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Influence of airfoil thickness on unsteady
aerodynamic loads on pitching airfoils
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The influence of the airfoil thickness on the aerodynamic loads is investigated numerically
for harmonically pitching airfoils at low incidence, under the incompressible and inviscid
flow approximation. Force coefficients obtained from finite volume unsteady simulations
of symmetrical 4-digit NACA airfoils are found to depart from the linear Theodorsen’s
model of an oscillating flat plate. In particular, the value of the reduced frequency re-
sulting in the inversion—from clockwise to counter-clockwise—of the lift/angle-of-attack
hysteresis curve is found to increase with the airfoil thickness. Indeed, both the magnitude
and direction of the velocity vector due to pitching over the airfoil surface, differ from
their flat-plate values. During the upstroke, namely, nose-up rotation, phase, this results
in a decrease (increase) of the normal velocity magnitude over the upper (lower) surface
of the airfoil. The opposite occurs during the down-stroke phase. This is confirmed by
comparing the computed pressure distribution to the flat-plate linear Küssner’s model.
Therefore, beyond the inversion frequency, the lift coefficient of a finite-thickness airfoil
is higher during upstroke and lower during down-stroke than its flat-plate counterpart. A
similar dependence is found also for the quarter-chord moment coefficient. Accordingly,
a modification to the classical Theodorsen’s model is proposed to take into account the
effects of the airfoil thickness on unsteady loads. The new model is found to accurately
predict the unsteady aerodynamics of thick symmetric and slightly cambered airfoil with
a maximum thickness in the range 4-24%. The limits of the present inviscid-flow analysis
are assessed by means of numerical simulation of high-Reynolds (Re = 106) flows.

Key words: Oscillating airfoil; four-digit NACA airfoil; airfoil thickness; Theodorsen’s
model; Küssner’s model; inversion frequency

1. Introduction

The accurate evaluation of the unsteady aerodynamic loads around aerodynamic lifting
bodies is of paramount importance in the determination of dynamic structural loads
and aeroelastic stability in fixed- and rotary-wing aircraft, turbo-machinery and wind
turbines. An accurate prediction of unsteady loads is also mandatory to evaluate the
propulsive efficiency of flapping motion (see Garrick 1936; Freymuth 1988; Anderson
et al. 1998) and to design load-alleviation devices (e.g. Kinzel et al. 2010). To understand
all the implications of unsteadiness in the design process, it is necessary to achieve a
deep knowledge into the theoretical fundamentals of unsteady flows and in particular of
periodic motions.

† Email address for correspondence: giuseppe.quaranta@polimi.it
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A large number of studies have been carried out to investigate the complex aerody-
namics of airfoils in unsteady motion in different flow regimes. Kurosaka (1974) applied
the linearized theory to the prediction of unsteady loads around airfoils oscillating at
high reduced frequencies in supersonic flows. The dynamic loading over airfoil at low
Reynolds number (up to 40 000) and in the incompressible limit was studied by e.g. An-
derson et al. (1998), that observed peculiar flow field features, including so-called leading
edge vortices and large-scale vortical structure in the wake. Baik et al. (2012) successfully
compared experimental results to linear theory predictions in these conditions, which are
relevant to the understating of the propulsion of fish and cetaceans and of insect flight.
In particular, Uldrick & Siekmann (1964) investigated the effect of the airfoil thickness
in swimming motion. At a larger angle of attack, so-called dynamic stall is possibly ob-
served, see for example Panda & Zaman (1994). More recently, boundary layer transition
and separation was studied experimentally by Lee & Gerontakos (2004) at Re = 135 000
for an oscillating NACA 0012 airfoil. High reduced frequency effects were measured for
the NACA 0012 airfoil at Re = 12 600 by Bohl & Koochesfahani (2009). The reader is
referred to the review of McCroskey (1982) for further details.
Physical models of different complexity have been proposed and validated through

experiments and, more recently, by numerical simulations. The cornerstone models for
unsteady aerodynamics were developed by Wagner (1925) in the time domain, and by
Theodorsen (1935) for unsteady aerodynamic forces in the frequency domain. Relevant
contributions to the field were given by e.g. Küssner (1936); Cicala (1936). Garrick (1938)
demonstrated the equivalence between the Theodorsen’s frequency domain function and
the indicial response function developed by Wagner for the transient response of an
impulsively started airfoil.
Most mathematical models derive from the small perturbation hypothesis, which is

