS. Moreover, we
use fewer vehicles in 16 problem instances. Overall, the tabu
search algorithm reduces the total cost by 12.00% on average. The
solutions obtained by the tabu search algorithm are further
improved with the LP model by reducing an average of 64.73% of
the total penalty cost. The percentage of the total penalty cost in
the objective function value on average is 0.92% over the initial
solutions, 0.28% over the solutions obtained by the tabu search
algorithm, and 0.06% over the final solutions obtained by the
scheduling method. More specifically, the tabu search algorithm
provides a reduction both in the total delay (on average from
51.88 min to 2.39 min) and in the total earliness (on average from
47.83 min to 38.34 min). The scheduling method further reduces
the total earliness on average to 4.06 min with a slight increase in
the total delay (on average to 2.40 min).

Solutions in Table 4, which are obtained with a higher number of
iterations given for the secondary terminating criterion, show that in
all problem instances the tabu search algorithm decreases the total
distance with respect to the initial solutions. We have higher total
delay in three instances and higher total earliness in 11 instances.
Moreover, we use fewer vehicles in 19 instances. Overall, the tabu
search algorithm reduces the total cost by 13.61% on average, which
is higher than the average value generated with a smaller number of
threshold iterations to terminate the algorithm (τ¼1000). The
solutions obtained by the tabu search algorithm are further
improved with the scheduling method by 60.27% on average
according to total penalty cost. On average, the percentage of the
total penalty cost in the objective function value is 0.29% over the
solutions obtained by the tabu search algorithm, and 0.07% over the
final solutions obtained by the scheduling method. The tabu search
algorithm reduces the values of the total delay and the total earliness
on average to 2.72 min and to 37.71 min, respectively. The schedul-
ing method further decreases the total earliness on average to
4.14 min with a slight increase in the total delay (on average to
2.75 min).

In the last set of results, the tabu search algorithm operates with
higher numbers of iterations both for the primary (θ) and the
secondary (τ) terminating criteria. In all problem instances, the tabu
search algorithm decreases the total distance with respect to the
initial solutions. We have higher total delay in three instances and
higher total earliness in ten instances. Moreover, we use fewer
vehicles in 20 instances. Overall, the tabu search algorithm reduces
the total cost by 14.84% on average, which is higher than the average
value given in Table 4. The scheduling method yields a 53.52%
improvement on average, which is smaller than the value given in
Table 4, since the tabu search algorithm leads to better improve-
ments for most of the problem instances. The percentage of the total
penalty cost in the objective function value on average is 0.31% over
the solutions obtained by the tabu search algorithm, and 0.10%
over the final solutions obtained by the scheduling method. More
specifically, the tabu search algorithm reduces the values of the total
delay and the total earliness on average to 4.55 min and to 36.79 min,
respectively. The scheduling method further decreases the total
earliness on average to 4.85 min with a slight increase in the total
delay (on average to 4.61 min).

The results given by Tables 3, 4 and 5 indicate that using a
higher number of iterations for the primary and secondary
terminating criteria in the tabu search procedure yields better
final solutions. Moreover, these solutions are obtained in a reason-
able amount of time. Thus, in the following experiments where
different fraction values are employed, (θ,τ) are set to (105,
2:5ð104Þ).

5.3. VRPFlexTW versus VRPTW

The aim of this subsection is to evaluate the benefits gained by
flexible time windows compared to the hard time windows. Table 6
provides the optimal/best-known solutions for the original VRPTW
(see Desaulniers et al. [11] and Baldacci et al. [2]) and the solutions
of the VRPFlexTW. This table represents the total distance and the
number of vehicles for the following cases: (i) the optimal/best-known
solutions of the original VRPTW, (ii) the final solutions obtained by
our solution procedure for the original VRPTW (VRPFlexTW with
pi ¼ 0; 8 iAN), (iii) the final solutions obtained by our solution
procedure for the VRPFlexTW with pi¼0.05, 8 iAN, (iv) the final
solutions obtained by our solution procedure for the VRPFlexTW with
pi¼0.10, 8 iAN, (v) the final solutions obtained by our solution
procedure for the VRPFlexTW with pi¼0.15, 8 iAN. We report the
CPU times in seconds for cases (iii), (iv) and (v) to compare the
performance of our algorithm with that of the procedure where the
scheduling technique is applied in the tabu search method (see
Section 5.7). Note that for the original VRPTW, the scheduling method
(either applied once as a last phase or every iteration in the tabu
search) does not provide any improvement since no penalties are
permitted. The solutions presented by Table 6 are generated by setting
(θ,τ) to (105, 2:5ð104Þ) in the tabu search algorithm since these
parameters yield good results as seen in Table 5. The average values
of the total distance, the number of vehicles, and the CPU times over
all problem instances are also given in Table 6. Note that in the
formulation (1)–(13), the depot is also considered in computing the
total penalty cost. In the solutions of the VRPFlexTW, relaxing the time
window at the depot does not bring any earliness or lateness since
that node only has a very large upper bound (leading to the scheduling
horizon). Overall, the results represented by Table 6 indicate that the
VRPFlexTW with a positive flexibility fraction (pi) provides a decrease
in the average number of vehicles compared to that obtained by the
optimal/best-known solutions of the original VRPTW. Furthermore,
the average total distance and the average number of vehicles are
decreasing as pi increases.

Results obtained for the original VRPTW (VRPFlexTW with
pi¼0, 8 iAN) show that our solution procedure obtains good final
solutions with respect to the optimal/best-known solutions. More
specifically, when compared to the optimal/best-known solutions,
the solutions obtained by the proposed methodology achieve a
2.22% gap in the average total distance and a 0.86% gap in the
average number of vehicles. Moreover, for eight problem instances
(C101, C102, C103, C105, C106, C107, C108, C109) we obtain the
optimal solutions. Since our solution procedure is effective for the
original problem, we first compare the final solutions obtained for
the VRPFlexTW (cases (iii), (iv) and (v)) with the final solutions
obtained by our solution procedure for the VRPTW (case (ii)). We
also compare the final solutions obtained for the VRPFlexTW with
the optimal/best-known solutions of the original VRPTW (case (i)).

