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Dynamic finite element simulations of composite stiffened panels with a
transverse-isotropic viscoelastic energy dissipation model
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Abstract

This paper presents a methodology for predicting the damped response and energy dissipation of laminated composite structures,
subjected to dynamic loads. Starting from simple coupon tests to characterize the material, the numerical simulation of damping
properties is made possible by a novel linear viscoelastic model that has been developed and implemented in the finite element code
B2000++. A nonlinear optimization procedure is adopted to fit experimental data and define the exponential Maxwell parameter
model. To illustrate the potentialities of the method, the post-buckling analysis of a relatively complex aeronautical panel is
presented, accounting not only for geometric nonlinearities, but also for viscoelastic effects. The results illustrate the effects due
to material dissipation, their relation to the effects of inertia, and the influence of geometric imperfections on the response of the
panel.
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1. Introduction

Post-buckling analysis of aeronautical panels is often con-
ducted assuming static or quasi-static conditions. But the na-
ture of real structures is intrinsically dynamic, and in many op-
erating conditions the structure experiences loading conditions
that cannot be considered static. This is the case, for instance,
of a gust or a sudden landing. Under these circumstances, the
structural response can be affected not only by geometric non-
linearities, but also by the material’s dissipative behavior.

Dissipation effects in composite materials have been the sub-
ject of many studies, a comprehensive review can be found in
Chandra et al. (1999). However, most of the methods that are
described in these studies are restricted to linear assumptions,
such as the method of McTavish and Hughes (1993), the anelas-
tic displacement fields damping model (Enelund and Lesieutre,
1999), and frequency-domain solution procedures with the as-
sumption of steady-state forced oscillatory conditions (Vasques
et al., 2010; Bobillot and Balmes, 2002). Modal damping can
be used in the context of a direct time integration procedure
after introducing globally defined constant damping matrices,
reflecting viscous damping at one single frequency.

While the assumption of linear behavior is advantageous
from the computational point-of-view, it precludes from pre-
dicting important phenomena such as buckling, frequency-
dependence, and local effects in the case where the structure
consists of different materials. Therefore, the assumption of
linear behavior is not valid when assessing the damping effects
on the panel’s response in the post-buckling field.

In the context of nonlinear methods, the approach that is usu-
ally adopted is the direct time integration of the generalized
Maxwell convolution integral. The numerical processing of
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viscoelastic equations has been discussed by Schapery (1961),
and Gradowczyk and Moavenzadeh (1969). An early proce-
dure based on the convolution integral, although limited to sta-
tionary analysis (creep) and using the finite-difference method,
has been presented by one of the authors (Merazzi and Stehlin,
1977).

Few works in the past have considered the numerical simu-
lation of relatively complex aircraft structures that are designed
to operate in the post-buckling field, accounting for nonlinear
damping effects, despite the potential influence of these effects
on the structure’s response. The advances in computational
power and finite element technology allow nowadays to tackle
industrial-size problems, including the study of structural sub-
components or even aircraft models.

In the present work, a novel analysis procedure is proposed
to account for nonlinear damping during the numerical sim-
ulation of carbon-fiber reinforced plastic (CFRP) aeronautical
panels. It relies on the experimental characterization of the ma-
terial dissipation properties by means of Dynamic Mechanical
Analysis (DMA), and on the numerical simulation of the mate-
rial viscoelastic behavior referring to the Generalized Maxwell
Model (GMM). The resulting nonlinear problem is solved by an
implicit transient analysis method with the B2000++ finite el-
ement analysis package (SMR S.A., 1999-2014). It makes use
of a multistep backward differential formula method for time
integration (Shampine and Gear, 1979), with a variable time
increment (Nordsieck, 1962).

The body of this paper is organized as follows: first, a de-
scription of the numerical procedures to implement the GMM
in the finite element code is provided. Then, the experimen-
tal characterization of a CFRP material is explained together
with the strategies for the parameter fitting of the experimental
results. An application of the GMM for computing dynamic
response of a composite stiffened curved panel loaded in com-
pression and working in the post-buckling field is presented.