justified by the fact that the surface of aerodynamic lifting bodies can be approximated
by the corresponding lifting flat-plate with zero thickness (see Bisplinghoff et al. 1955,
Chapter 5). In accordance with the small perturbation hypothesis, the aerodynamic so-
lution was obtained by Wagner (1925) and Theodorsen (1935) as a linear combination
of elementary solutions corresponding to the separate contributions of the body angle
of attack, camber and thickness distribution, under the further assumption that the
coupling among these terms results is negligible. In particular, by using conformal map-
ping techniques, Theodorsen derived the analytical expression of the unsteady lift of a
two-dimensional flat-plate moving in an inviscid incompressible flow, written in terms
of three contributions: quasi-steady aerodynamics, the so-called added mass, and the
wake unsteady contribution. Küssner & Schwarz (1941) were able to obtain the pressure
distribution along the chord for an arbitrary spatial and temporal distribution of the
velocity boundary condition on the airfoil, thus opening the way to the possibility of
studying variable shape airfoils (see e.g. Gennaretti et al. 2013). Starting from these
seminal works several authors developed more complex models to account for e.g. the
fluid compressibility (see Fung 1955; Bisplinghoff et al. 1955, for extensive reviews). These
models, with slight modifications, are currently being successfully applied to fixed-wing
(see Bisplinghoff et al. 1955; Fung 1955) and rotary-wing (see Johnson 1980; Leishman
2006) aircraft design.
Extensions of the Theodorsen’s theory were proposed to keep into account the effect of

airfoil thickness of interest in the present work. These research activities were motivated
by the limits of the linearity assumption and by the fact that the thin-airfoil theory
exploited by Theodorsen is clearly unreliable in the airfoil nose region (see Barger 1975).
Küssner (1960) developed a very elegant mathematical theory to account for the effect
of the finite airfoil thickness. By resorting to conformal mapping techniques, Küssner
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computed a set of modified Theodorsen’s functions for Joukowsky airfoils. McCroskey
(1973) developed a formulation for airfoils in unsteady motion, starting from the thin-
airfoil theory, but keeping into account also the thickness and the camber, to evaluate
the pressure distribution. The boundary velocity was expressed as the sum of three
contributions. The camber and the thickness contributions are coincident with those
obtained from the steady-flow theory (see e.g. Abbott & von Doenhoff 1949). The third
term, which is a function of the angle of attack, accounts for the flow unsteadiness. The
unsteady term depends on the ratio between the unsteady and the quasi-steady solution
for a flat-plate. While being an extension of the Theodorsen’s approach, in McCroskey
(1973) the effects of unsteadiness are still restricted to the contribution of the angle of
attack only.
Goldstein & Atassi (1976) showed that the effects of thickness, camber and angle of

attack cannot simply be superimposed for the computation of the response of an airfoil
to an incident gust. They developed a second order approximation taking into account
the effect of the distortion of the incident disturbance that lead to a complex analyti-
cal expression for the unsteady lift, but in their analysis the effect of thickness on the
unsteady lift was neglected because, according to the authors themselves, the “airfoil
thickness probably has only an unimportant influence on the unsteady lift”. A second
order expansion was developed by Van Dyke (1953) for an oscillating airfoil in a super-
sonic flow. Glegg & Davenport (2009) developed a theory based on conformal mapping
and Blasius theorem to evaluate the unsteady loading of an arbitrary thickness airfoil
determined by an airfoil vortex interaction showing significant effects due to thickness.
The availability of computational fluid dynamics (CFD) tools, ousted almost com-

pletely the analytical formulations, also due to the high degree of complexity reached
by the latter (see Goldstein & Atassi 1976). Several panel methods to compute numer-
ically the unsteady incompressible potential flow around a moving airfoil are presented
in the textbook by Katz & Plotkin (1991). A more refined approach capable of tak-
ing into account also compressibility effects was proposed by Morino (1974); Morino
et al. (1975). As the computational power increased, numerical simulations based on
e.g. the finite volume or finite elements discretization of the Euler of Reynolds–Averaged
Navier–Stokes (RANS) equations, were used to study unsteady aerodynamic phenomena.
Notwithstanding the advantages related to the use of a more complete physical model,
several aspects may affect the reliability of numerical results, including the influence of
the grid resolution or of the time integration scheme.
The understanding of the influence of airfoil thickness on the unsteady aerodynamic

loads is still unsatisfactory, though the capability of predicting the aerodynamic loads
in these conditions is of paramount importance in e.g. fixed- and rotary-wing design.
The goal of the present paper is to provide a comprehensive description, under both
a qualitative and a quantitative point of view, of the aerodynamic loads dependence
on the airfoil thickness for small amplitude oscillations and in the low Mach limit. In
these conditions, a linear and incompressible behavior can be expected. A CFD solver
for RANS/Euler’s equations is used to compute the aerodynamic flow-field to avoid the
derivation of a complex analytical or semi-analytical solution of the potential problem.
In §2, the well-known linear theory results for oscillating airfoils are recalled, to un-

