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1. Introduction

Discrete (i.e. integer-valued) Counter Machines have been well-studied and still receive a lot of attention. We can mention
Minsky Machines [2], different kinds of counter systems (e.g., [3,4], which are Minsky Machines using affine functions
instead of increment/decrements and zero-tests, or [5,6]), Petri nets (or equivalently, VASS) and their many extensions.

There are also extensions of discrete counter systems to real-valued systems, called hybrid systems, such as linear hybrid
automata, real-counter systems [7], or dense counter systems [8]. Another subclass of hybrid systems is the well-known
decidable model of Timed Automata [9], which has been linked to special classes of counter systems in [5] and [6]. Recently,
some connections between Timed Automata and timed Petri nets have been made [10,11]. An extension of counter systems
to timed counter systems has been defined and studied in [12].

Reachability is already undecidable in linear hybrid automata [13], as well as in Timed Automata extended with only
one stopwatch. Other subclasses of hybrid systems, like hybrid Petri nets (which includes stochastic, continuous, differential,
and timed Petri nets) are dense, i.e. real-valued, extensions of Petri nets, but they have not the same semantics and their
comparison is not always easy or feasible (see [14] for a recent survey).

From our point of view, the natural extension of (discrete) counter systems to dense counter systems is quite recent; to
the best of our knowledge, the first paper which introduces Dense Counter Machines (DCM) as a natural generalization of
Counter Machines (CM) is [8]. Their Dense Counter Machine allows incrementing/decrementing each counter by a real value
δ chosen non-deterministically between 0 and 1. The motivation of this extension is to model hybrid systems where a non-
deterministic choice can be made (see for example the argumentation about the dense producer/consumer in [8], which
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neither Timed Automata nor hybrid automata can model in an easy way). However, what can we earn from extending CM
(which have the total expression power of computability) into DCM? Non-trivial problems will remain, of course, undecid-
able. The direction followed by [8] is to find subclasses of DCM for which the binary reachability is still computable, such
as reversal-bounded DCM.

Our contributions. We first give a general definition of Counter Systems containing all the variations of the nature of coun-
ters, such as discrete, dense-choice, purely dense-choice, etc. We then revisit the definition of “Dense Counter Machines” [8]
into Dense-choice Counter Machines (shortly, also, DCM) so that it is now simpler, more precise and formal, and also more
clearly understandable as a natural extension of Minsky Machines. Shortly, a DCM is a finite-state machine augmented with
dense-choice counters, which can assume only non-negative real values. At each step, every dense-choice counter can be
incremented/decremented by 0, 1, or by a non-deterministically-chosen δ, 0 < δ < 1 (which may be different at each step).
We assume w.l.o.g. that for a given step, the same δ is used for all the counters. This δ increment/decrement is the essential
difference between dense-choice and discrete counters. A DCM can also test a counter xi against 0 (either xi = 0 or xi > 0).

Since dense-choice counters are (trivially) more general than discrete counters, we also study the model of purely-
DCM, i.e. DCM in which counters lose the ability to increment/decrement by 1. We show that the restriction to bounded
purely-DCM (i.e., there exists a constant bound b such that each counter is bounded by b) still produces an undecidable
control-state reachability problem (even with four 1-bounded purely dense-choice counters).

We then consider an effective (i.e. whose binary reachability is computable) class of DCM: reversal-bounded DCM [8].
In order to model hybrid systems more easily, we wish to introduce the ability for a counter to be tested against an integer
k (instead of 0): this is an easy, common extension for Minsky Machines and for Petri nets, but it produces new technical
problems for reversal-bounded DCM. One of the reasons is that the usual simulation of a k-test (i.e., several decrements
and 0-tests, followed by increments restoring the original counter value), does not preserve reversal-boundedness. We ac-
tually show that reversal-bounded DCM with k-tests are equivalent to reversal-bounded DCM. This allows us to obtain as a
corollary that the reachability relation of a DCM with one free counter and a finite number of reversal-bounded k-testable
counters is still effectively definable by a so-called mixed formula, which is a formula of a decidable logic equivalent to the
first-order additive mixed theory of reals and integers, FO(R,Z,+,<). This extends a previous result of [8].

We give a logical characterization in FO(R,Z,+,<) of the sets of configurations reachable by reversal-bounded DCM,
and we prove that any mixed formula is the reachability relation of a reversal-bounded DCM. This completes the initial
result stating that the reachability relation of a reversal-bounded DCM is definable by a mixed formula.

Finally, we relate DCM to other models of systems that are more common in verification. In particular, we show that
DCM are more expressive than one of the most powerful models of counter automata, and also than the standard timed
automata model.

Outline. This paper is divided into four main sections. Section 2 introduces a new formal definition of DCM, and presents
different classes of DCM along with some of their properties. In Section 3, known and new decidability results for reach-
ability problems are presented for several classes of DCM. In Section 4, the main theorem gives a full characterization of
reversal-bounded DCM by mixed formulae. Finally, Section 5 compares DCM to other common models of systems.

2. Dense-choice Counter Machines

Notations. We use R to denote the set of real numbers, R+ the set of non-negative real numbers, Q+ the set of non-
negative rational numbers, Z the set of integers, and N the naturals. Capital letters (e.g. X) denote sets, and small letters
(e.g. x) denote elements of sets. Bold-faced symbols (e.g. x) denote vectors, and subscripted symbols (e.g. xi ) denote compo-
nents of vectors. Sometimes, for the sake of readability, we use x instead of xi (without ambiguity). Throughout this paper,
n ∈ N is the number of counters.

2.1. Extending Minsky Machines

In this section, we motivate the use of Dense-choice Counter Machines, by arguing about possible ways to extend Minsky
Machines [2]. Minsky Machines are indeed the most elementary definition of Counter Systems that we will consider here,
and probably the most known. A Minsky Machine has a finite set of control states, and operates transitions between them
by executing instructions on a finite set of integer-valued variables (the counters). Its possible instructions are (1) increment
a counter value by 1, (2) test if a counter value is 0, and (3) if a counter value is greater than 0 then decrement it by 1.

Let L be a given logic, such as the Presburger logic FO(N,+,=), the mixed linear arithmetic FO(R,Z,+,<), etc. A for-
mula F (x,x′) of L , with 2n free variables, is interpreted as the transformation of counter values x into x′: it defines the
counter values before and after the firing of a transition labelled by the binary relation F (x,x′). Throughout this paper, we
will use several different classes of counter machines, each one based on the generic Definition 2.1. They all use a finite
labelling alphabet Σ ⊆ L defining instructions on a vector x = (x1, x2, . . . , xn). The way the alphabet Σ is defined is what
makes the difference between various Counter System classes.

Definition 2.1. A Counter System (CS for short) is a tuple M = 〈S, T 〉 such that S is a finite set of control states, and
T ⊆ S × Σ × S is a finite set of transitions.



A Minsky Machine is a CS in which formulae of Σ are of the following form, where x is a component of x: (x′ = x + 1),
i.e., counter x is incremented by one, (x′ = x = 0), i.e., counter x is 0 and it is not modified, (x > 0 ∧ x′ = x − 1), i.e., x > 0
is decremented by one, or true, i.e., counter values remain unchanged. Although the reachability problem is undecidable for
Minsky Machines (with two or more counters), we would like to extend them for two reasons. First, if a Minsky Machine
is reversal-bounded, then its reachability relation is computable; thus, we might be able to use a more expressive model
than reversal-bounded Minsky Machines which still remains decidable. This first point will be detailed in Sections 2.2
and 2.3. Second, Minsky Machines are very basic and not very practical to be used for modelling or expressing high-level
properties. For that matter, we add the possibility to use real-valued counters, and to choose non-deterministically the
value of an increment/decrement for each transition. In the remainder of this section, we discuss and compare the two
latter extensions.

In order to get real-valued counters, we first define Dense Minsky Machines, which are CS whose Σ is composed of
formulae of the form (x′ = x + r), (x′ = x = 0), ((x − r > 0 ∨ x − r = 0) ∧ x′ = x − r), or true, with a given finite set of
values1 r ∈ Q+ . Like in Minsky Machines, the semantics is as expected and the initial counter values are always 0. This first
extension as Dense Minsky Machines is not really more powerful, since it can be simulated by a Minsky Machine:

Proposition 2.2. Minsky Machines and Dense Minsky Machines are bisimilar.