Table 7 provides the analysis of the solutions obtained for the
VRPFlexTW with respect to the solutions obtained by our solution
procedure for the original VRPTW. To prevent redundancy, we
explain one row of this table in detail. Results obtained with
pi¼0.10, 8 iAN show that for 13 problem instances (R102, R105,
R106, R109, R111, R112, RC102, RC103, RC104, RC105, RC106, RC107,
RC108) VRPFlexTW reduces both the total distance and the
number of vehicles, compared to those obtained by our solution



procedure for the original VRPTW where time windows are
defined as hard time windows. For three problem instances
(R101, R107, RC101), VRPFlexTW provides a reduction in the total
distance with the same number of vehicles as the one given by
our solutions obtained for the original VRPTW. For two problem
instances (R103, R104), VRPFlexTW yields fewer vehicles; how-
ever, this brings an increase in the total distance. For five problem
instances (C101, C106, C107, C108, C109), VRPFlexTW obtains the
same solutions as the ones found by our solution procedure for the
original VRPTW. For the remaining problem instances (C102, C103,
C104, C105, R108, R110), VRPFlexTW results in an increase in the
total distance with the same number of vehicles.

In Table 8, we present the analysis of the solutions obtained for
the VRPFlexTW with respect to the optimal/best-known solutions
of the original VRPTW. Note that in this part of the evaluation, we
refer to the optimal/best-known solutions of the original VRPTW
as the optimal VRPTW. To prevent redundancy, we explain one
row of this table in detail. Results obtained with pi¼0.15, 8 iAN
show that for 11 problem instances (R101, R102, R105, R106, R109,
R110, RC102, RC105, RC106, RC107, RC108) VRPFlexTW reduces
both the total distance and the number of vehicles, compared to
those obtained by the optimal VRPTW where time windows are
defined as hard time windows. For four problem instances (R103,
R107, RC101, RC104), VRPFlexTW provides a reduction in the total

Table 6
Comparison of the original VRPTW solutions with the final solutions obtained by our solution procedure where (θ,τ)¼(105,2.5(104)).

Ins. Opt. VRPTW VRPFlexTW, pi¼0 VRPFlexTW, pi¼0.05 VRPFlexTW, pi¼0.10 VRPFlexTW, pi¼0.15

Dist. #Veh. Dist. #Veh. Dist. #Veh. CPU Dist. #Veh. CPU Dist. #Veh. CPU

C101 828.94 10 828.94 10 828.94 10 87 828.94 10 200 828.94 10 315
C102 828.94 10 828.94 10 838.04 10 492 835.08 10 467 1007.31 10 712
C103 828.06 10 828.06 10 864.64 10 629 915.23 10 769 972.41 10 617
C104 824.78 10 825.96 10 848.98 10 1468 894.95 10 1078 855.29 10 1575
C105 828.94 10 828.94 10 828.94 10 637 884.25 10 640 828.94 10 681
C106 828.94 10 828.94 10 828.94 10 709 828.94 10 683 828.94 10 672
C107 828.94 10 828.94 10 828.94 10 593 828.94 10 538 828.94 10 573
C108 828.94 10 828.94 10 828.94 10 539 828.94 10 508 828.94 10 570
C109 828.94 10 828.94 10 828.94 10 503 828.94 10 586 828.94 10 636
R101 1642.92 20 1681.52 19 1669.34 19 570 1658.78 19 792 1623.69 18 1196
R102 1471.75 18 1506.47 17 1509.70 17 726 1442.28 16 1898 1425.14 16 1236
R103 1213.62 14 1247.64 14 1232.08 14 1539 1266.84 13 1236 1210.14 14 2112
R104 976.76 11 1014.29 11 994.97 10 1644 1017.54 10 1337 980.65 10 1523
R105 1360.12 15 1408.60 15 1370.79 15 1395 1342.96 14 1928 1343.93 14 1938
R106 1239.37 13 1261.08 14 1240.71 13 1413 1249.77 13 805 1186.79 12 1435
R107 1069.09 11 1087.06 11 1091.73 11 1079 1068.63 11 1742 1050.86 11 1726
R108 936.69 10 968.92 10 952.87 10 786 1007.50 10 567 961.70 9 1390
R109 1151.89 13 1173.80 13 1163.73 13 1069 1140.28 12 816 1128.15 12 1938
R110 1072.41 12 1089.36 12 1073.11 11 1456 1095.39 12 796 1033.29 11 1723
R111 1053.50 12 1100.82 12 1077.80 12 460 1022.88 11 858 1068.23 11 1017
R112 953.44 10 986.49 11 967.98 10 673 951.69 10 1099 965.95 10 648
RC101 1623.58 15 1675.55 15 1629.99 15 1190 1611.03 15 1253 1595.05 15 1512
RC102 1461.33 14 1526.62 14 1493.60 13 1078 1439.59 13 1139 1428.71 13 2127
RC103 1261.67 11 1287.45 12 1265.89 11 775 1216.09 11 720 1279.81 12 742
RC104 1135.48 10 1174.91 11 1152.08 10 1428 1123.76 10 1245 1123.85 10 917
RC105 1517.93 15 1542.43 15 1538.94 15 1321 1469.31 14 1016 1457.73 13 1128
RC106 1376.26 12 1400.76 13 1341.22 12 777 1316.74 12 770 1298.27 11 995
RC107 1211.24 12 1276.44 12 1194.74 11 775 1202.12 11 606 1183.25 11 1895
RC108 1117.53 11 1150.82 11 1113.39 10 1989 1104.14 10 813 1094.27 10 1959

Avg. 1113.86 12.03 1138.54 12.14 1124.14 11.79 958.62 1117.98 11.62 927.76 1112.00 11.48 1224.41

Table 7
VRPFlexTW versus VRPTW with the solutions obtained by our solution procedure.

pi Dist:ð↓Þ; #Veh:ð↓Þ Dist:ð↓Þ; #Veh:ð2Þ Dist:ð↑Þ; #Veh:ð↓Þ Dist:ð2Þ; #Veh:ð2Þ Dist:ð↑Þ; #Veh:ð2Þ Dist:ð↑Þ; #Veh:ð↑Þ

0.05 10 8 0 6 5 0
0.10 13 3 2 5 6 0
0.15 16 4 0 6 3 0

Table 8
VRPFlexTW versus VRPTW with the optimal/best-known solutions.

pi Dist:ð↓Þ; #Veh:ð↓Þ Dist:ð↓Þ; #Veh:ð2Þ Dist:ð↑Þ; #Veh:ð↓Þ Dist:ð2Þ; #Veh:ð2Þ Dist:ð↑Þ; #Veh:ð2Þ Dist:ð↑Þ; #Veh:ð↑Þ

0.05 2 1 5 6 15 0
0.10 8 6 3 5 7 0
0.15 11 4 3 6 4 1



distance with the same number of vehicles as the one given by the
optimal VRPTW. For three problem instance (R104, R108, R111),
VRPFlexTW yields fewer vehicles; however, this brings an increase
in the total distance. For six problem instances (C101, C105, C106,
C107, C108, C109), VRPFlexTW obtains the same solutions as the
optimal VRPTW. For four problem instances (C102, C103, C104,
R112), VRPFlexTW results in an increase in the total distance with
the same number of vehicles. For the remaining problem instance
(RC103), VRPFlexTW results in an increase both in the total
distance and the number of vehicles.