derline the interplay between the airfoil thickness and the boundary conditions of the
potential problem at the body interface. In §3 a brief overview of the considered com-
putational model is given and its suitability for the problem under study is assessed. In
§4, the results of the numerical simulation for symmetrical four-digit NACA airfoils are
presented and an explanation of the dependence of aerodynamic loads on the airfoil thick-
ness is provided. In §5 a modification to the flat-plate Theodorsen model is proposed,
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which accounts for the thickness effects in the computation of the unsteady aerodynamic
loads. Significant improvements with respect to the classical Theodorsen’s formulation
in computing the hysteresis cycles of finite thickness and slightly cambered airfoils are
pointed out. In §6, final remarks and comments are given.

2. Review of linear theory for oscillating airfoils

The classical Theodorsen’s linear theory for plunging and pitching airfoils, derives
from the hypothesis of irrotational and incompressible flow. Under these assumptions,
the point-wise value of the velocity vector V (x, t) is written as the sum of the constant
free-stream velocity U∞ (the x-axis is parallel to the free-stream velocity) and the per-

turbation velocity v(x, t), i.e. V (x, t) = U∞î+ v(x, t), where î is the x-axis unit vector.
The perturbation velocity is the gradient of a scalar function ϕ(x, t) termed the pertur-
bation potential, i.e. v(x, t) = ∇ϕ(x, t). In the linear theory, the perturbation velocity
is assumed to be small with respect to the free-stream velocity, namely |v|/U∞ ≪ 1. By
combining the velocity potential definition and the continuity equation for incompressible
flows, the well-known Laplace equation is obtained as

∇2ϕ = 0, (2.1)

which is to be made complete by suitable initial and boundary conditions.
At the body surface, the boundary condition is the well-known impermeability or slip

condition, namely, V ·n = vB ·n, with vB local velocity of the solid surface. In terms of
velocity potentials, the boundary condition is written as a Neumann condition as follows
(see Katz & Plotkin 1991, Chapter 2)

∂ϕ

∂n
=
(

vB − U∞î

)

· n, (2.2)

where n is the normal unit vector from the body surface and ∂/∂n = n ·∇.
Sufficiently far from the airfoil, the so-called boundary condition at infinity is enforced,

lim
r→∞

v(r) = o(r−1)

with r distance from the airfoil.
The boundary conditions along the wake are obtained by imposing the conservation

of mass and momentum across the surface of discontinuity as

∆

(

∂ϕ

∂n

)

= 0

∆ϕ(xW, t) = ∆ϕ(xTE, t− tc),

where the symbol ∆ indicates the difference between the two sides of the wake, xTE

is the coordinate vector of the trailing edge, tc is the convection time and the wake is
described by the function x = xW(s, t), with s curvilinear coordinates along the wake. At
the trailing edge, one also has to explicitly impose the well known Kutta condition (see
Morino 2003, pp. 1213–1214). It is not obvious that the Kutta condition for steady flows
could be extended to unsteady flows as well. Experimental studies indicated that in fact
the streamlines do not leave parallel to the trailing edge at reduced frequencies above 0.6
(Archibald 1975, see). However, for small-amplitude oscillations the pressure distribution
and the lift are not affected significantly, so for practical purposes the unsteady Kutta
condition is equivalent to the steady one, fixing the rear stagnation line to start at the
trailing edge (see Katz & Plotkin 1991, Chapter 13, pp. 476–479).



Influence of airfoil thickness on unsteady aerodynamic loads 5

From the potential equation (2.1), it is apparent that at larger times, when the transi-
tory regime from initial conditions can be assumed to be terminated, the flow unsteadi-
ness and possible non-linear terms can be introduced only by the displacement of the
solid boundary, as duly detailed in the next section.

2.1. Boundary conditions at the airfoil surface

In the present section, the boundary condition at the body surface (2.2) is discussed.
For simplicity, we start by considering the airfoil upper surface. The coordinate vector
of each point along the upper surface is given by

σ(s, t) = σca(s) + σth(s) + σds(s, t) = σst(s) + σds(s, t), (2.3)

where s is the curvilinear coordinate and where the flow direction is aligned with the
x coordinate axis. The initial shape of the airfoil σst at t = 0 is expressed as the sum
of two terms: the mean line camber σca and the thickness σth. The quantity σds is the
local surface displacement due to the airfoil motion.
The normal outward vector along the airfoil surface reads

n(s, t) = −
∂σ(s, t)

∂s
× k̂ = nst(s) + nds(s, t), (2.4)

where k̂ is the unit vector of the z-axis normal to the airfoil plane. The normal unit
vector n̂ therefore reads

n̂(s, t) =
n

|n|
=

nst + nds

|nst + nds|
. (2.5)