Proof. We show that each kind of machine may simulate the other. One way is trivial, by taking r = 1. The other way
is a little more elaborate, but remains easy. We just have to simulate every Dense Minsky Machine instruction with a
Minsky machine. There are four instructions, and two of them are obviously the same: true and x′ = x = 0. For the other
two instructions, x′ = x + r and (x − r > 0 ∨ x − r = 0) ∧ x′ = x − r, we just have to encode r by an integer. Each incre-
ment/decrement r ∈ Q+ can be written as p

q , with p,q ∈ N. Then, since we know all the possible r in advance, we can

compute for each r a q′ ∈ N such that r = pq′
qlcm

, where qlcm is the least common multiple of all q. Thus, each r can be

represented by a non-negative integer r′ = pq′ , and the new counter values will all be multiplied by the same factor qlcm .
Using this simple encoding, we can simulate an instruction x′ = x + r by a sequence of r′ instructions x′ = x + 1. Likewise,
(x − r > 0 ∨ x − r > 0) ∧ x′ = x − r can be simulated by a sequence of r′ instructions x > 0 ∧ x′ = x − 1. �

Another way to extend Minsky Machines is to allow, on each transition, a non-deterministic choice of the incre-
ment/decrement. We call this extension a Dense-choice Minsky Machine, which is a CS whose Σ contains formulae f
of the form (x′ = x + 1), (x′ = x = 0), (x > 0 ∧ x′ = x − 1), (x′ = x + Δ), ((x − Δ > 0 ∨ x − Δ = 0) ∧ x′ = x − Δ), or
true, where Δ symbolizes a non-deterministically-chosen value δ ∈ R+ . The choice is made each time a transition is
fired, so that two consecutive transitions labelled by x′ = x + Δ may have different values for Δ: the choice is non-
deterministic, and we have no knowledge of the chosen value (although it could be checked against other counter values).
Given a transition label f, we write f(x,x′) to denote the application of formulas f in f to counters x, resulting in x′ .
Given f = ( f i)i∈[0, j] , with j ≥ 0, each f i is either a dense-choice increment/decrement (i.e., of the form (x′ = x + Δ) or
((x − Δ > 0 ∨ x − Δ = 0) ∧ x′ = x − Δ)) or not (i.e., discrete increment, decrement, zero-test or true); then, we write
fΔ = { f i ∈ f | f i is a dense-choice increment or decrement}. The semantics of a Dense-choice Minsky Machine M is given
by a transition system TS(M) = (C,→), where C = S × Rn+ is the set of configurations and →⊆ C × Σ × C is the set of

transitions defined by: 〈s,x〉 f→ 〈s′,x′〉 if and only if (s, f, s′) ∈ T and ∃δ ∈ R+ such that f(x,x′)[Δ ← δ] holds. A run of

a Dense-choice Minsky Machine is a sequence ρ = 〈s0,x0〉 f1→ 〈s1,x1〉 f2→ . . .
fh→ 〈sh,xh〉 of finite length h ≥ 0, sometimes

written (c0, f1, c1, f2 . . . fh, ch). The set of all runs of a Dense-choice Minsky Machine M is denoted Runs(M).
We show that the δ value can be chosen in the open interval ]0,1[ rather than in R+ . First, we need additional defi-

nitions. Let M = 〈S, T 〉 and M ′ = 〈S ′, T ′〉 be Dense-choice Minsky Machines. A run ρ ′ ∈ Runs(M ′) is said to simulate a run
ρ ∈ Runs(M), denoted ρ � ρ ′ , if and only if ρ = (c0, f1, c1, f2, c2, . . . , fh, ch) and ρ ′ = (c0, . . . , f1, c1, . . . , f2, c2, . . . , fh, ch); in
other words, ρ ′ has to go through the same configurations as ρ but may go through additional configurations in between.

Definition 2.3. Two Dense-choice Minsky Machines M and M ′ are equivalent, denoted M ≡ M ′ , if and only if both:

(1) ∀ρ ∈ Runs(M),∃ρ ′ ∈ Runs(M ′) such that ρ � ρ ′;
(2) ∀ρ ′ ∈ Runs(M ′),∃ρ ∈ Runs(M) such that ρ ′ � ρ .

Proposition 2.4. Dense-choice Minsky Machines with δ ∈ R+ are equivalent to Dense-choice Minsky Machines with δ ∈ ]0,1[.

Proof. We first show that for any Dense-choice Minsky Machine with δ ∈ R+ , we can build an equivalent Dense-choice
Minsky Machine with δ ∈ ]0,1[. Let M = 〈S, T 〉 be a Dense-choice Minsky Machine with δ ∈ R+ and an initial configura-

1 Note that here, we take these values in Q+ because the important properties are (1) density and (2) an effective representation of any rational number
(this is not the case for reals, in general).



Fig. 1. Example of a producer–consumer system.

tion 〈s0,x0〉. We build a Dense-choice Minsky Machine M = 〈S ′, T ′〉 with δ ∈ ]0,1[ by replacing each transition t by new
transitions going through a fresh state as follows:

S ′ = S ∪ ST , with ST = {st | t ∈ T }; notice that S ∩ ST = ∅.
T ′ = {(si, true, st), (st , fΔ, st), (st , f, s j) | t = (si, f, s j) ∈ T ∧ st ∈ ST }.

We show that runs of M and M ′ are equivalent by proving that Parts (1) and (2) of Definition 2.3 hold.
Part (1) is shown by induction on the length of runs, measured as the number of configurations. When |ρ| = 1 the

run is necessarily the initial configuration 〈s0,x0〉, which is also a run ρ ′ of M ′ such that ρ � ρ ′ . Now, consider a run

ρ = (c0, f1, c1, f2 . . . fh, ch) ∈ Runs(M) simulated by a run ρ ′ ∈ Runs(M ′), with h ≥ 1 and ∀i ≥ 0, ci = 〈si,xi〉. Let γ = ch f→
ch+1 be an additional step in TS(M), corresponding to a transition t in M; then a given δ ∈ R+ is chosen when executing
this step. In M ′ , the three transitions corresponding to t can yield the following suffix of ρ ′ (omitting the counter values):
γ ′ = (sh, true, st, (fΔ, st)

2|δ|, f, sh+1), where δ′ = 1
2 for fΔ and δ′ = δ − |δ| for f. Thus ργ � ρ ′γ ′ .

Part (2) is also shown by induction on the length of runs, with the same initial configuration when |ρ ′| = 1. Now,
consider a run ρ ′ = (c0, f1, c1, f2 . . . fh, ch) ∈ Runs(M ′) simulated by a run ρ ∈ Runs(M), with h ≥ 1 and ∀i ≥ 0, ci = 〈si,xi〉.

Let γ ′ = ch f→ ch+1 be an additional step in TS(M ′). Then ρ ′γ ′ � ργ , with either γ = ε (i.e. |γ | = 0) if sh /∈ ST ∨ sh, sh+1 ∈
ST , or γ = γ ′ if sh ∈ ST ∧ sh+1 /∈ ST , where increment δ ∈R+ can be the same as the δ ∈ ]0,1[.

In order to complete the proof, just notice that any Dense-choice Minsky Machine, with δ ∈ ]0,1[, is also a Dense-choice
Minsky Machine with δ ∈ R+ . �

Therefore, there is no loss in generality in assuming that each increment is in the interval ]0,1[ rather than in R+ , at
least as long as finite runs are considered. Instead, a bounded increment can give a finer degree of control on counters.
In fact, in many physical systems, physical variables are actually bounded (e.g., a water level in a reservoir, which is a
non-negative real value that cannot exceed the height of the reservoir). It seems difficult to model or check this kind of
behaviour with a CS where increments are unbounded reals.

Finally, we notice that allowing increments in the interval ]0,q[, with a fixed q ∈ N, does not give any gain in expres-
siveness with respect to the case of q = 1. For instance, to increment a counter x by any value δ with 0 < δ < q, it is enough
to apply, in a Dense-choice Minsky Machine with non-deterministic increments in ]0,1[, a sequence of exactly q transitions
(this is possible, since q is fixed), each of the form x′ = x + δ, for 0 < δ < 1.