2. The Generalized Maxwell Model (GMM)

2.1. One dimensional linear GMM

For the sake of completeness, a brief description of the
Generalized Maxwell Material (GMM) is presented, following
the approach of Simo and Hughes (2000) where infinitesimal
strains are assumed. A GMM consists of N Maxwell elements
that are assembled in parallel. Each Maxwell element is repre-
sented by a spring with elastic modulus Ei and a dashpot (damp-
ing element) with relaxation time τi, as reported in Figure 1. E∞
is the elastic modulus at full relaxation, and the instantaneous
elastic modulus E0 is

E0 = E∞ +

N∑
i=1

Ei (1)

Introducing the non-dimensional relative moduli of the
Maxwell elements

γi =
Ei

E0
(2)

Figure 1: Schematic representation of a Generalized Maxwell Model.

and

γ∞ =
E∞
E0

(3)

The expression for γ∞ is obtained:

γ∞ = 1 −
N∑

i=1

γi (4)

Using these definitions, the normalized generalized Maxwell
relaxation function can be written as

g(t) = γ∞ +

N∑
i=1

γie−t/τi (5)

where τi is the relaxation time of the i-th Maxwell element.
The constitutive equation of a GMM, in this case for a one-
dimensional linear material and infinitesimal strains, consists
of the convolution integral

σ(t) =

t∫
u=−∞

g (t − u) ṡ0(u)du (6)

with σ(t) the stress and

ṡ0 = E0ε̇ =
E∞
γ∞

ε̇ (7)

representing the time-derivative of the instantaneous stress(ε̇ is
the time-derivative of the strain).

2.2. Extension to transverse-isotropic materials
In two and three dimensions, the normalized generalized

Maxwell relaxation function g becomes a fourth-order tensor.
Time-independence is assumed for the Poisson ratios, while

different relaxation functions are introduced for the fiber, matrix
and shear directions. By exploiting the symmetry conditions for
transverse isotropy and adopting Voigt notation as proposed by
Melo and Radford (2003), g can be written as:

g =



g1 0 0 0 0 0
0 g2 0 0 0 0
0 0 g2 0 0 0
0 0 0 g2 0 0
0 0 0 0 g6 0
0 0 0 0 0 g6


∀ j ∈ {1, 2, 6} : g j(t) = γ∞, j +

N∑
i=1

γi, je−t/τi, j (8)
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Likewise, stress and strain quantities are vectors in Voigt nota-
tion, and the time-derivative of the instantaneous stress is

ṡ0 = C0ε̇ = (γ∞)−1 C∞ε̇ (9)

with C0 the instantaneous constitutive matrix, C∞ the constitu-
tive matrix at relaxation, and

γ∞ =



γ∞,1 0 0 0 0 0
0 γ∞,2 0 0 0 0
0 0 γ∞,2 0 0 0
0 0 0 γ∞,2 0 0
0 0 0 0 γ∞,6 0
0 0 0 0 0 γ∞,6


(10)

2.3. Other extensions of the GMM

The damping model can be extended with an additive split
of the strain into deviatoric and volumetric strain parts, using
separate constitutive equations for each part of the strain. This
approach can be appropriate for nearly incompressible materi-
als where the bulk response is elastic and only the deviatoric
response is viscoelastic.

In the case of hyperelastic and finite strain materials the ex-
pression C0ε must be replaced by ∂W0/∂ε, where W0 is the in-
stantaneous stored energy function.

2.4. The recurrence relationship

The GMM cannot be directly employed within a time-
integration ordinary differential equation (ODE) solver, as the
convolution integral g(tn) would have to be recomputed at each
time step tn. Thus, the implementation would have quadratic
complexity w.r.t. the number of time steps.

Using the algebraic property of the exponential function and
some time integration approximations, the convolution integral
can be transformed to the recurrence relationship:

tn+1 = tn + ∆tn
s0,n+1 = C0εn+1

h(i)
n+1 = e−∆tn/τi h(i)

n + e−∆tn/2τi
(
s0,n+1 − s0,n

)
σn+1 = γ∞s0,n+1 +

N∑
i=1

γih
(i)
n+1 (11)

where

h(i)
n ≈

tn∫
u=−∞

e−(tn−u)/τi ṡdu (12)

represents the internal stress state of the i-th Maxwell element
at time step tn.

Implementing this recurrence relationship within a time-
integration ODE solver requires only the computation of a sin-
gle recurrence iteration for each time step (and for each Newton
iteration at this time step in case of nonlinear analysis). How-
ever, the N internal stress state variables h(i)

n have to be stored
at each integration point of each finite element.