The modulus of the normal vector n is

|nst + nds| =
√

|nst|2 + |nds|2 + 2nst · nds

= |nst|

√

1 + 2
nst · nds

|nst|2
+

|nds|2

|nst|2

≃ |nst|

[

1−
nst · nds

|nst|2
−

1

2

|nds|
2

|nst|2

]−1

where in the last relation, the expansion (1+ ǫ)1/2 ≃ (1− ǫ/2)−1, valid for ǫ ≪ 1, is used.
Namely, ǫ is defined as

ǫ = 2
nst · nds

|nst|2
+

|nds|
2

|nst|2
(2.6)

By considering only the first order displacement terms in (2.5), the linearized form of
the normal unit vector reads

n̂ ≃
nst + nds

|nst|

(

1−
nst · nds

|nst|2

)

≃
nds

|nst|
+

(

1−
nds · nst

|nst|2

)

n̂st. (2.7)

where in the last expression the second order term nds(nds · nds) is neglected.
The expression (2.7) of the normal unit vector is now used to compute the normal

component of the body displacement velocity as

vB · n̂ = −
∂σ

∂t
·

(

∂σ

∂s
× k̂

)

≃ −
∂σds

∂t
· n̂, (2.8)

where the velocity of the body is expressed in terms of the body displacement as vB =
∂σ/∂t = ∂σds/∂t. By substituting (2.8) and the fluid velocity V = U∞ î+∇ϕ, into the
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boundary condition (2.2) one obtains

1

U∞

∂ϕ

∂n
= −n̂ · î+

1

U∞

∂σds

∂t
· n̂

= −

[

nds

|nst|
+

(

1−
nds · nst

|nst|2

)

n̂st

]

· î+
1

U∞

∂σds

∂t
· n̂st

= θst(s) + θge(s, t) + θki(s, t), (2.9)

where the following definitions were introduced

θst(s) = −n̂st · î, (2.10)

θge(s, t) = −

[

nds

|nst|
−

nds · nst

|nst|2
n̂st

]

· î, (2.11)

θki(s, t) =
1

U∞

∂nds

∂t
· n̂st (2.12)

The function θst is the local angle of attack at t = 0, θge is the geometric angle of attack
due to the airfoil displacement, and θki is the kinematic angle of attack, resulting from
the body velocity. Notice that θst is constant, whereas θge and θki depend on time.
If only plunge and pitch movement around the point (x0, 0) are considered, for small

angles of rotation the displacement vector σds reads

σds =

{

0
1

}

h(t) +

{

−σ
(y)
st

x− x0

}

α(t), (2.13)

where the superscript (y) indicates the y-component of a vector, h = h(t) is the y
displacement due to the plunge motion, α = α(t) is the angle of attack. For small airfoil
displacements, s ∼ x and one has

∂σst

∂s
=

∂σst

∂x

∂x

∂s
+

∂σst

∂y

∂y

∂s
≃

∂σst

∂x
.

Moreover, according to the hypothesis of small perturbation that is usually valid for
standard airfoils outside the nose area, one also has

∂σ
(y)
ca

∂s
≪ 1,

∂σ
(y)
th

∂s
≪ 1 ⇒

∂σ
(x)
st

∂x
≃ 1,

∂σ
(y)
st

∂x
≪ 1.

Therefore, from definition (2.4), one immediately obtains

nst(s) =







−
∂σ

(y)
st

∂x
1







, |nst| ≃ 1, nds(s, t) =







1

−
∂σ

(y)
st

∂x







α(t), |nds| ≃ α(t)

(2.14)
By substituting the above expressions into (2.10) and (2.11), the sum of the initial and
geometric angle of attack reads

θst + θge =
∂σ

(y)
st

∂x
+



1 +

(

∂σ
(y)
st

∂x

)2


α(t) ≃
∂σ

(y)
st

∂x
+ α(t), (2.15)

where only first-order terms have been retained. It is remarkable that, according to
the small perturbation theory, the unsteady contribution to the sum of the initial and
geometric angle of attack does not depend on the airfoil thickness. The linearized body
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velocity vector is

∂σds

∂t
=

{

0
1

}

dh(t)

d t
+

{

−σ
(y)
st

x− x0

}

dα(t)

d t
, (2.16)

and therefore the kinematic angle of attack reads

θki =
1

U∞

[

dh(t)

d t
− (x− x0)

dα(t)

d t
+ σ

(y)
st

∂σ
(y)
st

∂x

dα(t)

d t

]

. (2.17)

Therefore, under the small perturbation hypothesis, the boundary condition (2.2) can be
written as