In the next section, we generalize and formalize the definition of Dense-choice Minsky Machine that we just motivated.
Before that, we illustrate the use of real-valued counters on a small example.

Example (Producer–consumer system). As a simple example of application of a machine with real-valued counters, consider
the following version of a traditional producer–consumer system, described in [8]. A system may be in one of three states:
produce, consume or idle. When in state produce, a resource is created, which may be stored and later used while in state
consume. The resource is a real number, representing an available amount of a physical quantity, such as fuel or water.
Production may be stored, and used up much later (or not used at all). This system may be easily modelled by a finite-state
machine with one dense-choice counter, as shown on Fig. 1, where the resource is added when produced or subtracted
when consumed.

By using a real-valued counter, there is an underlying assumption that a continuous variable, such as this resource,
changes in discrete steps only; however, this is acceptable in many cases where a variable actually changes continuously,
since the increments/decrements may be arbitrarily small. Since the counter may never decrease below zero, the specified
system implements the physical constraint that consumption must never exceed production. More complex constraints are
decidable, for instance if expressed by linear constraints on counter values. An example of a decidable query is whether
total production never exceeds twice the consumption.



2.2. Definitions and properties of Dense-choice Counter Machines

Let x be a vector of n variables, called dense-choice counters (or simply counters if not specified otherwise). Dense-choice
counters were called “dense counters” in [8]. A counter valuation is a function assigning a value in R+ to any component
xi of x. In this paper, we write xi (or x) to denote both variable(s) and the image of counter valuation(s), since there
is no ambiguity and the meaning is obvious. Let G = {(x = 0), (x > 0), true} be the set of guards. We say that a counter
valuation x satisfies a guard g ∈ Gn , when each xi satisfies guard gi (in the obvious meaning); for example, if n = 3 and
g = (true, x2 > 0, x3 = 0), then (6,2,0) satisfies g, while (6,2,1) does not. Let A = {1,Δ} be the set of actions; intuitively,
1 stands for an integer increment/decrement, and Δ stands for a non-deterministically-chosen real increment/decrement.

Definition 2.5. A Dense-choice Counter Machine (shortly, a DCM) with n > 0 counters is a tuple M = 〈S, T 〉 where:

• S is a finite set of control states, with s f in ∈ S called the final state of M ;
• T ⊆ S × Σ × S is a finite set of transitions, with Σ = (Gn ×Zn × An).

Intuitively, the integer component λ ∈ Zn of Σ is a factor determining whether the transition is incrementing or
decrementing a counter, and of which value. Meanwhile, the action a ∈ An determines whether the increment or decre-
ment is a real or integer value. For the sake of clarity, transitions are sometimes written in a more readable form; e.g.,
xi > 0 ∧ xi := xi + 3δ means that the guard on counter xi is gi = (x > 0), its factor is λi = 3, and its action is ai = Δ.

Notice that our transitions are equivalent to those of [8,7], in which the authors used the notion of modes. The modes
stay, unit increment, unit decrement, fractional increment, and fractional decrement are here respectively
represented by the cases (λi = 0), (λi > 0 ∧ ai = 1), (λi < 0 ∧ ai = 1), (λi > 0 ∧ ai = Δ), and (λi < 0 ∧ ai = Δ). Also notice
that transitions where λ ∈ {+1,−1}n are just a special case, and that they can simulate a linear combination of the form
x′

i = xi + ∑m
j=1 λ jδ j , for a given m and a vector of different δ j values in ]0,1[.

Interpreting a DCM is performed as usually in verification: we specify an initial valuation to each counter and an initial
control state, and then we let the machine behave non-deterministically. The behaviour of a DCM mainly consists in choos-
ing a transition whose guard g ∈ Gn is satisfied by the current counter valuations, and to update these valuations, while, of
course, also going to a new control state.

Definition 2.6. The semantics of a DCM M = 〈S, T 〉 is given by a transition system TS(M ) = 〈C,→〉 where:

• C = S ×Rn+ is the set of configurations;
• →⊆ C × Σ × C is the set of transitions, defined by:

〈s,x〉 g,λ,a−→ 〈s′,x′〉 if and only if (s, (g,λ,a), s′) ∈ T and ∃δ ∈ R such that:
x satisfies g and 0 < δ < 1 ∧ x′ = x + λu, with u = a[Δ ← δ].

For a DCM M = 〈S, T 〉 and its transition system TS(M ) = 〈C,→〉, the reachability relation �M is the reflexive and
transitive closure →∗; when the context is clear, we drop the subscript M . A run of M is a sequence 〈s0,x0〉 → 〈s1,x1〉 →
. . . → 〈sh,xh〉, of length h ≥ 0. Because of the inherent non-determinism of a DCM, we are interested only in runs ending in
final state s f in ∈ S . The notions of simulation and equivalence are the same as for Dense Minsky Machines defined page 19.
Roughly, a DCM M can be simulated by a DCM M ′ iff any run of M can be replicated in M ′ , possibly going through
additional intermediate configurations and using additional counters in M ′ .

Formally, a run of M is accepting if it is of the form 〈s,x〉 →∗ 〈s f in,x′〉, for some s ∈ S and x,x′ ∈ Rn+; M is said to
accept if there exists an accepting run of M . M is said to reject if there is no accepting run of M .

In the proofs and constructions that follow, it is often useful to consider the case of non-accepting runs that can-
not continue further. For instance, a run reaching a configuration 〈s′,x′〉 may not proceed further if there is no outgoing
transition from s′ , or if every outgoing transition from s′ has either a guard not satisfied by x′ or a decrement action
on a counter x′

j = 0. Formally, M is said to crash during a run 〈s,x〉 →∗ 〈s′,x′〉 if s′ �= s f in and ¬∃〈s′′, x′′〉 ∈ C such that
〈s′,x′〉 →M 〈s′′,x′′〉. Hence, a run making M crash may never be extended to be an accepting run.

The set of all pairs (〈s,x〉, 〈s′,x′〉) ∈ C × C such that 〈s,x〉 � 〈s′,x′〉 is the binary reachability relation of M , sometimes
called its binary reachability or reachability relation. The binary reachability problem consists in computing the binary reacha-
bility relation of a given DCM, i.e., in deciding whether 〈s,x〉 �M 〈s′,x′〉, given any 〈s,x〉, 〈s′,x′〉 ∈ C . An easier version is
the control-state reachability problem (shortly, state reachability problem), which consists in deciding whether a given control
state is reachable in some accepting run of a given DCM.

The example on Fig. 1 (page 20) is a DCM, since the guard x − δ ≥ 0 can be removed (the machine crashes anyway if the
guard is not satisfied).

Although a DCM has only a restricted set of possible operations on counters, it can perform various higher-level opera-
tions, such as reset, copy, addition, subtraction, comparison, etc., that can be encoded as macros to be used as a shorthand.
Some useful encodings are presented here.



Fig. 2. Encodings of reset, copy, add, and minus operations.

Fig. 3. Elimination of k-tests.

We denote by the DCM on Figs. 2a, 2b, 2c, and 2d (respec-
tively).

Let G ′
k = {(x = j), (x < j), (x > j), true | j ∈ {0, . . . ,k}}, for a given k ∈ N. An (extended) DCM whose set of guards is

included in G ′
k , instead of G , is called a k-DCM. The counters of a k-DCM are said to be k-testable. The semantics of such

extended guards is the obvious one, i.e., comparing a counter against an integer constant. Notice that a DCM is a 0-DCM, and
that dense-choice counters are 0-testable if not specified otherwise. Moreover, every k-DCM is, by definition, a (k + 1)-DCM,
for all k ∈ N. In fact, we prove that every k-DCM can be simulated by a DCM.

Proposition 2.7. DCM are equivalent to k-DCM, for any given k ∈N.

Proof. There are three different kinds of additional tests in k-DCM: x < j, x > j, and x = j, for any given j ∈ N. We show
how to encode each of them with only x = 0 and x > 0 tests.

A test x < j, with j > 0, represented by a transition , can be simulated by the encoding depicted on Fig. 3.
Note that to avoid modifying the value of x, x is copied into another counter y by using the encoding of Fig. 2b, then

y is decremented of j − 1 units, testing at each step whether y − δ = 0 (i.e., whether 0 < y < 1) or y = 0 (in case y was
an integer). Since, in any run, y can never go below 0 (otherwise, the machine would crash), then if x < j the machine
would decrement y exactly of the integer part of x, and then decrement y once again exactly of the fractional part of x. The
encoding of test x > j (resp. x = j) is simpler, since the test can be simulated by a sequence of exactly j unit decrements of
copy y followed by a test y > 0 (resp. y = 0).