2.5. Free and dissipated energy
Staverman and Schwarzl (1952) give an expression for

the Helmholtz free energy F for a GMM in one dimension.
In Del Piero and Deseri (1996) this expression is generalized
to three-dimensional linear viscoelasticity:

F =
1
2

t∫
u=−∞

t∫
v=−∞

g(2t − u − v)ε̇ (u) C0ε̇ (v) dudv (13)

Using the definition of the Helmholtz free-energy F = U −
T0θ, where U = σε is the internal energy, T0 is the constant
temperature, and θ is the entropy, time-differentiation leads to

σε̇ = Ḟ + T0θ̇ (14)

where θ̇ is the rate of entropy production. By time-
differentiation of F, the rate of dissipated energy D = T0θ̇ is
obtained as

D = −

t∫
u=−∞

t∫
v=−∞

dg(2t − u − v)
dt

ε̇ (u) C0ε̇ (v) dudv (15)

A practicable evaluation of the above expression is achieved
by using the recurrence definition of h(i)

n and the semi-group
property of g. The free strain energy per unit volume Fn and
the rate of dissipated strain energy per unit volume Dn at the
time step tn can be expressed as:

Fn =
γ∞
2

s0,nεn +
1
2

N∑
i=1

γih(i)
n S 0h(i)

n (16)

Dn =

N∑
i=1

γi

τi
h(i)

n S 0h(i)
n (17)

where S 0 = (C0)−1 is the instantaneous compliance matrix.

3. Experimental characterization of CFRP and GMM pa-
rameter fitting

3.1. Dynamic Mechanical Analysis (DMA)
The CFRP material studied experimentally was Hexcel R©

IM7/8552, its mechanical characteristics being known (Bisagni
et al., 2011). To measure the loss factors, a number of Dy-
namic Mechanical Analysis (DMA) tests were carried out (Bis-
agni and Catapano, 2013).

The tests were performed in a dual cantilever bending con-
figuration at the Politecnico di Milano using a TA Instruments
DMA 2980. The equipment is controlled by means of software
called TA Advantage Control. In the dual cantilever config-
uration, the specimen was clamped on its ends, and a central
probe, controlled by a pneumatic system and constrained to the
specimen, bent it, as shown in Figure 2.

The tests allowed to analyze the behavior of the material at
different frequencies. In particular, the storage modulus, the
loss modulus and the loss factor of the specimen were mea-
sured. In order to obtain the in-plane shear loss factor using
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Figure 2: Experimental setup.

only flexural tests, the viscoelastic model presented by Melo
and Radford (2003) is employed.

The specimen geometry is imposed by the test type and de-
pends on the material properties. Due to the equipment limita-
tions for what concerns the minimum and maximum applicable
force and displacement, the specimens were manufactured with
a length of 60 mm, a width of 10 mm and 6 unidirectional plies.
Specimens with fibers oriented at 0◦, 30◦, 45◦ and 90◦ were
tested. The thickness of each single ply is 0.125 mm, and the
total thickness of the specimen is 0.75 mm

A sinusoidal controlled mode with amplitude of 15 · 10−6 m
was used, at a temperature of 35 ◦C. Three or four specimens
were tested for each fiber orientation from 0 to 50 Hz. Only
the 90◦ specimens were not tested at 50 Hz, because the cen-
tral probe was not able to sustain the vibration for at least the
seven cycles required by the equipment in order to identify the
complex modulus and the loss factor.

The mean loss factor of the 0◦ specimens varied between
0.007 and 0.004 for frequencies ranging from 0.5 to 10 Hz,
exactly the same result obtained by Melo and Radford (2004)
using identical fibers.

3.2. GMM parameter fitting
The DMA measurements were attributed to the components

as reported in Table 1.

0◦ −→ 1 (fiber)
90◦ −→ 2 (matrix)

0◦,30◦,45◦,90◦ −→ 6 (shear)

Table 1: Attribution of DMA measurements to the components.

The fitting of the GMM parameters in the frequency domain,
against the measured relative storage moduli γ̄′j and loss moduli
γ̄′′j , was carried out as follows. The numerical relative storage
moduli γ′j and loss moduli γ′′j can be calculated from the GMM
parameters γi, j and τi, j:

∀ j ∈ {1, 2, 6} :


γ′j( f ) =

N∑
i=1

γi, j(τi, j2π f )2

1 + (τi, j2π f )2

γ j”( f ) =

N∑
i=1

γi, jτi, j2π f
1 + (τi, j2π f )2

(18)

The GMM parameters are obtained by solving the three nonlin-
ear minimization problems

min

f 1∫
f 2

(γ′j( f ) − γ̄ j
′( f ))2 + (γ j”( f ) − γ̄ j”( f ))2d f (19)

Whether the nonlinear optimization yields a good fit depends
on how well the elastic moduli at relaxation correspond with
the storage and loss moduli, the number of Maxwell elements
N, and the optimization strategy. When N is small, global opti-
mization followed by local optimization can be effective, how-
ever, global optimization may fail to converge for larger N. A
work-around to this problem is to use only local optimization,
but then, the fitted results are often not satisfactory. By fix-
ing the relaxation times τi, j to predefined values, the number
of fitting parameters is divided by two but, more importantly,
the minimization problem becomes easier to solve, and local
optimization algorithms can produce a good fit.