∂ϕ

∂n
= U∞

∂σ
(y)
st

∂x
+ U∞α(t) +

dh(t)

d t
− (x− x0)

dα(t)

d t
+ σ

(y)
st

∂σ
(y)
st

∂x

dα(t)

d t
. (2.18)

The difference of the normal derivative of the potential between the upper and lower
surface of the airfoil, namely,

∆

(

∂ϕ

∂n

)

= U∞ ∆
[

θst(s) + θge(s, t) + θki(s, t)
]

. (2.19)

is now computed. By recalling that on the lower surface of the airfoil the boundary
coordinates are given by σ

− = σca − σth + σds, one immediately obtains

1
2∆
[

θst(s) + θge(s, t)
]

=
∂σ

(y)
ca

∂x
+ α(t) (2.20)

and the difference of the kinematic angle of attack is

1
2U∞∆θds(s, t) =

dh(t)

d t
− (x− x0)

dα(t)

d t
+ σ

(y)
th

[

∂σ
(y)
ca

∂x
+

∂σ
(y)
th

∂x

]

dα(t)

d t
. (2.21)

In standard shape airfoil, one can usually assume

∂σ
(y)
ca

∂x
≪

∂σ
(y)
th

∂x
(2.22)

and therefore, relation (2.19) simplifies to

1
2∆

(

∂ϕ

∂n

)

= U∞

∂σ
(y)
th

∂x
+ U∞α(t) +

dh(t)

d t
− (x − x0)

dα(t)

d t
+ σ

(y)
th

∂σ
(y)
th

∂x

dα(t)

d t
. (2.23)

By neglecting the thickness effects, namely, by assuming σth ≡ 0, Theodorsen (1931)
derived the well-known model for an oscillating flat plate reported in §2.2, see also (Katz
& Plotkin 1991). In deriving his model for the unsteady aerodynamic loads, McCroskey
(1973) computed the camber and thickness velocity contributions using the steady theory.
Moreover, he took into account the steady non-linear velocity contributions close to the
airfoil leading edge and neglected the unsteady contribution from the thickness. To the
authors knowledge, the last unsteady term in (2.18), which is identically zero for a flat
plate, was neglected in all analytical and semi-analytical solutions of the potential flow
equations, though its presence is fully justified within the small perturbation theory.
We conclude that, under the assumption (2.22), the potential difference across the

airfoil contains an unsteady term that is proportional to the airfoil thickness and its first
order spatial derivative, thus indicating that the airfoil thickness may produce a non-
negligible contribution to the aerodynamic load within the small perturbation theory.

While within the thin airfoil hypothesis, i.e. σ
(y)
th → 0, the last term of (2.23) can be
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neglected, for airfoils with finite thickness it may be possible that somewhere along the

chord the term σ
(y)
th ∂σ

(y)
th /∂x may be comparable or even larger than (x − x0). This

contribution was neglected in previous studies and it is the focus of the present analysis.
It is remarkable that if the rotation center x0 is close to the point of maximum airfoil
thickness—as it is the case in most aerodynamic applications—the sign of −(x − x0) is

equal to that of σ
(y)
th ∂σ

(y)
th /∂x and therefore the inclusion of the last term in (2.19) results

in an increase of the modulus of the flat-plate contribution to the potential difference
across the airfoil.

2.2. Theodorsen’s model for oscillating airfoils

For later convenience, the main results of the (Theodorsen 1935) solution for a flat-plate
(σca ≡ σth ≡ 0) subject to harmonic motions composed by airfoil plunge and pitch,
is briefly recalled. In the model, both the airfoil and the wake are represented by a
vortex sheet, with the shed wake extending as a planar surface from the trailing edge

downstream to infinity, i.e. , xW = (s,x
(y)
TE), ∀s > x

(x)
TE, t > 0.

The solution is given by Theodorsen in terms of the transfer function between the forc-
ing movements (plunge h and pitch α) and the aerodynamic response (lift and pitching
moment) at a given reduced frequency k = ωb/U , with ω oscillation frequency, as

CL(k) = 2πα0 + πb

[

ḧ

U2
∞

+
α̇

U∞

−
ba

U2
∞

α̈

]

+ 2πC(k)

[

ḣ

U∞

+ α− α0 +
b

U∞

(

1

2
− a

)

α̇

]

,

(2.24)
for the lift coefficient CL and

Cm(k) = −
1

2
πb

[

1

2U2
∞

ḧ+
1

U∞

α̇+
b

2U2
∞

(

1

4
− a

)

α̈

]