Finally, to complete the proof, notice that any k-DCM contains a DCM. �
Definition 2.8. Let M be a DCM. A counter xi of M is purely dense-choice if and only if ai = Δ in every transition (i.e., it
is never incremented/decremented by 1). Conversely, a counter xi is (purely) discrete if and only if ai = 1 in every transition
(i.e., it is a classical discrete counter). If M contains only purely dense-choice counters, it is called a purely-DCM. If M
contains only discrete counters, it is called a (discrete) Counter Machine (CM), as defined in [15].

2.3. Reversal-bounded DCM

To extend the definition of reversal-boundedness from [15] to DCM, let M = 〈S, T 〉 be a DCM, s, s′ ∈ S , and r ∈ N. For
every i, 1 ≤ i ≤ n, a counter xi is r-reversal-bounded on a run from s to s′ , if, along the transitions of the run, the factors



λi switch between positive and negative values at most r times. Counter xi is reversal-bounded (shortly, r.b.) if there is an
r such that xi is r-reversal-bounded on every accepting run of M . M is a reversal-bounded Dense-choice Counter Machine,
denoted by r.b. DCM, if every counter in M is reversal-bounded.

A counter which is not necessarily reversal-bounded is called a free counter.
In this model, one can effectively check whether a counter is r-reversal-bounded, by making the control state check

when transitions are incrementing (λi > 0) or decrementing (λi < 0) the counter xi . Thus, one can use additional control
states in order to remember each reversal and crash if the number of reversals exceeds constant bound r.

From [8], we know that the binary reachability of a reversal-bounded DCM with one free counter can be defined in
a decidable logic: the logic of mixed formulae, which is equivalent to the well-known FO(R,Z,+,<). Since the syntactical
details of this logic are not relevant for now, its presentation is postponed to Section 4.1. The above decidability result in
[8] can be restated as follows:

Proposition 2.9. (See [8].) The binary reachability of a reversal-bounded DCM with one free 0-testable counter and a finite number of
r.b. 0-testable counters is definable by a mixed formula.

However, we have extended the guards of DCM to be able to test a counter against any given integer constant: we proved
in Proposition 2.7 that this is not more powerful in the general case, but this is far from obvious when we consider r.b.
DCM. Indeed, the encoding in the proof of Proposition 2.7 does not preserve reversal-boundedness (a k-test, which may be
taken an unbounded number of times during a run, is replaced by reversals). Nevertheless, we now prove Theorem 2.12,
which states that this extension is actually not more powerful even in the case of r.b. DCM, provided we can use many
more counters. First, we need a technical lemma.

Lemma 2.10. Let M = 〈S, T 〉 be a one-reversal-bounded (1-r.b.) k-DCM; let x be a k-testable 1-r.b. counter of M , and j be an integer
0 < j ≤ k. Then there is a k-DCM M ′ with the same counters as M and 12 additional 0-testable r.b. counters, such that M ′ simulates
M and there is no test of x against j in M ′ .

Proof. Let M = 〈S, T 〉 be a one-reversal-bounded k-DCM, x be a (k-testable 1-r.b.) counter of M , and j be an integer such
that 0 < j ≤ k. We encode tests of x against j in the state control of an associated k-testable machine M ′ = 〈S ′, T ′〉.

Since M is one-reversal-bounded, every counter of M is one-reversal-bounded; then there are at most two phases in
each run of M : each counter starts at 0, then it may go through an increasing phase, possibly followed by a decreasing one
(actually, phases are “non-decreasing” then “non-increasing”).

We may assume that state control can memorize the current phase of counter x. Then a configuration of machine M ′
will not only contain the configuration (s,x) of M but also ↑x or ↓x for indicating that counter x is in its increasing phase
or in its decreasing phase. One may find this explicit construction in [16].

First, notice that every guard crossed during a run must have been evaluated to true (if false, the corresponding transition
is not taken). Hence, certain sequences of guards are simply not possible in a run. For instance, in the increasing phase, after
crossing a guard of the form (x = j) it is impossible to cross a guard (x < j), while after crossing (x > j) it is impossible
to cross (x < j) or (x = j). Therefore, the sequence of guards testing x against j that are crossed during a run may be
represented as a string of the form (x < j)∗(x = j)∗(x > j)∗ in the increasing phase, followed by (x > j)∗(x = j)∗(x < j)∗
in the decreasing phase. Second, notice that in a sequence of guards of the form (x = j)+ , only the leftmost guard must
be tested, since the following tests whether x = j may be left to the finite state control (by just storing whether x has
changed). Third, using transitivity, only a few actual tests should be performed. In the increasing phase, in a sequence of
guards (x < j) only the rightmost guard needs to be tested, while in a sequence of guards (x > j) only the leftmost guard
needs to be tested. Symmetrically, in the decreasing phase it is enough to test the leftmost (x > j) and the rightmost (x < j).

For example, if the sequence of guards crossed during the increasing phase of a computation is:

(x < j)(x < j)(x < j)(x = j)(x = j)(x = j)(x = j)(x > j)(x > j)(x > j)

then the sequence can be replaced by

(true)(true)(x < j)(x = j)(true)(true)(true)(x > j)(true)(true).

In the decreasing phase, the sequence:

(x > j)(x > j)(x > j)(x = j)(x = j)(x = j)(x = j)(x < j)(x < j)(x < j)

can be replaced by

(true)(true)(x > j)(x = j)(true)(true)(true)(x < j)(true)(true).

Therefore, only at most three tests of x against j are needed in the increasing phase, followed by at most three tests in
the decreasing phase, for a total of at most 6 tests.



The decision whether a test of x against j may be skipped (i.e., replaced by true), or actually executed, can be easily
encoded in the finite-state control of an r.b. machine M ′′ simulating M . Thus, M ′′ may be built to simulate M so that, in
every run, M ′′ makes at most 6 tests of x against j.

We may now define a new r.b. machine M ′ , which replaces each test of x against j by tests on two new r.b. 0-testable
counters, as in the proof of Proposition 2.7. The resulting machine M ′ simulates M ′′ , hence also simulates M .

We show that each pair of new counters in M ′ only makes at most one reversal. The case of test x < j may be simulated
in M ′ by first copying x in two new, unused counters y and z, then by testing y against j (by repeatedly decreasing and
testing against 0) as shown in Fig. 3; finally, the copy z can be used instead of x during the remainder of the run. The
procedure makes one reversal for y and may cause a reversal for x (but only if x was still in the nondecreasing phase);
both counters x and y are never used again in the same run, therefore they are one-reversal-bounded. Counter z is only
increased, hence does not make any reversal during the procedure; when used instead of x in the remainder of the run, it
will make at most one reversal. The other cases of tests, i.e., x = j and x > j, are analogous (actually, simpler).

Since for every a run of M ′′ there are at most 6 tests against j, M ′ simulates M ′′ (and M ) with a total of 12 additional
1-r.b. counters. �
Lemma 2.11. For every k-DCM M with a finite number n of k-testable r-reversal-bounded counters, there exists a 0-DCM M ′ that
simulates M , with 12 ∗ k ∗ n ∗ r additional r.b. 0-testable counters.

Proof. As in the case of discrete counters, one can always assume that reversal-bounded machines are one-reversal-bounded
machines; indeed, each sequence of “increments, then decrements” can be simulated by a 1-r.b. counter, and thus a counter
doing r reversals can be simulated by r 1-r.b. counters.

Then, the construction of M ′ is done as follows: for each counter xi with i ∈ [1,n] and for each constant j with j ∈ [1,k],
we remove each test of xi against j by applying Lemma 2.10. This may produce at most 12∗k ∗n ∗ r additional r.b. 0-testable
counters. �

Now, we may deduce Theorem 2.12.

Theorem 2.12. Reversal-bounded k-DCM are equivalent to reversal-bounded DCM, for any k ≥ 0.

This theorem immediately generalizes the main result of [8], recalled here as Proposition 2.9.