Since the frequency ranges of the DMA measurements were
rather narrow, a small number of Maxwell elements, N = 3,
was selected using predefined relaxation times (the same for
all components j) in conjunction with a local optimization, us-
ing the BOBYQA algorithm of the NLOPT package (Johnson,
2010). Table 2 contains the fitted parameters and Figure 3 illus-
trates the results for the fiber direction, for which the absolute
loss moduli are greatest.

τi,1[s] 0.003 0.03 0.3
γi,1 8.697 · 10−3 4.798 · 10−3 1.287 · 10−2

γi,2 0 1.405 · 10−2 2.048 · 10−2

γi,6 1.885 · 10−2 1.548 · 10−2 2.662 · 10−2

Table 2: Fitted GMM viscoelastic parameters for Hexcel R© IM7/8552.

4. Application to a three-stringer stiffened CFRP panel

The GMM was applied to the dynamic (or transient) post-
buckling simulation of a stiffened curved composite panel with
three blade stringers. Compared to quasi-static analysis, the
most prominent phenomenon that is observed in dynamic anal-
ysis is that the sudden drops of load at unstable bifurcation
points induce local vibrations and stress fluctuations, which are
eventually damped out by the GMM.

This panel has a radius of 938 mm, an arc length of 135.9 mm
between each pair of stringers, and a free length of 600 mm.
The stringer height, measured from the skin mid-surface, is
20 mm. The stringer is connected to the skin by means of
two tapered flanges of width equal to 31 mm (this is simplified
in the finite element model). The CFRP material is Hexcel R©

IM7/8552, for which the static material data from (Bisagni
et al., 2011) was used (Table 3).
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Figure 3: Hexcel R© IM7/8552 relative storage and loss moduli in fiber direction
( j = 1) and approximated GMM with three elements. Dots: Measured. Solid
lines: GMM. Dotted lines: Individual Maxwell elements. The relative dif-
ference between the measured and the approximated moduli is 6-7% for both
curves. The error cannot be brought to zero by employing more Maxwell ele-
ments, because both curves are connected and the GMM cannot represent arbi-
trary curves.

Ē∞,1 150 GPa
Ē∞,2 9.08 GPa
ν 0.32
Ē∞,6 5.29 GPa
ρ 1550 kg/m3

Table 3: Hexcel R© IM7/8552 static material constants and density.

4.1. Finite element discretization
The finite element model of the panel is displayed in Fig-

ure 4. Unlike the real structure, the model is simplified by as-
suming stepped flanges of constant thickness.

The FE mesh consists of triquadratic solid elements with 27
nodes. In contrast to the computationally less demanding shell
elements, solid elements allow for a more realistic modeling
of the junction between the stringer flanges and the stringer
web, which can be important when studying mesh convergence.
Since the skin and stringer flanges are modeled with separate
elements, the material dissipation between skin and stringer
flanges can be studied. Concerning the post-buckling behavior
and the overall dissipation, and considering the element sizes, a
shell element mesh should yield very similar results.

The skin and stringer flanges are each discretized with a sin-
gle element in the thickness direction, comprising eight plies of
the laminate stacking sequence [0/±45/90]s and 12 plies with
the stacking sequence [02/±45]3, respectively. The skin-stringer
junction and the stringer web are discretized with two elements,
with the same stacking sequence as the stringer flanges.

Figure 4: Solid finite element model of three-stringer panel and laminate stack-
ing sequences for the skin and the stringer flange and stringer flange. Imperfec-
tions are shown amplified.

Each ply is unidirectional with a thickness of 0.125 mm. An
angle of 0◦ means that the fiber direction is aligned with the
axial direction. The material model is the GMM as described
in section 2.2, with the static material data of Table 3 and the
GMM parameters obtained as described in section 4.5. Nu-
merical quadrature of the first variation, the second variation,
etc. is performed separately over each ply. Geometric non-
linearities are accounted for by employing a Total-Lagrangian
formulation, using the Green-Lagrange strain and the 2nd Piola-
Kirchhoff stress.