. (2.25)

for the moment coefficient Cm with the respect to the c/4 point, where α0 is the static
angle of attack. The parameter a is the position of the rotation center with respect to
the mid-chord, made dimensionless with the semi-chord b.
The lift coefficient (2.24) is written as the sum of two terms. The first is the so-called

non-circulatory part and corresponds to the added mass. It accounts for the pressure
forces required to accelerate the fluid near the airfoil. The second term is called the
circulatory part and it is multiplied by the complex Theodorsen’s function C(k) ∈ C.
This term is in fact the sum of the quasi-steady lift:

CLqs
= 2π

[

ḣ

U∞

+ α+
b

U∞

(

1

2
− a

)

α̇

]

and the lift attenuation due to the shedding of vorticity into the wake that is equal to
(1−C(k))CLqs

. It is interesting to note that the moment coefficient with respect to c/4
does not depend on the circulatory part but only on the added mass effect. The complex
function C(k) is defined as

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + jH

(2)
0 (k)

, (2.26)

where H
(2)
1 and H

(2)
0 are Hankel functions that involve Bessel’s functions of the first and

of the second kind (see Theodorsen 1935).
The CL curve (2.24) as a function of the angle of attack α is shown in Figure 1 for three

values of the reduced frequency k, namely, 0.1, 0.3 and 0.5, against their steady state
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Figure 1. Lift coefficient curve due to a pitch oscillation for the steady case (continuous line) and
the unsteady case at three different reduced frequencies: k = 0.1 dashed line, counter-clockwise;
k = 0.3 dot-dashed line clockwise; k = 0.5 dotted line clockwise.

counterpart (C(k) = 1, k = ω = 0). The curve in Figure 1 is drawn by recalling that the
real part of CL(k) represents the portion of the harmonic load that oscillates in phase
with the input, while the imaginary part represents the one that is in quadrature (i.e. 90
deg. delay). As is well known, a hysteresis cycle is observed, together with a reduction of
the maximum value of the lift coefficient with increasing reduced frequencies. Figure 1
also shows that for low reduced frequency values, the orientation of the cycle is counter-
clockwise, while for higher frequencies it is clockwise. This effect can be noticed more
clearly by considering the diagrams of the magnitude and the phase of the lift coefficient
in (2.24), shown in Figures 2(a) and 2(b). Notice that the lift coefficient magnitude
depicted in Figure 2(a) is normalized with respect to the amplitude of the input motion.
Therefore, at k = 0, the modulus of the lift coefficient is expected to be equal to the
slope of the CL-α curve which, for a steady flat plate, is 2π. Figure 2(a) clearly shows
that 2π is indeed the value of the lift magnitude at k = 0. At low reduced frequency
the lift is rotating counter-clockwise (phase negative) due to the dominant action of the
circulatory contribution. Instead, for higher reduced frequencies, the dominant apparent
mass contribution, proportional to the airfoil acceleration, cause the anticipation (phase
positive) of the lift. In particular, the phase curve, Figure 2(b), shows a change of slope
followed by a point where the phase curve crosses the zero value at k = 0.144, which is
referred to in the following as the phase inversion point. In this situation the amplitude
of the hysteresis cycle is null. For larger values of k, the cycle orientation is clockwise.

By taking the above Theodorsen’s result as the baseline, the effects of a non-zero air-
foil thickness on the aerodynamic loads are assessed in the following sections for pitching
movement only. To avoid the analytical or semi-analytical solution of the potential equa-
tion (2.1) with the boundary conditions (2.18), a finite volume CFD solver based on
RANS/Euler’s equation models is used to compute the aerodynamic loads, without in-
troducing any undue simplification when compared to a wind tunnel test campaign. In
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Figure 2. Lift coefficient at various reduced frequencies for a unitary pitch oscillation.

§3, the solver capabilities in reproducing the flow of interest is assessed. In §4, numerical
results are presented and discussed.

3. Numerical simulation of pitching airfoils

The numerical simulations for the unsteady oscillation of a pitching airfoil were carried
out using the ROSITA flow solver (see Biava 2007), a finite volume Euler/RANS solver
for moving, overset, multi-block grids. The equations of motion are discretized in space by
means of a cell-centered finite-volume implementation of either the scheme of Roe (1981)
or the one proposed by Jameson et al. (1981). Second order accuracy in space in smooth
flow regions is obtained by MUSCL extrapolation using the modified version of the Van
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Albada limiter introduced by Venkatakrishnan (see Venkatakrishnan & Mavriplis 1996).
The viscous terms are computed by applying the Gauss theorem and using a centered
approximation scheme. Time integration is carried out with a dual-time formulation, em-
ploying a second order backward differentiation formula (BDF) to approximate the time
derivative and a fully unfactored implicit scheme in the pseudo-time. The generalized
conjugate gradient (GCG), in conjunction with a block incomplete lower-upper precon-
ditioner, is used to solve the resulting linear system. Details of the implementation can
be found in Biava (2007), Drikakis et al. (2012) and Khier et al. (2012).
Unsteady computations were performed to simulate the behavior of a symmetrical

airfoil pitching around its c/4 point (approximately the aerodynamic center of the airfoil).
The general form of the harmonic law used in this case is