3. Decidability and undecidability results

The following table summarizes the results about DCM and their variations. The results in bold slanted characters are
proved in this paper, and the others were proved (or inferable) from previous papers, namely [8] and [2]. There are four
possible entries in this chart: “?” if we do not know whether the state reachability problem is decidable, “U” if it is unde-
cidable, “D” if it is decidable, and “C” if the binary reachability relation is computable and definable in a decidable logic. The
“+ r.b.” (resp. “+ k-test. r.b.”) means that the machine is extended with a finite number of reversal-bounded dense-choice
counters (resp. reversal-bounded k-testable dense-choice counters).

Counters DCM Bounded
k-DCM

DCM +
r.b.

DCM +
k-test. r.b.

Purely
dense-choice

1 C C C C
2 D ? ? ?
3 ? ? ? ?
4 U U U U

Dense-choice 1 C C C C
2 U U U U

In the remainder of this section, we prove two of these new results; the other new results are proved in the previous
section or directly inferable. Notice that the seven open problems could be solved by only two or three proofs that subsume
other results. However, the intuitions about 1 or 4 counters do not fit the case of 2 or 3 counters, and the proof techniques
get even more complex when we use k-testable counters.

3.1. Undecidability for bounded purely dense-choice counters

Given a DCM M , a counter x of M is b-bounded, b ≥ 0, if x ≤ b along every run of M . For instance, a 1-bounded
counter can assume any non-negative value up to 1. A counter is bounded if it is b-bounded for some b ≥ 0.

Given b ≥ 0, if a machine M has a b-bounded b-testable dense-choice counter x, then one can assume that M must
crash not only when trying to decrement x below 0, but also when trying to set x > b. Indeed, if x was not bounded,



M could be modified to test at each step whether x ≤ b, crashing if this is not the case (which would force x to be
bounded).

Bounded integer counters have a finite set of possible values, which can be encoded into the control states. However,
bounded dense-choice counters have an infinite set of possible values: a DCM with several bounded counters is a powerful
model, as shown next. In general, the state reachability problem is a simpler problem than computing the binary reacha-
bility. Nevertheless, the following proposition shows that even for state reachability, having only four 1-bounded counters
implies undecidability.

Proposition 3.1. The state reachability problem is undecidable for bounded purely-DCM.

Proof. We show that the state reachability problem for a DCM with four purely dense-choice 1-bounded 1-testable counters
is undecidable, which entails this proposition. The result follows the lines of the proof in [8] that 4 purely dense-choice
counters are enough to simulate a Minsky machine.

The original proof was based on using two counters z1, z2, initially set to 0, to store a fixed value δ, chosen at the
beginning of the computation. From the initial state q0, the machine M goes into state q1 by making a fractional increment
to z1, i.e., z1 := z1 + δ for some 0 < δ < 1; thus, in state q1, z1 = δ0 (the first δ value that has been chosen) and z2 = 0.
Then, M makes the following operations z2 := z2 + δ and z1 := z1 − δ (both with the same δ value) and M goes from q1
to q2; in state q2, z1 = δ0 − δ1 and z2 = δ1. In order to force δ1 to be equal to δ0, M may go from q2 to q3 only through
a transition guarded by z1 = 0. Symmetrically, M may go from q3 to q4 by doing z1 := z1 + δ and z2 := z2 − δ (still, both
with the same δ); thus, in q4, z1 = δ2 and z2 = δ0 − δ2, and M cycles back from q4 to q1 by checking z2 = 0, so that all δ

values chosen during an execution are exactly δ0 (provided the machine is either in q1 or q3, and is able to progress). All
this process allows to save and use the same value δ0.

The two remaining counters are then incremented or decremented only of this fixed value δ0: any integer value k is
encoded as kδ0. Hence, the two counters behave like two discrete counters without any restriction. If the 4 counters are
1-bounded, then they can encode only up to an integer m = � 1

δ0
�. However, m is unbounded, since δ0, selected non-deter-

ministically once at the beginning of a computation, can be chosen to be arbitrarily small: if δ0 is not small enough then
the DCM will crash trying to increase one of its counters beyond 1 (for example, by resetting to the initial configuration
so that δ0 can be chosen again until it is small enough). Nevertheless, in every halting computation of a Minsky machine,
the values encoded in its two counters are bounded (with a bound depending on the computation). Therefore, the final
state of the DCM is reachable if, and only if, the simulated Minsky machine has one halting computation. Hence, the state
reachability problem is undecidable. �
3.2. Decidability with one k-testable counter

Proposition 3.1 does not rule out decidability if using less than four counters, since its proof is based on a four-counter
purely-DCM. In particular, we show in Proposition 3.4 that for a DCM with only one counter, the binary reachability can
effectively be computed even if the counter is k-testable. This extension to k-testability is indeed far from obvious.

In fact, the construction of the proof of Proposition 2.7 can be applied for tests of the form x > j or x = j, for any j ≤ k;
this construction can be simulated by a sequence of j unit decrements followed by a test x > 0 or x = 0, and then followed
by j unit increments to restore the original value. However, it cannot be applied for tests of the form x < j, since this would
require a (non-existent) additional counter to be able to restore the original counter value. The proof of Proposition 3.4 also
requires the counter to be bounded, in order to avoid an unbounded number of crossings of threshold k.

Before that, a few more technical definitions and lemma are needed.

Elimination of k-tests without introducing new counters. The crux of Definition 3.2 and Lemma 3.3 is a procedure reducing
to zero the maximal constant integer against which the dense-choice counter will be tested. In other words, k-tests are
eliminated. The idea of this elimination procedure is to build a 0-DCM Mk = 〈Sk, Tk〉 to mimic the behaviour of the original
k-DCM M = 〈S, T 〉, by reflecting the possible variations of the counter value into its finite-state control. Mk is called a
finite-test one-counter DCM, as formalized in Definition 3.2. In essence, a finite-test DCM encodes the counter values in its
control states using a rough partitioning (similar to the regions of a Timed Automaton [9]).

Note that such finite-test DCM can be built for a k-DCM with any finite number of counters, as in [1]. However, since we
use only one counter now, a real value x is used instead of a vector x of counter values.

Intuitively, Mk is built as follows. A state of Sk is a triple 〈〈s,d, f 〉〉, where s ∈ S , d is an integer in {0, . . . ,k} and f is a
symbol in {0,½}. Component d is a discrete counter from 0 up to k, intended to represent �x�. Component f is intended to
represent the fractional part of x: f = 0 is for the case �x� = x, f = ½ otherwise.

Then, the set of transitions Tk is such that all tests of counter x against a constant 0 < j ≤ k are eliminated and replaced
by “finite-state tests” on d and f . For instance, a test x > j is replaced by a test d > j ∨ (d = j ∧ f = ½). Only tests against
0 are replicated in Tk .

Define, for any real number y, fr(y) = 0 if �y� = y (i.e., y is an integer), and fr(y) = ½ otherwise.
We formally detail the construction of the DCM Mk . Since Mk has only one counter, it only contains guards that are

either (true) or testing the value of the single counter against 0, i.e., (x = 0) or (x > 0).



Definition 3.2. To any k-DCM M = 〈S, T 〉 with one counter, we associate a finite-test DCM Mk = 〈Sk, Tk〉 also with one
counter, where Sk = S × {0, . . . ,k} × {0,½} and Tk is defined as follows. For any transition (s, (g, λ,a), s′) ∈ T , we build
(〈〈s,d, f 〉〉, (gk, λ,a), 〈〈s′,d′, f ′〉〉) ∈ Tk satisfying the following rules:

• gk is the guard g if g only contains expressions of type (x = 0) or (x > 0); otherwise gk = (true).
• if the following condition holds (for some j):

– g = (true), or
– g = (x < j) and d < j, or
– g = (x = j) and d = j and f = 0, or
– g = (x > j) and d > j or (d = j and f = ½),
then (〈〈s,d, f 〉〉, (gk, λ,a), 〈〈s′,d′, f ′〉〉) ∈ Tk , where the values of d′ and f ′ are obtained by satisfying one of the following
five conditions:
1. stay: λ = 0 ∧ d′ = d ∧ f ′ = f ;
2. integer increment: λ = 1 ∧ a = 1 ∧ ((d < k ∧ d′ = d + 1 ∧ f ′ = f ) ∨ (d′ = d = k ∧ f ′ = ½));
3. integer decrement: λ = −1 ∧ a = 1 ∧ ((0 < d ≤ k ∧ d′ = d − 1 ∧ f ′ = f ) ∨ (d′ = d = k));
4. fractional increment: λ = 1 ∧ a = Δ ∧ (( f = 0 ∧ d′ = d ∧ f ′ = ½) ∨ ( f = ½ ∧ d′ = d + 1 ∧ f ′ = 0) ∨ ( f = f ′ = ½ ∧ (d′ =

d + 1 ∨ d′ = d)));
5. fractional decrement: λ = −1∧a = Δ∧ (( f = 0∧d > 0∧d′ = d −1∧ f ′ = ½)∨ (d > 0∧d′ = d −1∧ f = f ′ = ½)∨ ( f =

½ ∧ d′ = d ∧ f ′ = 0) ∨ (d′ = d ∧ f = f ′ = ½)).