According to the solutions analyzed in detail and to the average
values given in Table 6, we conclude that the flexible time windows
provide significant operational gains to the carrier companies. These
gains can be observed in the total distance traveled and in the number
of vehicles used, which are the two basic components in the classical
VRPTW. Carrier companies can take the advantage of traversing less
distance or using fewer vehicles by delivering the goods to customers
with a small violation in time windows.

5.4. VRPFlexTW versus VRPSTW

This subsection aims to compare our solution procedure with
existing (meta)heuristic algorithms given in the literature. We
focus on the classical VRPTW since this is the standard way of
testing different settings developed for soft time windows. For
results presented in Table 9, we follow Figliozzi et al. [13] which is
the most recent work among all related papers, and we addition-
ally include solutions provided in Chiang and Russell [7].

The results presented in Table 9 show that our solution
procedure based on the tabu search algorithm performs well on
problem instances with hard time windows. For R1 and RC1 data
sets, we have higher number of vehicles; however, this leads to a
reduction in total distance.

5.5. Solutions obtained by our algorithm versus solutions obtained
by CPLEX

In this subsection, we compare the solutions obtained for
small-sized problem instances by our solution procedure to those
obtained by solving the formulation (1)–(13) directly within CPLEX
12.5 [22]. Three sets of experiments are conducted by selecting the
first 15, 20 and 25 customers from each problem instance provided
by Solomon [28]. In our solution procedure, (θ,τ,ce,cd) are set to
(105, 2:5ð104Þ,0.5,1.0), and pi¼0.10 for all iAN which corresponds
to a medium flexibility among percentages considered in the main
experiments. For CPLEX, a maximum of 7200 s is imposed on the
solution time. This time is arranged with respect to the largest
computation time required for our solution procedure where
instances with 100 customers are considered (1928 s with pi¼
0.10). Table 10 presents the solutions obtained by our solution
procedure and the optimal solutions obtained by CPLEX. Results
in this table indicate that our solution procedure provides the
optimal solutions to 11 out of 12 instances with substantially
lower computation time. For problem instance C107-15, our
solution is 0.82% away from the optimality with respect to the
objective function values. These results confirm that our solution
procedure performs well and obtains very good results in a
reasonable amount of time (not only for the classical VRPTW
already shown in previous subsections, but also for the
VRPFlexTW).

The interested reader is referred to Appendix A for the details
of the best feasible solutions found by CPLEX within the time limit
(Tables A1, A2 and A3), where the final optimality gap in
percentage ðGapf%Þ is also given. CPLEX cannot provide a feasible
solution (within the time limit) to five problem instances with 25
customers (C104-25, R103-25, R104-25, R107-25, R108-25) and
thus average values (both for our solution procedure and for
CPLEX) are calculated over the instances with feasible solutions.
Average results given in Tables A1, A2 and A3 show that the
solutions obtained by our solution procedure are better compared
to those obtained by CPLEX. Moreover, the average computation
time required by our solution procedure to solve these instances is
much less than that required by CPLEX (which is equal to 7200 s).

5.6. Effects of implementing larger flexibility fractions

In this paper, we consider a symmetric violation with asym-
metric penalty costs for each node and numerical experiments
are carried out with three different flexibility fractions (0.05, 0.10
and 0.15). Note that, each customer time window is extended by

Table 10
Details of solutions obtained by our solution procedure and optimal solutions obtained by CPLEX where pi¼0.10, 8 iAN.

Ins. Solutions obtained by our solution procedure Optimal solutions obtained by CPLEX

Del. Dist. Earl. #Veh. Obj. CPU Del. Dist. Earl. #Veh. Obj. CPU

C101-15 0.00 142.14 0.00 2 1084.29 1 0.00 142.14 0.00 2 1084.29 0
C106-15 0.00 142.14 0.00 2 1084.29 3 0.00 142.14 0.00 2 1084.29 30
C107-15 0.00 145.11 6.00 2 1093.22 3 0.00 142.14 0.00 2 1084.29 6875
R101-15 0.00 382.88 1.00 5 2766.25 0 0.00 382.88 1.00 5 2766.25 0
R105-15 0.00 349.88 0.00 3 1899.77 0 0.00 349.88 0.00 3 1899.77 481
RC101-15 0.00 222.50 2.58 2 1246.30 3 0.00 222.50 2.58 2 1246.30 15
C101-20 0.00 175.37 0.00 3 1550.75 10 0.00 175.37 0.00 3 1550.75 1
C105-20 0.00 175.37 0.00 3 1550.75 6 0.00 175.37 0.00 3 1550.75 5024
C106-20 0.00 175.37 0.00 3 1550.75 8 0.00 175.37 0.00 3 1550.75 591
R101-20 1.00 497.82 1.00 6 3397.15 0 1.00 497.82 1.00 6 3397.15 21
C101-25 0.00 191.81 0.00 3 1583.63 17 0.00 191.81 0.00 3 1583.63 1
R101-25 0.00 618.33 0.00 8 4436.66 18 0.00 618.33 0.00 8 4436.66 5553

Avg. 0.08 268.23 0.88 3.50 1936.98 5.75 0.08 267.98 0.38 3.50 1936.24 1549.33

Table 9
The classical VRPTW solutions obtained by selected metaheuristic algorithms and
by our solution procedure.

Method Dist. #Veh.