α = α0 + αm sin (ωt), (3.1)

where α0 is the mean angle, αm is the maximum magnitude of the oscillation and ω is
the frequency. To assess the reliability of ROSITA unsteady solutions, a comparison of
Theodorsen’s model, numerical and experimental data was performed.
Figure 3(a) reports the lift hysteresis curves obtained for the NACA 0012 with k = 0.4,

Ma = 0.1, Re = 106, α0 = 0 and αm = 6.7 deg. The experimental results for this case are
reported by Halfman (1952), and were used as a benchmark for numerical computation by
Lin et al. (2006). Viscous and inviscid fluid simulations were carried out with the ROSITA
solver for comparison. The viscous fluid simulation required a finer grid ([400+80]×70 C-
type structured mesh, with 400 elements over the airfoil, 80 elements along the wake and
70 elements in the normal directions), accounting for the boundary layer. In this case
the Spalart & Allmaras (1994) turbulence model was used to represent the Reynolds
stress tensor of the RANS. In the inviscid case it was possible to use a coarser grid
([300+60]× 40 C-type structured mesh), hence reducing significantly the computational
burden. The viscous results show a somewhat higher error, probably due to the still
insufficient grid refinement. Since we are interested in investigating a phenomenon where
viscosity is expected to have a limited impact, the inviscid set of equation was chosen
to reduce the computational burden. Figure 3(b) shows how the Theodorsen’s model
does not match exactly the experimental hysteresis amplitude. The model of McCroskey
(1973), including a steady-state correction for thickness effects, does not show significant
improvements over the Theodorsen’s model in reproducing the experimental results in
this condition.
The difference of the pressure coefficient between the upper and lower side of the airfoil

was computed for the same case. Figure 4 compares the results obtained by means of
ROSITA with those obtained by using the formulation of Küssner & Schwarz (1941),
which is based on the same approach used by Theodorsen but provides local pressure
distributions, and the formulation presented by McCroskey (1973), which includes the
effects of thickness in the reference flow. Some differences of the thin-airfoil solutions
with respect to the CFD are visible not only in the nose area, where these are expected
due to the flat-plate approximation, but also in the central part of the airfoil.
Results in figures 3 and 4 highlight that the Theodorsen and the McCroskey models

show some errors in the prediction the aerodynamic loads for airfoils of finite thickness,
both in terms of local distributions and integral coefficients. As a consequence, only the
CFD code ROSITA is used in the following to quantify the thickness contribution.
A second numerical test at a higher Mach number was considered. The conditions were:

k = 0.0814, Ma = 0.755, α0 = 0.016 deg. αm = 2.51 deg. This test condition was taken as
benchmark in the work by Venkatakrishnan & Mavriplis (1996) and are extracted from
the report VV. AA. (1982). Figure 5 shows a good overlapping between ROSITA and
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Figure 3. Lift coefficient history for the NACA 0012 airfoil with k = 0.4, Ma = 0.1, Re = 106,
α0 = 0 deg. and αm = 6.7 deg.
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Figure 4. Difference of pressure coefficient between the upper and lower side of the airfoil for
the NACA 0012 airfoil with k = 0.4, Ma = 0.1, Re = 106, α0 = 0 deg. and αm = 6.7 deg.
Distributions at the α = 0 (both upstroke and downstroke phase), maximum angle of attack.

C-type grids: [212 + 40]× 28 , [300 + 60] × 40 , [424 + 80]× 56
Time steps per period: 100, 200, 400
Reduced frequency k: 0.025, 0.01, 0.1

Table 1. Test matrix used to study the numerical convergence of the solution. All 27
combinations of the parameters were considered in the simulations in Figure 6.