An element length of 16 mm, resulting in a mesh with
1672 elements and 18711 nodes, was chosen on the basis of a
mesh convergence study, since the buckling load and the post-
buckling path do not significantly change with finer meshes.
The results obtained with elements of 4, 8 and 16 mm were
compared, revealing similar results in terms of buckling load
and post-buckling path.

4.2. Geometric imperfections
Considering the perfect panel, the first buckling point is un-

stable, although the drop of load is small, and the panel can
be loaded further. But real structures are always characterized
by the presence of manufacturing signatures, such as an initial
deviation from the nominal geometry. The presence of such im-
perfections tends to reduce the drop of load at the first buckling,
but still allows for secondary instabilities in the post-buckling
regime.

The analyses here presented aim to provide a comparison be-
tween two opposite scenarios in terms of imperfections. On one
hand the perfect panel tends to promote sudden drops of load,
whereas the imperfect panel tends to inhibit them.
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A geometric deviation of the skin mid-surface was intro-
duced. It approximates the quasi-static post-buckling solution
before the transition to global buckling, see Figure 4, and is
defined by the formula

z(x, y) = A
4∑

i=1

cos2 x̄i cos2ȳi

x̄i = π max
(
−

1
2
,min

(
1
2
,

x − Xi

Wi

))
ȳi = π max

(
−

1
2
,min

(
1
2
,

y − Yi

Hi

))
(20)

with the parameters as shown in Table 4. The amplitude A

i Xi Wi Yi Hi

1 400 150 67.95 135.9
2 200 150 -67.95 135.9
3 90 100 67.95 135.9
4 510 100 -67.95 135.9

Table 4: Numerical parameters for geometric imperfections. The origin of the
reference frame is located at the middle stringer on the left border of the panel,
the x-axis coincides with the axial direction, the y-axis coincides with the lateral
direction, and the z-axis coincides with the opposite radial direction. All values
are given in [mm].

was chosen by conducting a series of quasi-static post-buckling
analyses with different values for A. A value of 0.5 mm was
found to be sufficient to bring the drop of load at first buckling
to zero. Hence, transient analyses with A = 0.5 mm and A = 0
(no imperfections) were conducted.

It is worth noting this reduction of the drop of load at first
buckling could also be achieved by choosing different values
for the parameters or altogether by different means, for example
by applying a single perturbation force.

Although the kind of imperfection may affect the predicted
solution path, its effect on the amplitude of the vibrations fol-
lowing the first buckling should be similar, provided that the
drop of load at unstable bifurcation points is reduced by the
same amount.

4.3. Quasi-static analysis with linear loading

A linearly increasing edge shortening up to -1.8 mm was ap-
plied. This is quite far within the post-buckling field, but below
the onset of global buckling. The strains are below 1%, thus,
the infinitesimal-strain assumptions required by the GMM are
valid.

With a load-controlled quasi-static incremental analysis, a
post-buckling solution in the presence of instabilities can be
obtained, even for finite element models without geometrical
imperfections, by employing artificial damping or stabilization.
Adding viscous forces

Fviscous = α
1
∆t

M∆u (21)

where α is a scaling factor, M is the mass matrix, ∆u is the
vector of incremental displacements, and ∆t is the size of the

current increment – to the equilibrium equations results in a
modified tangent stiffness matrix which remains, in most but
not all cases, positive-definite. Which path is followed in the
vicinity of bifurcation points is not deterministic and unknown
in general; this may depend on a variety of numerical artifacts
as well as on the numerical solution parameters. If the solution
happens to lie too close to a bifurcation point, convergence may
be slow or not be reached altogether. But experience shows that,
for the present type of finite element models, this does not occur
before global collapse.

The solution algorithm that was applied to the quasi-static
analyses is identical to that of the transient analyses (see sec-
tion 4.6), except for the artificial viscous forces and for the
omission of the inertia forces. Its enhanced predictor allowed to
utilize a modified Newton method. Compared to a full Newton-
Raphson algorithm with a simpler predictor and without an er-
ror estimator to control the increment size, but also with artifi-
cial damping, the computational effort is reduced by a factor of
3.