C1 R1 RC1 C1 R1 RC1

Taillard et al. [30] 828.5 1220.4 1381.3 10.00 12.64 12.08
Chiang and Russell [7] 828.4 1219.1 1376.6 10.00 12.08 11.88
Ibaraki et al. [21] 828.4 1217.4 1391.0 10.00 11.92 11.50
Figliozzi [13] 871.8 1261.6 1419.8 10.00 12.50 12.00
VRPFlexTW 828.5 1210.5 1379.4 10.00 13.25 12.88



Table 11
Details of solutions obtained by the tabu search algorithm and the scheduling method, where (θ,τ) are (105,2.5(104)), ðce ; cdÞ are (0.5, 1.0) and pi¼0.25, 8 iAN.

Ins. Solution of the tabu search algorithm Final solution

Del. Dist. Earl. #Veh. Obj. CPU Del. Earl.

C101 0.00 828.94 0.00 10 5657.87 377 0.00 0.00
C102 45.39 1017.06 37.60 10 6098.31 521 45.39 0.00
C103 0.00 1022.88 164.00 10 6127.75 634 0.00 11.51
C104 8.00 933.47 0.00 10 5874.94 1741 8.00 0.00
C105 0.00 828.94 0.00 10 5657.87 532 0.00 0.00
C106 0.00 828.94 0.00 10 5657.87 597 0.00 0.00
C107 0.00 828.94 0.00 10 5657.87 496 0.00 0.00
C108 0.00 828.94 0.00 10 5657.87 689 0.00 0.00
C109 0.00 828.94 0.00 10 5657.87 511 0.00 0.00
R101 13.02 1597.96 235.83 17 10,126.86 1117 15.12 27.45
R102 5.69 1405.93 145.67 15 8890.38 664 5.69 8.89
R103 19.94 1225.99 83.24 13 7713.54 1013 19.94 9.27
R104 11.25 1022.51 44.93 10 6078.74 1013 11.25 4.49
R105 42.70 1294.36 234.39 13 7948.60 1490 43.20 123.73
R106 34.53 1207.99 153.74 12 7327.38 914 35.40 57.92
R107 13.58 1062.88 103.19 11 6590.95 902 13.58 41.50
R108 14.16 946.54 48.64 9 5531.56 1524 14.16 21.41
R109 33.89 1110.40 206.87 12 7158.12 1301 33.89 74.63
R110 14.40 1061.10 134.92 11 6604.05 559 15.51 68.12
R111 29.88 1053.24 128.64 10 6200.68 887 29.88 73.98
R112 0.85 971.28 70.76 10 5978.78 1416 0.85 2.24
RC101 36.79 1521.56 282.53 14 8821.17 1205 36.79 74.16
RC102 19.78 1395.25 189.98 13 8105.27 1835 19.78 48.87
RC103 66.45 1221.53 63.13 10 6541.07 1053 66.45 37.33
RC104 13.88 1133.50 42.76 10 6302.25 764 13.88 6.88
RC105 42.66 1425.89 175.86 13 8182.37 1173 42.66 72.58
RC106 44.31 1280.12 204.88 11 7107.00 588 45.08 110.91
RC107 54.69 1157.88 183.17 10 6462.05 1252 55.45 127.96
RC108 10.97 1127.99 122.06 10 6327.99 740 10.97 89.28

Avg. 19.89 1109.34 105.41 11.17 6760.24 948.55 20.10 37.69

Table 12
Details of solutions obtained by the tabu search algorithm and the scheduling method, where (θ,τ) are (105,2.5(104)), ðce ; cdÞ are (0.5, 1.0) and pi ¼0.50, 8 iAN.

Ins. Solution of the tabu search algorithm Final solution

Del. Dist. Earl. #Veh. Obj. CPU Del. Earl.

C101 0.00 828.94 0.00 10 5657.87 634 0.00 0.00
C102 16.27 885.72 0.00 10 5787.71 1133 16.27 0.00
C103 40.83 891.64 123.50 10 5885.85 1352 40.83 34.50
C104 12.26 992.11 0.00 10 5996.47 1632 12.26 0.00
C105 0.00 828.94 0.00 10 5657.87 698 0.00 0.00
C106 0.00 875.94 0.00 10 5751.88 576 0.00 0.00
C107 0.00 828.94 0.00 10 5657.87 1038 0.00 0.00
C108 0.00 828.94 0.00 10 5657.87 886 0.00 0.00
C109 0.00 828.94 0.00 10 5657.87 596 0.00 0.00
R101 39.86 1483.57 351.26 16 9582.63 1207 41.95 89.27
R102 25.79 1355.93 221.16 14 8448.23 1692 29.59 45.49
R103 26.80 1133.35 132.67 12 7159.84 1826 27.45 33.17
R104 9.30 1002.60 60.00 10 6044.51 850 9.30 13.48
R105 54.13 1262.53 327.66 12 7543.02 860 55.76 172.91
R106 30.79 1201.78 209.63 12 7339.16 461 34.65 89.65
R107 25.26 1051.92 150.12 11 6604.16 1147 25.26 47.80
R108 52.89 963.73 54.87 9 5607.78 654 52.89 36.12
R109 52.22 1114.68 199.41 10 6381.29 1750 63.86 153.50
R110 34.76 1066.27 175.54 10 6255.07 1500 34.76 146.71
R111 48.61 987.80 230.10 10 6139.26 741 48.61 164.66
R112 9.58 968.84 104.48 9 5599.50 1312 9.58 99.81
RC101 51.30 1481.27 335.13 13 8381.41 1146 64.65 156.89
RC102 487.92 1481.79 201.46 10 7552.24 582 487.92 156.46
RC103 395.53 1279.01 121.58 9 6614.34 808 395.53 106.58
RC104 124.42 1185.26 110.05 9 6149.96 692 124.42 73.58
RC105 112.07 1354.20 224.55 12 7732.74 1582 112.56 128.53
RC106 17.39 1226.62 296.77 11 7019.01 771 18.33 208.70
RC107 70.90 1150.99 181.28 10 6463.52 649 70.90 166.04
RC108 39.22 1076.81 71.78 10 6228.72 469 44.92 51.37

Avg. 61.31 1090.31 133.90 10.66 6570.95 1008.41 62.84 75.01



0.10, 0.20 and 0.30, and relaxing a time window by these values
with respect to its duration provides sufficient flexibility (espe-
cially for the case where customers have tight time windows and
thus delivery bounds should not be violated more than a certain
extent to limit the negative impacts on customer satisfaction).
This subsection aims to analyze the effects of considering larger
flexibility fractions in terms of the performance of the proposed
solution procedure. Tables 11 and 12 present the solutions
obtained for the VRPFlexTW with pi¼0.25 for all iAN and with
pi¼0.50 for all iAN, respectively. In these tables, values of (θ,τ)
are equal to (105, 2:5ð104)) and penalty cost coefficients (ce, cd)
are set to the original values, (0.5, 1.0). When we compare the
average results given in Tables 11 and 12 to those represented in
Table 5 with pi¼0.05 for all iAN, we observe that implementing
larger flexibility fractions leads to less total distance by using
fewer vehicles where the values of the total delay and the total
earliness are higher (both over the solutions obtained by the tabu
search algorithm and over the corresponding final solutions
obtained by the scheduling method). We have a similar observa-
tion for the comparison of average results given in Table 11 (with
pi¼0.25 for all iAN) to those represented in Table 12 (with
pi¼0.50 for all iAN).