Notice that when in cases (3), (4) and (5) of the above definition, more than one alternative may hold because of the
disjunctions between parentheses, which correspond to non-deterministic choices of a δ by Mk .

A special source of non-determinism also appears in case (3), when performing integer decrements: if the counter x
went above k, then d = k but one does not know whether x − 1 is above, equal to, or less than k; the right behaviour will
be captured by the disjunctions in this rule.

Moreover, in case (5), it is implicit that if f = 0 ∧ d = 0 then Mk crashes, since there is no available alternative in Tk for
a fractional decrement. A similar observation can be made in case (3) when d = 0, regardless of f since the decrement is
integer.

The above definition of Mk entails, for example, that if at runtime there is a test x = 0 while x = 0 ∧ (d > 0 ∨ f = ½),
then Mk crashes.

A configuration 〈〈〈s,d, f 〉〉, x〉 of a finite-test DCM Mk is consistent if, either (x ≤ k ∧ d = �x� ∧ f = fr(x)) or (x > k ∧ d =
k ∧ f = ½) holds. Hence, in a consistent configuration, a test of a counter against a constant j ≤ k gives the same result as
a test against the d and f components of the state.

In general, Mk may also reach non-consistent configurations. A run of Mk is consistent if it goes through consistent
configurations only.

Now, we need a technical lemma showing that, for any k-DCM, we can build an “equivalent” finite-test DCM, with a
notion of equivalence detailed in the lemma by two requirements.2 This result will be used as a basis for the construction
in the proof of Proposition 3.4.

Lemma 3.3. Let M = 〈S, T 〉 be a DCM with one k-testable counter, given k > 0. Then the finite-test DCM Mk = 〈Sk, Tk〉, with only
one 0-testable counter, is such that:

1. Every run of M is also a run of Mk, i.e.:
For every run of M of length h ≥ 0: 〈s1, x1〉 →h

M 〈sh, xh〉, there exists a run of length h for Mk: 〈〈〈s1,d1, f 1〉〉, x1〉 →h
Mk

〈〈〈sh,dh, f h〉〉, xh〉;
2. A consistent run of Mk is also a run of M , i.e.:

For every consistent run of Mk of length h ≥ 0: 〈〈〈s1,d1, f 1〉〉, x1〉 →h
Mk

〈〈〈sh,dh, f h〉〉, xh〉, there exists a run of length h for M

of the form: 〈s1, x1〉 →h
M 〈sh, xh〉.

Proof. Condition (1) of the lemma holds, since by construction, every transition in a run of M may be replicated in a run
of Mk . Hence, a run of M is also a run of Mk , by adding suitable components to the state.

Condition (2) also follows, since in a consistent configuration every test of a counter against j > 0 (with j ≤ k) is
equivalent to a finite-state test, as shown above. Hence, a consistent run in Mk may be replicated also in M . �

Notice that, in general, a run of a finite-test DCM Mk is not also a run of M , since in Mk there is no test against con-
stants (excepted 0), which are replaced by tests on state components d and f . Indeed, the fractional increments/decrements
of the counter may lead to a non-consistent configuration where a counter value x is not compatible with the value of state

2 See [1] for a version of this lemma generalized to n counters and preserving reversal-boundedness.



components d and f , e.g., x ≤ j, for some j > 0, and on the other hand d > j. Therefore, the tests on d and f may not give
the same results as a test on the actual value of x, and hence the run may be possible in Mk but not in M . This problem
is taken care of by consistency requirement 2 of Lemma 3.3.

Let us now state and prove Proposition 3.4. Again, we use the notion of mixed formula, which we develop in Section 4.1;
remember that it is a decidable logic, equivalent to FO(R,Z,+,<). Moreover, we know from Proposition 2.9 that the binary
reachability of a DCM is definable by a mixed formula.

Proposition 3.4. The binary reachability of a DCM with a single bounded k-testable counter is definable by a mixed formula, for every
k ≥ 0.

Proof. Let M = 〈S, T 〉 be a one-counter DCM, such that its only counter is b-bounded. Since there is only one counter,
a real value x is used instead of a vector x of counter values. We prove the case b = k, since if b < k then all tests against
j > b are just false, while if b > k then simply M will not use the tests against j > k.

Let M ′ = (S ′, T ′) be the finite-test DCM with one free 0-testable counter, as defined by Lemma 3.3, with 〈〈s,d, f 〉〉 ∈ S ′
for every s ∈ S,d ∈ {0, . . . ,k}, f ∈ {0,½}.

We claim that for every x0, x1 ∈ R+ and s0, s1 ∈ S , with sinit, sfinal ∈ S ′ ,
〈
s0, x0〉 �M

〈
s1, x1〉 if, and only if,

〈〈〈
sinit,

⌊
x0⌋, fr

(
x0)〉〉, x0〉 �M ′

〈〈〈
sfinal,

⌊
x1⌋, fr

(
x1)〉〉, x1〉 (1)

The main proposition follows then immediately, since relation (1) is decidable and can be described by a mixed formula.
“Only If”: This part is guaranteed by Condition (2) of Lemma 3.3.
“If” part: Suppose that Formula (1) holds. We need to show that 〈s0, x0〉 �M 〈s1, x1〉. Condition (3) of Lemma 3.3 only

applies to consistent runs, and runs of M ′ are not necessarily consistent. However, each fractional increment/decrement in
a run of M ′ is chosen non-deterministically. Hence the value of x can be adjusted for consistency with d and f . The proof
of this claim requires some preliminary definitions and propositions.

A consistent version of a configuration c = 〈〈〈s,d, f 〉〉, x〉 is any configuration c′ = 〈〈〈s,d, f 〉〉, x′〉, for some x′ ∈ R+ , which
is consistent.

We claim that for every consistent configuration c0 = 〈〈〈s,d, f 〉〉, x0〉 and for every configuration c1 = 〈〈〈s1,d1, f1〉〉, x1〉,

if c0
g′,λ,a−→M ′ c1,

then there exists a consistent version c′
1 of c1 such that c0

g′,λ,a−→M ′ c′
1,

defined by c′
1 = 〈〈〈s1,d1, f1〉〉, x′1〉, for some x′ ∈R+. (2)

If a = 1, then c1 is already consistent by definition of M ′ . Hence, only a fractional increment/decrement (i.e. if a = Δ and
λ �= 0) may lead to an inconsistent configuration.

A special case of configuration is a zero-conf, i.e. any configuration of M ′ of the form 〈〈〈s, (0,0)n〉〉,0〉. We can further
assume that, in a finite-test DCM M ′ , every zero-conf is always consistent, since M ′ can test that every component of x is
actually 0 (and crashes otherwise).

Assume first x0 = 0 (i.e., c0 is a zero-conf). Hence, d1 = d, f1 = ½ and x = δ for some δ such that 0 < δ < 1. Hence, c1 is
already consistent.

Assume now x0 > 0. Hence, d1 may differ from d at most by one.
To proceed, we need an additional observation. For all states 〈〈s,d, f 〉〉 and 〈〈s′,d′, f ′〉〉 of M ′ , for all (g, λ,a) ∈ Σ , for all

x ∈ R+ , ∀ε ∈ [−1,1], with 0 ≤ x + ε < k + 1, if

〈〈〈s,d, f 〉〉, x
〉 g′,λ,a−→M ′

〈〈〈
s′,d′, f ′〉〉, x + ε

〉

then for every x′ ∈ R+ , such that 0 ≤ x′ + ε < k + 1 the same move can be repeated from x′:
〈〈〈s,d, f 〉〉, x′〉 g′,λ,a−→M ′

〈〈〈
s′,d′, f ′〉〉, x′ + ε

〉
(3)

Property (3) is obvious since M ′ can only test x for zero, hence it cannot differentiate x from x′ before the move and it
may apply the same increment.