The scaling factor α for the artificial damping was calculated
such that, for the first increment, the dissipated energy equals
1/10000 of the elastic energy. Otherwise, the same solution
parameters, such as the tolerance values for the criterion to test
the convergence of the Newton iterations, were used as in the
dynamic analyses.

The effect of geometric imperfections can be seen in Fig-
ure 5, which compares the load-displacement relationships. At
the maximum load, the panel stiffness is reduced to 67% due
to the buckling. The deformed pattern at buckling, with and
without imperfections, is very similar. However, a different re-
sponse is observed when the load is increased beyond the buck-
ling load. Mode changes, with buckles moving along the lon-
gitudinal direction, characterize the behavior of the nominally
perfect panel, while this is not the case for the configuration
with geometric imperfections.

Figure 5: Quasi-static nonlinear analysis with and without imperfections. First
buckling occurs around 50 kN. The out-of-plane displacements of the perfect
panel are shown as contours for three selected increments. A: at first buckling,
before the drop of load. B: in the post-buckling regime. C: at maximum load,
before global buckling.

The stress levels are very similar too. The compressive
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stress in fiber direction is everywhere below the compressive
ply strength of 1200 MPa (in this work only the stress in fiber
direction is considered, see (Bisagni et al., 2011) and Camanho
et al. (2007) for a detailed characterization of IM7/8552).

4.4. Dynamic loading conditions

Assuming that the panel is integrated in the lower fuselage of
a small civil aircraft, an important load case is the so-called dy-
namic landing where, following the impact of the landing gear,
the fuselage bends downwards due to the inertia forces, and the
panel is compressed. In the DAEDALOS project, acceleration
time histories were provided for a full aircraft FE model. The
time history near the assumed panel location had frequencies
between 10 and 15 Hz, which corresponds well to the lowest
vibration mode that involves fuselage bending.

To simulate the operating conditions in the context of a
fuselage structure, the panel is assumed clamped at one end
and loaded at the opposite end with an imposed displacement.
While the presence of the surrounding structure would suggest
to impose symmetry conditions along the longitudinal edges,
free edge conditions are here introduced. This choice, although
less realistic, allows the comparison with FE results from other
DAEDALOS project partners. However, quasi-static analysis
showed that the load and stress levels are similar for symmetric
and free sides, although the post-buckling pattern is different.

The loading function is:

∆U = −
1.8 mm

2

(
1 − cos

(
πt

0.025

))
(22)

for t < 0.05 s and 0 thereafter (the simulation is run until 0.1 s).
The function reaches its peak value of −1.8 mm, corresponding
to an edge shortening of 3000 · 10−6 micro-strain at 0.025 s.
This smooth pulse approximates the first peak of the above-
mentioned acceleration time history but is larger in amplitude.

4.5. GMM parameter fitting for post-buckling simulations

In the post-buckling field, the panel undergoes rapid move-
ments, requiring a different set of GMM parameters than those
described in section 3. Figure 6 shows the power spectrum of
the stress evolution at a point in the panel (see also Figure 14).

The lowest free-vibration frequency of the panel is 242 Hz.
With the chosen discretization, the highest free-vibration fre-
quency is ≈ 5 · 106 Hz. For finer discretizations, the maxi-
mum frequency might be even higher, because the theory of
continuum mechanics permits vibrations of infinite frequency.
With an increment size of 10−5 s, the solver tracks vibrations up
to ≈10 kHz. Vibrations beyond 5000 Hz have relatively short
wavelengths, and their influence on the post-buckling behav-
ior and on the amplitudes of the stress fluctuations can be ne-
glected. To keep the computational effort at a practical level,
it makes sense not to track high-frequency vibrations in great
detail, but rather to dampen them with the GMM.

Because the maximum frequency for the DMA measure-
ments is 50 Hz, the 3-parameter GMM described in section 3 is
not sufficient. In absence of high-frequency experimental data,

Figure 6: Logarithmic plot of the spectral power of the compressive stress in
fiber direction, sampled with a very small time increment of 10−6 s, between
0.005 s and 0.045 s at a selected point in the skin. Red curve: Imperfect vari-
ant, GMM. Dark blue curve: Perfect variant, GMM. Light blue curve: Perfect
variant, without GMM. The GMM parameters were obtained as is described in
this section.

the loss modulus was kept constant above 50 Hz up to the fre-
quency which corresponds to the smallest expected time incre-
ment. An additional data point was added at 108 Hz. It is useful
however, to select a smaller minimum relaxation time, as this
will result in a improved fitting. Spacing the relaxation times
evenly, starting from τ0, j = 10−9 s and doubling this value each
time (τi+1, j = 2τi, j), 28 GMM parameters were needed.