In the second part of the analysis, we solve the same problem
instances with higher penalty cost coefficients where (ce, cd) are
equal to (2.0, 4.0). Tables 13 and 14 present the results obtained
for the VRPFlexTW with pi¼0.25 for all iAN and with pi¼0.50 for
all iAN, respectively. In these tables, values of (θ,τ) are equal to
(105, 2:5ð104Þ). When we compare the average results given in
Table 13 (Table 14) to those represented in Table 11 (Table 12), we
observe that implementing larger penalty coefficients leads to
higher total distance by using more vehicles where the values of

the total delay and the total earliness are smaller (both over the
solutions obtained by the tabu search algorithm and over the
corresponding final solutions obtained by the scheduling
method). Moreover, increasing flexibility from pi¼0.25 to
pi¼0.50 within the same cost structure (from Table 13 to
Table 14) leads to fewer vehicles. However, the values of the
total distance, the total delay and the total earliness are higher. In
other words, using fewer vehicles can be compensated with an
increase not only in the total penalty cost but also in the total
distance traveled. The main reason behind this circumstance is
solving the problem instances by a solution procedure which may
obtain local optimal solutions. The proposed solution algorithm
terminates either because it reaches the maximum number of
given iterations or because the best feasible solution has not been
improved for a predetermined number of iterations. These
properties may lead to solutions reflecting the observed outcome
(in terms of an increase both in the total penalty cost and in the
total distance).

5.7. Effects of scheduling method

In our solution approach, we apply a scheduling method to the
solution obtained by the tabu search algorithm. This method improves
the solution on-hand by obtaining the optimal departure time of each
route from the depot and the optimal times to begin service at each
customer. The aim of this section is to evaluate the impact of applying
the scheduling method every iteration in the tabu search algorithm.
Table 15 presents the optimal/best-known solutions for the original
VRPTW and the solutions of the VRPFlexTW (with different flexibility
fractions) obtained by inserting the scheduling method into the tabu
search. Note that we refer to the solutions of the VRPFlexTW given by

Table 13
Details of solutions obtained by the tabu search algorithm and the scheduling method, where (θ,τ) are (105,2.5(104)), ðce ; cdÞ are (2.0, 4.0) and pi¼0.25, 8 iAN.

Ins. Solution of the tabu search algorithm Final solution

Del. Dist. Earl. #Veh. Obj. CPU Del. Earl.

C101 0.00 828.94 0.00 10 5657.87 425 0.00 0.00
C102 56.53 1112.59 72.46 10 6596.24 1271 56.53 20.22
C103 2.06 1063.17 33.29 10 6201.14 1349 2.06 0.00
C104 0.00 1037.85 0.00 10 6075.70 2073 0.00 0.00
C105 0.00 828.94 0.00 10 5657.87 1007 0.00 0.00
C106 0.00 866.26 0.00 10 5732.53 956 0.00 0.00
C107 0.00 828.94 0.00 10 5657.87 511 0.00 0.00
C108 0.00 828.94 0.00 10 5657.87 493 0.00 0.00
C109 0.00 828.94 0.00 10 5657.87 566 0.00 0.00
R101 10.39 1650.40 207.31 18 10,956.99 649 12.49 23.88
R102 6.80 1444.94 91.99 15 9101.05 601 7.07 23.52
R103 3.65 1208.27 63.14 13 7757.44 791 3.65 3.79
R104 2.55 1015.79 25.00 11 6491.78 806 2.55 4.38
R105 11.59 1452.68 132.00 14 8815.72 790 13.32 49.41
R106 6.38 1264.87 61.49 12 7478.23 1805 6.38 18.21
R107 3.46 1145.95 24.28 11 6754.29 769 3.46 5.15
R108 0.00 1032.60 0.00 10 6065.19 709 0.00 0.00
R109 0.00 1246.78 52.61 12 7398.78 850 0.00 4.09
R110 0.36 1166.79 29.60 11 6794.21 1407 0.36 3.96
R111 0.24 1123.55 41.00 11 6730.07 1392 0.24 10.43
R112 0.23 988.59 5.84 10 5989.79 1225 0.23 2.39
RC101 24.09 1622.05 147.16 14 9234.81 893 25.57 52.10
RC102 3.42 1491.81 71.97 13 8341.22 1911 3.42 34.23
RC103 1.72 1390.71 39.25 12 7666.79 846 1.72 18.40
RC104 1.41 1226.62 7.86 11 6874.60 1448 1.41 6.72
RC105 8.37 1542.16 54.18 13 8426.15 1325 8.37 21.55
RC106 3.20 1442.37 83.42 11 7464.36 1849 5.45 37.97
RC107 0.63 1245.44 55.41 11 7004.24 1705 0.63 15.20
RC108 4.86 1180.71 16.39 11 6813.67 1155 4.86 4.57

Avg. 5.24 1176.13 45.37 11.52 7070.84 1088.86 5.51 12.42



Table 15
Comparison of the original VRPTW solutions with the final solutions obtained by the procedure where the scheduling method is applied in the tabu search and (θ,τ)¼
(105,2.5 (104)).