By property (3), it is possible to make the same move from c0 using a different increment (or decrement): x can be
increased (or decreased) by a value (larger or smaller than δ, but always in the interval ]0,1[) which is enough to make up
for the difference so that the configuration becomes consistent.

Let c0 →M ′ c1 →M ′ . . . →M ′ cl be a run of M ′ , with l ≥ 0. We now prove by induction on l that if c0 is consistent, then
there is another run of M ′ denoted by c0 →M ′ c′

1 →M ′ . . . →M ′ c′
l where each c′

i is a consistent version of ci , 1 ≤ i ≤ l.
The case l = 0 is trivial (with c0 = c′

0). Suppose l > 0. By induction hypothesis c0 →M ′ c′
1 →M ′ . . . →M ′ c′

l−1, each c′
i

being a consistent version of ci , 1 ≤ i ≤ l−1. By Property (2), we can find a consistent version c′
l of cl such that c′

l−1 →M ′ c′
l .

By Condition (2) of Lemma 3.3, every consistent run of M ′ is also a run of M ; hence the proof is completed. �



The proof is immediately extendable to the case where M has also discrete reversal-bounded counters, which are in no
way influenced by the above construction. If the reversal-bounded counters are dense-choice, however, decidability is still
open. The proof also holds for a DCM having the ability to test if a counter value is an integer: indeed, the finite-test DCM
encodes the integer and fractional parts of the counter value, hence testing whether the fractional part is 0 is equivalent to
testing whether the counter value is integer.

4. Logical characterization of DCM

4.1. Preliminary results about mixed formulae

We consider here the language of mixed formulae, defined in [17], and adapted from Presburger arithmetic. The language
has two sorts of variables: real variables, denoted by x, x′, x1, . . . and integer variables, denoted by y, y′, y1, . . .; the latter
are a subsort of the former. The constants are 0 and 1, the operations are +, −, �.� and the relations are equality =, ordering
< and congruences ≡d for every constant d ∈N. Definition 4.1 formalizes this idea:

Definition 4.1. A mixed formula is inductively defined as follows. A mixed linear expression E is defined by the following
grammar, where x is a real variable and y is an integer variable:

E ::= 0 | 1 | x | y | E + E | E − E | �E�
A mixed linear constraint C is defined by the following grammar, where d is a positive integer:

C ::= E = E | E < E | E ≡d E

A mixed formula F is defined by the following grammar, where x ∈ R and y ∈ Z:

F ::= C | ¬F | F ∧ F | ∃x.F | ∃y.F

The semantics of a mixed formula is like in the reals, �r� being the integer part of its real argument r, and r1 ≡d r2
holding iff r1 − r2 = vd for some integer v .

Typically, one can use shorthands, e.g. writing 3x for x + x + x, or introducing other common operators (like ≥), etc.
Mixed formulae are equivalent to the well-known first-order additive theory of integers and reals FO(R,Z,+,<), since

the floor operator �x� = y can be rewritten as ∃x′(0 < x′ ∧ x′ < 1 ∧ x − x′ = y), and x1 ≡d x2 can be rewritten for a fixed
d > 0 as ∃y(x1 − x2 = y + · · · + y︸ ︷︷ ︸

d

). However, the main advantage of the richer syntax of mixed formulae is that it allows for

quantifier elimination, which is not possible in FO(R,Z,+,<), as shown in Theorem 3.1 and Corollary 5.2 of [17].

4.2. Mixed formulae are definable by reversal-bounded DCM

It is well known that reversal-bounded discrete CM can define all Presburger formulae. Since Presburger logic admits
effective quantifier elimination, the binary reachability of r.b. discrete CM can effectively define all Presburger relations. We
prove that a similar result holds for r.b. DCM, using mixed formulae (and the effectiveness of quantifier elimination) instead
of Presburger formulae.

Let 0 be the vector (0, . . . ,0) of size n, and let F (z1, . . . , zn) be a quantifier-free mixed formula in the free variables
z1 ≥ 0, . . . , zn ≥ 0. F is definable by a DCM M with at least n counters x1, . . . , xn (and possibly more) if M , starting in a
given initial configuration 〈s,0〉, may reach all final configurations 〈s f in,x〉, and only them, such that F (x1/z1, . . . , xn/zn)

holds (where xi/zi denotes a substitution of variable zi with value xi ).

Proposition 4.2. Let F (x1, . . . , xn, y1, . . . , yp) be a quantifier-free mixed formula, with x1 ≥ 0, . . . , xn ≥ 0 and y1 ≥ 0, . . . , yp ≥ 0.
Then F is definable by an r.b. DCM.

The idea of this proof (detailed hereafter) involves several steps which can easily be understood. First, assume (w.l.o.g.)
that F is in disjunctive normal form; then, transform it into a union of intersections of smaller formulae of the form E ∼ 0,
with ∼ ∈ {>,=,<,≡d, �≡d}. Every formula of the form E ∼ 0 can be encoded using an r.b. DCM having n r.b. dense-choice
counters x, p r.b. discrete counters y, and possibly also more r.b. counters: this machine makes an accepting run, with
initial counter valuations equal to a non-deterministically-chosen assignment of the free variables of F , if and only if this
assignment makes F true.

Then, we just have to connect each r.b. DCM as follows. Each machine has a final control state, which can be connected,
by means of a transition, to the initial control state of another machine, thus forming another (larger) r.b. DCM. The in-
tersection of formulae of the above form E ∼ 0 can be obtained by a series of machines, where the final state of a first



machine is connected to the initial state of another machine: each component of the series verifies if the run is accepting,
given an assignment encoded in additional r.b. counters. The last component is encoded by a machine whose final state
leads to an accepting sink state (which is the final state of the overall r.b. DCM encoding F ). The union of these “intersec-
tion machines” can be obtained by building an r.b. DCM that guesses an assignment, copies it into suitable r.b. counters and
then non-deterministically enters the initial state of one of the intersection machines. The above sink state is reached if and
only if formula F is satisfied.

Proof. Assume (w.l.o.g.) that F is in disjunctive normal form:

F = F1 ∨ F2 ∨ . . . ∨ Fm

Hence, F is the disjunction of clauses Fi of the form:

Fi = Fi1 ∧ Fi2 ∧ · · · ∧ Fimi

where each Fi j , in the free variables x1, . . . , xn, y1, . . . , yp , can always be reduced, by pushing negation to the relational
symbol and by elementary algebraic transformations, to the form:

E ∼ 0

where ∼∈ {>,=,<,≡d, �≡d}. For instance, if Fi j is E1 < E2 then one may check instead if E1 − E2 < 0, etc.
Below we show that for every Fi j , there exists an r.b. DCM Mi j with r.b. dense-choice counters x1, . . . , xn and r.b. discrete

counters y1, . . . , yp (and possibly more r.b. counters xn+1, . . . and yp+1, . . .) that accepts when relation Fi j is verified on
the initial values of the counters x1, . . . , xn, y1, . . . , yp .

This immediately entails that, for each clause Fi , there exists an r.b. DCM Mi that accepts if Fi1 ∧ Fi2 ∧ Fimi
is verified

on the initial values of its r.b. counters x1, . . . , xn, y1, . . . , yp . In fact, since Fi is the conjunction of all Fi j , Mi is an r.b.
DCM that first makes mi copies of counters x1, . . . , xn, y1, . . . , yp and then simulates each Mi j started on one of the copies.
Mi accepts if, and only if, all Mi j accept.

Therefore, it is possible to build an r.b. DCM M ′ whose binary reachability describes relation F : M ′ starts with
all counters equal to zero; first, it makes non-deterministic increments of each counter, guessing a tuple of values for
x1, . . . , xn, y1, . . . , yp such that at least one Fi (hence, also F ) holds; second, it follows the computation of Mi described
above, in order to verify that all guesses are correct. In order to end in a configuration in which the n first counters hold
the values of the n variables making F true, we will copy these counters so that we do not modify them while verifying
that they have been guessed right.