Apart from a slightly higher computational effort, this large
number of parameters did not pose any problems neither for the
fitting procedure nor for the dynamic nonlinear solver. Figure 7
shows the results for the fiber direction.

Figure 7: Hexcel R© IM7/8552 relative storage and loss moduli in fiber direc-
tion ( j = 1) and approximated GMM with 28 elements. Rhombic Dots: Mea-
sured. Rectangular dot: Additional. Solid lines: GMM. Dotted lines: Individ-
ual Maxwell elements.
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4.6. Dynamic nonlinear solution procedure

The dynamic equilibrium equations contain, in addition to
the external forces and the internal elastic forces, the viscous
forces provided via the GMM, and the inertia forces. The
two latter force terms provide the necessary stabilization to
the tangent stiffness matrix. The nonlinear direct transient
solver makes use of the backward differentiation formula (BDF)
method, which is well suited to solve stiff ordinary differential
equations (Shampine and Gear, 1979) like the ones encountered
in shell structures. To achieve unconditional stability in the
nonlinear regime, the second-order BDF is selected. For com-
putational efficiency, the time increment size is adapted dur-
ing the analysis using the transformation method of Nordsieck
(1962). The increment size is controlled using Milne’s device
error estimator (Milne, 1970) in function of a user-defined dy-
namic tolerance, and the rate of increment of the increment size
is limited (Calvo et al., 1987).

The automatic time increment size control means that the
solver is suited to highly nonlinear problems. In the presence
of rapid changes, the solver reduces the time increment ac-
cordingly. Conversely, when there are only small changes, the
solver will increase the time increment. Thus, for problems
with many vibrations or changes, the average time increment
will be small and the computational effort will be large. On
the other hand, nearly-static problems will require fewer time
increments and will be quicker to solve.

The average time increment is controlled via the user-defined
dynamic tolerance. A large dynamic tolerance value will re-
sult in a relatively fast simulation involving fewer time incre-
ments, while a small dynamic tolerance will need more time
increments but will allow for higher accuracy.

This trade-off between computational effort and accuracy can
be controlled by observing the time-integration error E(t) at
time t which can be calculated from the difference

E(t) = W(t) − T (t) − U(t) − D(t) (23)

between the external work W, the total kinetic energy T , the
total elastic energy U, and the total material dissipation D.

Only for a perfect solver (using infinitesimal time incre-
ments) will E(t) be zero. To allow for a reliable interpretation
of the results, the dynamic tolerance should be chosen such that
E(t) � D(t), see Figure 8.

Due to the small values of loss factors typical of CFRP struc-
tures, the time increments can be relatively small. The aver-
age time increment is 1.45 · 10−5 s for the perfect panel and
9.5 · 10−5 s for the panel with imperfections. For the loading
conditions that were used, at least the time span between 0 s
and 0.05 s should be calculated in dynamic analyses, as the
peak stresses may occur after the full load is applied at 0.025 s.
When compared to the quasi-static analyses, the total computa-
tional effort is increased by a factor of 10 and 3.5, respectively.

4.7. Kinetic energy and dissipation

In quasi-static analysis, the drop of load at first buckling for
the perfect panel corresponds to ≈ 0.5 J loss in elastic energy.
This is well reflected by the predicted kinetic energy in dynamic

Figure 8: Material dissipation and approximate time-integration error with and
without imperfections.

analysis which peaks at ≈ 0.25 J. Figures 9 and 10 show that
the panel without imperfections develops a much more dynamic
behavior in the post-buckling range than the panel with imper-
fections. When imperfections are present, no significant drop
of load occurs, and the kinetic energy is much lower. There is
also a difference in the vibration frequencies as the panel with
geometric imperfections vibrates with a primary frequency of
≈ 700 Hz while those of the perfect panel is ≈ 2000 Hz. An
exponential decay of the kinetic energy, T2/T1 = e−a∆t, can be
observed between T1 = 0.05 s and T2 = 0.1 s, with a ≈ 25 and
a ≈ 45 for the panel with and without geometric imperfections,
respectively.

Figure 9: Evolution of the kinetic energy with and without geometric imperfec-
tions.