Ins. Opt. VRPTW VRPFlexTW, pi¼0 VRPFlexTW, pi¼0.05 VRPFlexTW, pi¼0.10 VRPFlexTW, pi¼0.15

Dist. #Veh. Dist. #Veh. Dist. #Veh. CPU Dist. #Veh. CPU Dist. #Veh. CPU

C101 828.94 10 828.94 10 828.94 10 127 828.94 10 289 828.94 10 374
C102 828.94 10 828.94 10 828.94 10 1321 832.77 10 1014 903.11 10 1173
C103 828.06 10 828.06 10 838.08 10 1054 881.44 10 1234 904.97 10 2600
C104 824.78 10 825.96 10 870.37 10 861 889.63 10 1822 856.06 10 2588
C105 828.94 10 828.94 10 828.94 10 884 884.25 10 898 828.94 10 883
C106 828.94 10 828.94 10 828.94 10 973 828.94 10 938 828.94 10 891
C107 828.94 10 828.94 10 828.94 10 813 828.94 10 752 828.94 10 727
C108 828.94 10 828.94 10 828.94 10 772 828.94 10 743 828.94 10 722
C109 828.94 10 828.94 10 828.94 10 1099 828.94 10 869 828.94 10 732
R101 1642.92 20 1681.52 19 1642.86 18 2808 1628.25 18 3069 1627.23 18 1449
R102 1471.75 18 1506.47 17 1459.51 17 3900 1441.83 17 1570 1416.62 16 2021
R103 1213.62 14 1247.64 14 1240.14 14 2419 1259.56 13 1183 1220.26 14 3443
R104 976.76 11 1014.29 11 1001.56 10 2937 978.88 10 2226 968.28 10 1468
R105 1360.12 15 1408.60 15 1356.41 15 3908 1353.15 14 2728 1331.21 14 2207
R106 1239.37 13 1261.08 14 1264.65 13 3046 1252.96 13 3602 1207.38 13 1763
R107 1069.09 11 1087.06 11 1073.32 11 1641 1106.19 11 2173 1056.39 11 1409
R108 936.69 10 968.92 10 964.71 10 2686 947.74 9 1214 955.52 9 2830
R109 1151.89 13 1173.80 13 1153.37 12 2281 1156.76 12 1816 1129.36 12 3266
R110 1072.41 12 1089.36 12 1074.11 12 1992 1064.36 11 1941 1032.60 11 1653
R111 1053.50 12 1100.82 12 1044.96 11 1577 1018.77 11 1373 1032.87 11 2047
R112 953.44 10 986.49 11 974.18 11 2277 961.72 10 1847 953.11 10 2619
RC101 1623.58 15 1675.55 15 1637.41 15 3052 1622.54 15 2283 1616.06 15 1861
RC102 1461.33 14 1526.62 14 1456.53 13 3078 1499.83 13 3765 1425.42 13 2090
RC103 1261.67 11 1287.45 12 1313.96 12 1261 1220.15 11 2369 1211.70 11 3738
RC104 1135.48 10 1174.91 11 1176.52 11 920 1130.74 10 2392 1109.92 10 2848
RC105 1517.93 15 1542.43 15 1540.09 15 2608 1484.79 14 2558 1495.81 13 3390
RC106 1376.26 12 1400.76 13 1375.37 13 1433 1318.51 12 1134 1268.01 11 2233
RC107 1211.24 12 1276.44 12 1201.91 11 1029 1197.22 11 3563 1186.35 11 1571
RC108 1117.53 11 1150.82 11 1102.22 10 2688 1103.56 10 1869 1091.66 10 1497

Avg. 1113.86 12.03 1138.54 12.14 1122.92 11.86 1911.90 1116.56 11.55 1835.66 1102.53 11.48 1934.24

Table 14
Details of solutions obtained by the tabu search algorithm and the scheduling method, where (θ,τ) are (105,2.5(104)), ðce ; cdÞ are (2.0, 4.0) and pi¼0.50, 8 iAN.

Ins. Solution of the tabu search algorithm Final solution

Del. Dist. Earl. #Veh. Obj. CPU Del. Earl.

C101 0.00 828.94 0.00 10 5657.87 599 0.00 0.00
C102 1.18 1353.45 68.42 11 7248.46 506 1.18 25.57
C103 8.16 1443.38 21.49 11 7362.39 1447 8.16 0.00
C104 0.00 1146.37 25.00 10 6342.74 535 0.00 0.00
C105 0.00 828.94 0.00 10 5657.87 561 0.00 0.00
C106 0.00 995.12 3.25 10 5996.73 970 0.00 0.00
C107 0.00 863.70 0.00 10 5727.39 562 0.00 0.00
C108 0.00 861.28 0.00 10 5722.56 1179 0.00 0.00
C109 0.00 828.94 0.00 10 5657.87 1040 0.00 0.00
R101 30.13 1588.37 270.20 16 10,237.65 724 35.46 92.00
R102 10.70 1474.76 156.82 15 9305.94 1102 10.70 44.98
R103 10.55 1305.03 77.72 13 8007.69 592 10.81 26.44
R104 4.27 1075.71 42.60 10 6253.71 1701 4.27 11.00
R105 11.74 1463.45 101.05 13 8375.94 1473 11.74 41.87
R106 5.29 1305.71 42.87 12 7518.30 1750 5.29 7.67
R107 4.63 1149.67 25.18 11 6768.20 1320 4.63 7.00
R108 2.51 994.27 7.13 10 6012.81 1556 2.51 7.00
R109 1.41 1277.89 42.88 12 7447.17 1576 1.41 28.09
R110 1.47 1195.50 66.34 10 6529.54 1132 1.47 54.21
R111 2.72 1136.02 22.18 11 6727.28 1310 2.72 9.76
R112 6.69 1015.32 32.26 9 5721.93 1538 6.69 24.13
RC101 23.06 1607.46 198.05 13 8903.25 622 23.06 120.23
RC102 12.79 1505.21 52.99 12 7967.55 1808 12.79 40.72
RC103 6.74 1382.56 5.99 12 7604.06 805 6.74 0.00
RC104 0.00 1209.11 12.44 11 6843.09 1174 0.00 11.02
RC105 6.43 1520.16 104.26 13 8474.54 544 6.43 43.09
RC106 8.45 1418.80 46.51 12 7764.41 666 8.45 30.20
RC107 41.68 1332.21 106.30 10 7043.76 448 42.89 98.05
RC108 3.42 1177.87 19.37 11 6808.17 744 3.42 15.97

Avg. 7.03 1216.73 53.49 11.31 7092.72 1033.93 7.27 25.48



Table 6 in which the scheduling method is applied only once to the
solution generated by the tabu search algorithm as original final
solutions.