To show that for every i, j there actually exists an r.b. DCM Mi j defining Fi j , we first prove by induction on the structure
of E that the value of E can be encoded by an r.b. dense-choice counter for |E| and a flag in the control state for the sign
of E . The following encodings are quite simple, but since there are several cases and their enumeration may seem tedious,
we prefer detailing them to convince the reader.

Recall that a counter value can always be copied a fixed number of times, using the encoding of Fig. 2b.
The base steps of the induction are the cases when E is 0, 1, xi , y j , which are obvious.
Assume now that E is (E1 + E2), with a copy of |E1| and |E2| stored in two suitable r.b. counters, with their sign flags

in the finite state control. We can assume that E1 and E2 have the same sign (e.g., if E1 ≥ 0 and E2 < 0 then E1 + E2 can
be rewritten as E1 − |E2|). We only need to consider the case when both are positive (if both are negative, then compute
|E1| + |E2| and store the result in an r.b. counter with the sign flag being negative). The addition E1 + E2 can then be done
using the encoding of Fig. 2c.

Assume now that E is (E1 − E2), again with a copy of |E1| and |E2| stored in two suitable r.b. counters x1 and x2
(respectively), with sign flags. We only need to consider the case where both E1 and E2 are positive (the other cases can be
easily eliminated or reduced to an application of +). We can also assume that E1 ≥ E2, since if E2 > E1 then the machine
will guess it and may compute E2 − E1 instead, changing the sign of the result. The computation of E1 − E2 can then be
done using the encoding of Fig. 2d. Notice that if the machine made the wrong guess that E1 ≥ E2, while instead E2 < E1,
then this procedure will crash (hence, the non-deterministic choice has to be the correct one).

Finally, assume that E is �E ′�; then the automaton on Fig. 4a can reach s′ from s if and only if y = �x�.
We just showed how to encode a mixed linear expression E in an r.b. DCM. To complete the proof that there is an r.b.

DCM Mi j accepting Fi j , it is enough to show that there exists an r.b. DCM M checking whether E ∼ 0 (since Fi j is of this
form). Since the value of |E| is stored in an r.b. counter x, with a flag in the control state for the sign of E , then tests E < 0
and E > 0 are immediate. Of course, E = 0 is trivial too, since it can be tested by a guard (x = 0). The two remaining cases
are zero-congruences modulo an integer d. The automaton on Fig. 4b can reach s′ from s if and only if E ≡d 0, for a given
integer d (the value of E being stored into counter x).

To accept if E �≡d 0, then M first checks if x − �x� > 0, accepting if this is the case. If x − �x� = 0 then M guesses the
integer constant v ∈ {0, . . . ,d} such that E − v ≡d 0. This can be computed as explained above.

Thus, we gave a constructive proof that there exists an r.b. DCM defining any mixed formula. �



Fig. 4. Encodings of “integer part” and “modulo”.

Since the quantifier elimination of mixed formulae is effective, and since we can encode negative variables with a sign
bit in the control states, then we can directly deduce the following theorem:

Theorem 4.3. Any mixed formula can be defined by an r.b. DCM.

This theorem is actually dual to the one in [8] (cited here as Proposition 2.9), which states that the binary reachability
of an r.b. DCM (with an additional free counter) is a mixed formula. Hence, we get an exact characterization of r.b. DCM.

5. Comparing DCM with other models

In this section, we relate DCM to more familiar automata-based models. Indeed, the ability of a DCM to non-
deterministically choose a value for incrementing or decrementing counters seems rather uncommon.

Hybrid automata [13] contain the class of DCM, since any predicate or formula of any logic could be used for labelling
transitions. However, hybrid automata are so general that reachability problems remain undecidable even for very restricted
subclasses. Although DCM contain Minsky machines by definition, reversal-bounded DCM have interesting decidability prop-
erties such as shown in Proposition 2.9 and Theorem 4.3. But how does the expressivity of a DCM compare to that of timed
automata or counter automata?

As a matter of fact, Theorem 4.3 can be combined with other results about mixed formulae. For example, we know
that the binary reachability of a flat counter automaton [5] or of a timed automaton [18] is definable by a mixed formula.
Hence, we can construct an r.b. DCM that accepts exactly the binary reachability of a given flat counter automaton or timed
automaton. On the other hand, a timed automaton can obviously not simulate a DCM (even reversal-bounded), since DCM
have the ability to count with integers.

One of the models of counter systems has been defined by Comon and Jurski [5], with transitions labelled by relations
instead of functions. We now show that DCM are more expressive than this model of counter systems that we will call CJ.

First, let us recall definitions from [5]. Let D ∈ {Z,Q,R}. Let CJD be a class of counter systems, i.e. of tuples 〈S, T 〉 such
that S is a finite set of control states and T ⊆ S × Σ × S is a finite set of transitions. In a CJD , the formulas of Σ are of the
form yi �� y j + ci, j , where �� ∈ {<,≤,=,≥,>}, ci, j ∈ D ∩Q, and yi is either xi or x′

i , with i ∈ {1, . . . ,n} and counters values
x = (x1, . . . , xn) ∈ Dn .

We show that for every D ∈ {Z,Q,R}, any CJD can easily be encoded by a DCM. Three possible valuation domains D can
be considered for CJD .

Assume D = Z. A CJZ transition of the form x �� c and can trivially be simulated by the guards of a k-DCM. A CJZ
transition of the form yi �� y j + c and can easily be simulated by a DCM. For example, x1 < x2 + c is simulated by a DCM
consisting of a sequence of c integer increments of x2 followed by a loop labelled by a fractional decrement on both x1
and x2, with a single final transition guarded by x1 = 0 ∧ x2 > 0. Other CJZ transitions can be simulated by DCM using a
similar mechanism.

The case D = Q can be identified with the case D = Z by using a least common multiple for constants c, like in the
proof of Proposition 2.2.

Since the constants c are always in Q by definition, the case D = R is similar to the other two cases.
We claim that in the general case, CJD cannot simulate DCM. However, one-counter k-DCM are a special case of CJR .

Indeed, guards and integer increments/decrements of a k-DCM syntactically belong to the labels of transitions in any CJD .
Moreover, fractional increments/decrements can surprisingly be encoded by transitions of CJD : x′ = x + δ can be encoded by
x′ > x ∧ x′ < x + 1, and x′ = x − δ can be encoded by x′ < x ∧ x′ > x − 1.

The interesting property behind this latter encoding is that both models offer a non-deterministic choice each time a
transition is fired. The main difference between these two sources of non-determinism is that in DCM, the value δ will be
randomly chosen in ]0,1[ each time the transition is fired, whereas relations on the transitions of a CJD define intervals
within D in which a specific value will be randomly chosen for a given execution.

Nevertheless, a DCM with two or more dense-choice counters has an ability that CJD cannot simulate: it can partially
control the non-determinism, by incrementing or decrementing several counters of the same amount δ. Indeed, there would
be a link between such counters that a CJD may not be able to reproduce.



6. Conclusions

The goal of this paper is to shed a more formal light on DCM, hence clarifying their relation with discrete counter ma-
chines and other models of systems. Although this papers presents DCM as an extension of Counter Machines, well-known,
typical results of the latter model may not be extended to DCM or, when they may, they require a much more difficult
proof.

An example of the former case, proved in this paper, is that restricting dense-choice counters to be bounded does not
imply decidability, while with the same restrictions discrete counter machine are just finite automata.

An example of the latter case, considered in this paper, is allowing dense-choice counters to be compared against an
integer constant k, and not only with 0. This paper shows that this extended dense-choice counters are not more powerful,
even in the case of r.b. DCM, or of DCM with a single bounded counter, analogously to discrete counter machines.

Another example of extension, proved in this paper, is an exact characterization of r.b. DCM with the well-known first-
order additive logic of integers and reals, analogous to the well-known characterization of discrete r.b. counter machines
with Presburger logic.

Other lines of investigations are still open; for example, there are missing items in the table of page 24, which do not
seem to be easily inferable from known results. One could also try to extend other rich properties of discrete counter
machines to DCM, e.g. considering one-counter machines as well as machines without zero (x = 0) tests (leading to what
could be called “Dense-choice Petri Nets”).
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