Figure 11 and Table 5 show how the material dissipation is
distributed within the panel. It is non-uniform and follows the
buckling pattern. The locally highest dissipation occurs in the
flanges of the central stringer. For the panel without imperfec-
tions, there is a two-fold increase in the overall dissipation of
the skin, while the overall dissipation of the stringers is similar.
The difference between the amount of energy dissipated by the
skin is due to the different deformed shapes observed for the

8



Figure 10: Logarithmic plot of the kinetic energy with and without geometric
imperfections.

perfect and the imperfect panel during the time frame consid-
ered.

Figure 11: Material dissipation integrated over the time span between 0 s and
0.05 s, calculated separately for each finite element. Only the central part of
400 mm length is shown. Top left: Panel with imperfections, skin. Top right:
Panel with imperfections, stringer. Bottom left: Perfect panel, skin. Bottom
right: Perfect panel, stringer.

4.8. Evolution of stress

Despite the kinetic energies being small when compared to
the elastic energies, they can cause large stress fluctuations.
Figure 12 shows the evolution of the compressive stress of the
whole panel for each time increment. The difference between
the models with and without geometric imperfections is about
15%. No previous studies were found by the authors with re-
gard to the comparison between the stress levels with and with-
out imperfections. In general, the discrepancy between these
two results is significant and illustrates that, in the context of a

Skin Flanges Web Total
With imperfections 0.406 0.445 0.401 1.252
Without 0.944 0.523 0.476 1.926

Table 5: Per-member total material dissipation in [J].

design phase, the final weight of the panel can be affected by
the fact of accounting for initial imperfections. When exper-
imental measures of the panel imperfections are unavailable,
one possibility would be to assume the results of the perfect
and imperfect configurations as the upper and lower bounds,
respectively.

Figure 12: Evolution of highest (in absolute terms) compressive stress in fiber
direction.

The differences are larger when looking at a single point.
Figure 13 shows the stress near the center of the skin field. The
sizes of the skin buckles are not identical, which explains the
large difference in stress at this location. There is much fluc-
tuation in the moderately high compressive stress of the per-
fect variant. The difference in the peak compression stress of
the perfect and imperfect panels is noteworthy and highlights
the importance of a proper imperfection modeling during the
analysis phase. Indeed, the onset of an intralaminar damage
mechanisms as well as the propagation of an already existent
pre-damage are affected by the predicted stress level.

A more extreme situation is found in Figure 14, where the
perfect panel exhibits three times higher compressive stresses
than the panel with imperfections.

In general, the stress levels predicted for the panel with im-
perfections closely match those for a quasi-static analysis with
stabilization and the same loading, as Figure 15 shows.

5. Conclusions

The present work has regarded the development of a method-
ology to account for damping effects in the nonlinear analysis
of composite structures. The material characterization is based
on DMA measurements, while a linear Generalized Maxwell
Model (GMM) suited for transverse-isotropic CFRP, has been
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Figure 13: Evolution of the stress in fiber direction near the center of the skin
field.

Figure 14: Evolution of the stress in fiber direction close to the stringer flange.

formulated and implemented within the B2000++ finite ele-
ment package. Experimental DMA measurements of the stor-
age and loss moduli were conducted, and the GMM parameters
were fitted against these measurements, using a nonlinear opti-
mization algorithm.

As compared to common analysis tools where damping is
usually introduced at global level, the present implementation
offers the advantage of allowing the description of local, non-
linear viscous effects that can influence the response of aero-
nautical panels operating in the post-buckling regime.

Within the proposed framework, another advantage is given
by the possibility of characterizing the material viscoelastic be-
havior by means of simple material coupons. To illustrate a
potential application of the method developed, an example was
discussed regarding a curved composite panel stiffened by three
stringers. Dynamic loading conditions consisting in a smooth
compressive pulse load were assumed, and the simulations were
performed considering two configurations, with and without
imperfections, respectively.

The results allowed to illustrate the different steps of the pro-
cedure, providing a clear insight into the potentialities offered
by the method. In particular, the effects of damping can be an-

Figure 15: Comparison between transient and quasi-static non-linear analyses.
Panel with imperfections and values at the same location as shown in Figure 13.

alyzed at a global level, in terms of force-displacement curves,
and at local level. With this regard, local quantities such as the
stress distribution as well as the contour of the dissipated energy
in the different portion of structure could be analyzed. From the
comparison between perfect and imperfect structure, the perfect
panel represents, in this case, the worst-case scenario in terms
of stress levels and the computational effort. On the other hand,
the inertia effects in the panel with geometric imperfections are
small, which makes it suitable to purely quasi-static analysis.
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