When the scheduling method is applied every iteration in the
tabu search algorithm, for the case with pi ¼ 0:05, 8 iAN the
procedure reduces the total distance on average compared to that
obtained by the original final solutions. However, this comes with
an increase in the total number of vehicles on average. For the case
with pi ¼ 0:10, 8 iAN the procedure reduces both the total
distance and the number of vehicles on average compared to
those obtained by the original final solutions. For the case with
pi ¼ 0:15, 8 iAN the procedure provides a reduction in the total
distance with the same number of vehicles on average compared
to those given by the original final solutions. For all cases, we
observe higher computational times.

Cordeau et al. [9] summarize some of the best available and the
well-known classical heuristics, and provide a comparison with
respect to some essential criteria. Both speed and accuracy are
important features of a solution procedure based on heuristics.
Solutions given by Tables 6 and 15 confirm that our solution
procedure where the scheduling method is applied when the tabu
search algorithm terminates obtains very good final solutions in a
reasonable computational time.

6. Conclusions

In this paper, we introduce the VRPFlexTW which enables
serving customers outside their original time boundaries with
respect to a given tolerance. Compared to the VRPTW, the
VRPFlexTW permits fixed deviations from customer time windows

at a cost. Furthermore, when compared to the VRPSTW, the
VRPFlexTW operates on a far more restricted solution space.

Our solution procedure comprises three main components: initi-
alization, routing and scheduling. The time-oriented nearest neighbor
heuristic is used in the initialization component. The routing compo-
nent is handled via a tabu search algorithm, while the scheduling
component is performed by solving an LP model. We validate our
solution algorithm on benchmark instances and test the performance
of the solution procedure with various stopping criteria values.
Furthermore, we compare the solutions of the VRPTW with those of
the VRPFlexTW. In many instances, we observe that the VRPFlexTW
results in operational gains when compared to the VRPTW. These
gains are achieved by a reduction in the total distance traveled or by a
reduction in the number of vehicles used or by a reduction both in the
total distance and in the number of vehicles.

We model a practical problem and develop an efficient solution
framework to handle it. Our solution approach can effectively be
used by carrier companies trying to assess the added value of
allowing a certain extent of customer service flexibility. Generally,
relaxing time windows improves the total cost. However, this
relaxation brings some violations. This trade-off might be balanced
with respect to the preferences of carrier companies and to the
concerns of their customers. Further research may focus on
handling uncertainties in travel times and on exploring more
complex penalty functions.

Appendix A. Best feasible solutions obtained by CPLEX within
the time limit

See (Tables A1–A3).

Table A1
Details of the best feasible solutions obtained for instances with 15 customers by our solution procedure and by CPLEX where pi¼0.10, 8 iAN.

Ins. Solutions obtained by our solution procedure Solutions obtained by CPLEX

Del. Dist. Earl. #Veh. Obj. CPU Del. Dist. Earl. #Veh. Obj. Gapf ð%Þ

C102-15 0.00 142.14 0.00 2 1084.29 4 0.00 141.07 0.00 2 1082.13 72.45
C103-15 0.00 141.48 0.00 2 1082.97 4 0.00 141.48 0.00 2 1082.97 74.92
C104-15 0.00 141.48 0.00 2 1082.97 4 0.00 137.78 0.00 2 1075.56 81.22
C105-15 0.00 142.14 0.00 2 1084.29 3 0.00 142.14 0.00 2 1084.29 50.91
C108-15 10.03 137.07 20.90 2 1094.62 3 0.00 142.14 0.00 2 1084.29 78.30
C109-15 0.00 148.47 0.00 2 1096.93 4 0.00 136.70 0.00 2 1073.39 87.02
R102-15 0.40 332.12 1.00 3 1865.14 4 0.40 336.25 1.00 3 1873.40 67.57
R103-15 0.40 332.12 1.00 3 1865.14 3 0.40 332.12 1.00 3 1865.14 70.85
R104-15 0.00 288.86 0.00 3 1777.73 4 0.00 288.86 0.00 3 1777.73 72.71
R106-15 0.00 310.10 2.02 3 1821.21 4 0.00 310.10 2.02 3 1821.21 71.31
R107-15 0.00 310.10 2.02 3 1821.21 3 0.00 315.74 0.00 3 1831.48 74.73
R108-15 0.00 278.22 0.00 3 1756.45 4 0.00 285.22 0.00 3 1770.44 73.24
R109-15 3.81 316.09 4.00 3 1837.99 3 3.81 316.09 4.00 3 1837.99 69.80
R110-15 0.00 284.73 0.00 3 1769.46 3 3.81 281.42 13.80 3 1773.55 76.08
R111-15 0.00 304.64 0.00 3 1809.28 6 0.00 326.19 0.00 3 1852.38 74.85
R112-15 11.05 276.64 16.36 2 1372.51 0 0.00 278.22 0.00 3 1756.45 75.69
RC102-15 0.00 198.64 2.00 2 1198.28 3 0.00 202.27 0.00 2 1204.55 71.01
RC103-15 0.00 198.64 2.00 2 1198.28 3 0.00 198.64 2.00 2 1198.28 77.69
RC104-15 0.00 192.93 0.00 2 1185.87 3 0.00 192.18 0.00 2 1184.37 86.91
RC105-15 5.00 260.38 1.83 3 1726.67 3 5.00 260.38 1.83 3 1726.67 60.23
RC106-15 0.00 206.95 9.60 2 1218.70 2 0.00 202.60 6.00 2 1208.19 87.98
RC107-15 0.00 186.94 1.00 2 1174.39 3 0.00 186.94 1.00 2 1174.39 88.18
RC108-15 0.00 186.94 0.00 2 1173.89 3 0.00 187.71 0.00 2 1175.42 89.00

Avg. 1.33 231.21 2.77 2.43 1439.05 3.30 0.58 232.27 1.42 2.48 1457.14 75.33



Table A2
Details of the best feasible solutions obtained for instances with 20 customers by our solution procedure and by CPLEX where pi¼0.10, 8 iAN.

Ins. Solutions obtained by our solution procedure Solutions obtained by CPLEX

Del. Dist. Earl. #Veh. Obj. CPU Del. Dist. Earl. #Veh. Obj. Gapf ð%Þ

C102-20 0.00 188.79 0.00 2 1177.58 7 0.00 177.43 0.00 2 1154.85 69.50
C103-20 0.00 162.65 0.00 2 1125.30 11 0.00 162.65 0.00 2 1125.30 73.57
C104-20 0.00 161.47 0.00 2 1122.93 8 0.00 160.79 0.00 2 1121.58 75.66
C107-20 43.74 160.82 0.00 2 1165.37 7 43.74 160.82 0.00 2 1165.37 64.79
C108-20 8.25 160.82 0.00 2 1129.88 6 8.25 160.82 0.00 2 1129.88 79.34
C109-20 0.00 160.82 0.00 2 1121.63 7 0.00 160.82 0.00 2 1121.63 84.04
R102-20 0.00 434.91 0.00 6 3269.82 10 0.00 434.91 0.00 6 3269.82 78.37
R103-20 0.40 368.49 1.36 4 2338.06 8 0.40 395.53 1.00 4 2391.97 77.72
R104-20 0.00 331.88 0.00 3 1863.76 7 0.00 378.28 0.00 4 2356.56 77.75
R105-20 3.56 436.37 6.00 4 2479.30 1 1.21 428.84 3.00 5 2860.39 72.86
R106-20 0.00 384.65 0.00 4 2369.30 8 0.00 397.81 2.80 4 2397.03 77.81
R107-20 0.50 373.12 5.02 3 1949.24 6 9.08 358.94 6.00 4 2329.95 78.96
R108-20 0.00 310.70 2.46 3 1822.64 7 0.00 352.45 0.00 3 1904.90 74.92
R109-20 4.02 435.27 4.59 3 2076.85 6 0.00 379.79 2.99 4 2361.08 61.30
R110-20 1.46 337.69 26.65 3 1890.17 5 0.00 365.38 0.00 4 2330.76 78.12
R111-20 2.51 368.06 2.90 3 1940.08 6 0.00 365.31 0.00 4 2330.62 78.33
R112-20 0.00 310.70 0.00 3 1821.41 7 0.00 310.70 0.00 3 1821.41 73.33
RC101-20 1.80 334.33 4.16 3 1872.54 10 1.80 334.40 3.77 3 1872.49 21.92
RC102-20 2.22 306.67 2.39 3 1816.75 7 0.00 306.79 3.00 3 1815.07 71.34
RC103-20 0.00 302.85 2.00 3 1806.70 7 0.00 306.22 0.00 3 1812.44 87.44
RC104-20 3.53 293.77 3.00 3 1792.57 7 0.00 309.82 0.00 3 1819.64 86.17
RC105-20 5.00 367.65 1.83 4 2341.22 7 5.00 367.65 1.83 4 2341.22 84.47
RC106-20 0.00 314.71 12.06 3 1835.45 6 0.00 312.49 3.07 3 1826.53 86.97
RC107-20 0.00 283.73 1.00 3 1767.96 6 0.00 283.73 1.00 3 1767.96 81.71
RC108-20 0.00 283.73 0.00 3 1767.46 7 0.00 296.13 0.00 3 1792.25 82.76

Avg. 3.08 302.99 3.02 3.04 1826.56 6.96 2.78 306.74 1.14 3.28 1928.83 75.17

Table A3
Details of the best feasible solutions obtained for instances with 25 customers by our solution procedure and by CPLEX where pi¼0.10, 8 iAN.

Solutions obtained by our solution procedure Solutions obtained by CPLEX

Ins. Del. Dist. Earl. #Veh. Obj. CPU Del. Dist. Earl. #Veh. Obj. Gapf ð%Þ

C102-25 0.00 191.81 0.00 3 1583.63 20 0.00 190.74 0.00 3 1581.48 77.34
C103-25 0.00 191.81 0.00 3 1583.63 12 0.00 195.62 0.00 3 1591.23 83.38
C104-25 0.00 191.81 0.00 3 1583.63 14 No integer solution
C105-25 0.00 191.81 0.00 3 1583.63 11 0.00 191.81 0.00 3 1583.63 35.49
C106-25 0.00 191.81 0.00 3 1583.63 13 0.00 191.81 0.00 3 1583.63 42.01
C107-25 0.00 192.18 6.00 3 1587.35 12 0.00 191.81 0.00 3 1583.63 84.42
C108-25 0.00 191.81 0.00 3 1583.63 13 0.00 219.91 0.00 3 1639.81 86.24
C109-25 0.00 192.18 0.00 3 1584.35 17 0.00 195.43 0.00 3 1590.85 88.76
R102-25 0.00 548.11 0.00 7 3896.22 16 0.00 565.57 0.00 7 3931.13 80.41
R103-25 12.40 470.42 2.00 4 2554.25 13 No integer solution
R104-25 12.00 411.46 1.00 4 2435.42 13 No integer solution
R105-25 2.35 529.41 4.42 5 3063.39 4 1.21 527.90 3.00 6 3458.51 73.07
R106-25 2.21 494.08 1.28 4 2591.01 10 0.00 514.90 0.00 5 3029.81 77.12
R107-25 8.80 414.48 2.18 4 2438.85 14 No integer solution
R108-25 2.00 390.28 5.46 4 2385.29 13 No integer solution
R109-25 0.00 460.52 0.00 4 2521.04 21 0.00 509.67 0.00 5 3019.34 77.72
R110-25 1.46 418.28 14.48 4 2445.25 17 2.06 506.55 4.30 6 3417.32 82.98
R111-25 4.25 417.93 0.00 4 2440.12 13 1.07 463.92 6.50 5 2932.16 79.69
R112-25 24.36 390.45 2.42 3 2006.47 6 18.07 652.37 36.46 5 3341.05 83.02
RC101-25 3.19 365.23 6.77 3 1937.03 17 3.19 365.23 6.77 3 1937.03 63.74
RC102-25 3.60 337.57 5.00 3 1881.25 12 1.39 337.61 6.00 3 1879.61 81.16
RC103-25 0.00 330.55 2.00 3 1862.10 11 3.53 331.52 3.00 3 1868.08 88.30
RC104-25 3.53 305.03 3.00 3 1815.10 13 0.00 430.74 0.66 4 2461.81 91.60
RC105-25 6.77 400.51 2.83 4 2409.20 11 5.97 412.90 2.83 4 2433.19 82.10
RC106-25 2.18 330.76 12.67 3 1870.05 9 2.18 337.07 6.00 3 1879.32 87.16
RC107-25 0.00 296.83 1.00 3 1794.16 10 0.00 299.20 3.66 3 1800.22 88.16
RC108-25 0.00 296.83 0.00 3 1793.66 10 0.00 297.79 0.00 3 1795.59 89.22

Avg. 2.45 330.25 2.81 3.50 2064.36 12.64 1.76 360.46 3.60 3.91 2288.11 78.32
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