Venkatakrishnan & Mavriplis (1996) computations. However, the accuracy with respect
to the experimental data is poor in both cases, probably due to an offset in the mean angle
of attack. Additionally, the hysteresis cycle resulting from the Theodorsen formulation
is shown. As expected, this incompressible flat plate formulation fails in predicting the
unsteady airloads, when not negligible compressibility effects are encountered.
The dependence of the numerical results on both the grid spacing ∆x and the time

step ∆t is assessed for different reduced frequencies. Simulations were performed at all
possible combinations of parameters reported in Table 1. Figure 6 shows the CL ampli-
tude and phase for the points listed in the test matrix computed for the NACA 0004
airfoil together with the Theodorsen’s model curves. The continuous line is the baseline
solution computed over a [300 + 60] × 40 C-type structured mesh with 200 time steps
for each period. The NACA 0004 was chosen due to the very low thickness (4%) which
resembles Theodorsen’s flat-plate model. Each symbol in figure 6 represents a simula-
tion point. At low reduced frequency values, simulation results are more scattered, thus
indicating a strong grid/time step dependence that is not observed at higher reduced
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Figure 5. Lift coefficient history for the NACA 0012 airfoil with k = 0.0814, Ma = 0.755,
α0 = 0.016 deg., αm = 2.51 degrees. Comparison between the present numerical results, the
CFD results of Venkatakrishnan & Mavriplis (1996) and the experimental data of VV. AA.
(1982). The hysteresis curve computed with the flat plate incompressible Theodorsen model is
also represented.

frequencies. This is not surprising since, for k → 0, ∆t grows if the number of time
samples per cycle is kept fixed, and consequently the integration error becomes larger at
low reduced frequency. Numerical results are deemed to be satisfactory for the purposes
of the present investigation, since they accurately reproduce the flat plate results at the
frequencies of interest. The accuracy of the numerical simulations is confirmed by the CL

hysteresis curve shown in Figure 7, which is practically independent on the grid spacing
and the time step.

4. Results and discussion

To investigate numerically the effect of the airfoil thickness on the loads, unsteady
inviscid simulations were carried out for four symmetrical airfoils: NACA 0004, NACA
0012, NACA 0018 and NACA 0024 airfoil at different reduced frequencies. Therefore,
the maximum thickness ranges from 4% to 24% of the airfoil chord. For each airfoil, a
value of k between 0.01 and 0.75 was considered. The Mach number is Ma = 0.117, which
corresponds to an almost incompressible flow. The mean angle of attack is α0 = 0 deg.
and the oscillation amplitude is αm = 1.0 deg. In the following the results of few tests are
discussed to expose the modification to unsteady loads induced by the airfoil thickness.
The results obtained at a reduced frequency below the phase inversion point (k = 0.1)

are shown in Figure 8. The hysteresis curve of the NACA 0004 are almost indistin-
guishable from those computed using the Theodorsen’s method. By increasing the airfoil
thickness, the amplitude of the hysteresis cycle is increased. The opposite behavior is
experienced for reduced frequencies above the phase inversion point, as shown in Fig-
ure 9. In this case the increase of thickness causes a reduction of the amplitude of the
counter-clockwise hysteresis cycles. Several analyses have been performed by doubling
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Figure 6. Amplitude and phase of the CL function for the NACA 0004 airfoil (—) against the
prediction of the Theodorsen model (- - -). The empty markers correspond to results obtained
for different grid resolutions and time steps per period (listed in Table 1). The filled circles
indicate the reduced frequency computed using CFD.
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Figure 7. Numerical convergence in the time domain for the NACA 0004 airfoil, k = 0.1.



16 V. Motta, A. Guardone and G. Quaranta

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 

THEODORSEN’S MODEL

NACA 0004

NACA 0018

NACA 0012

C
L

  α [deg.]

Figure 8. Lift coefficient hysteresis curve below the phase inversion point, k = 0.1.
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Figure 9. Lift coefficient hysteresis curve above the phase inversion point, k = 0.5.
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angle of attack, k = 0.5.
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the maximum amplitude and at α = 0 during the downstroke. The abscissa is the maximum
thickness of the airfoil; k = 0.5.

the amplitude of the pitch motion from 1 deg. to 2 deg. In particular numerical compu-
tations were performed on a NACA 0004 and a NACA 0024 airfoil to check the linearity
of the problem. Indeed it was found that both the NACA 0004 and the NACA 0024 airfoil
exhibit a linear behavior (see Motta 2015). This empirically confirms that the problem
can be considered linear for small amplitude oscillations, at least for maximum thickness
up to 24% of the chord.
The aerodynamic behavior of thick airfoils can be explained by recalling equation

(2.23), where the airfoil thickness is found to modify the unsteady contribution of the
flat plate model to the boundary conditions. During the downstroke phase dα/dt > 0,
i.e. on the airfoil reference system there is an increment of the angle of attack. The last
two terms of equation (2.23), featuring the same sign, are positive and therefore increase
the potential difference between the upper and the lower surface. Being the last term of
equation (2.23) proportional to the airfoil thickness, it results that, for thicker sections,
there is a larger increase of the difference of potential and, in turn, of the developed lift.
This is consistent with the behavior exhibited by the hysteresis loops in figures 8 and 9.
At the maximum and minimum angle of attack (α = ±1 deg.), where dα/dt = 0 and

the thickness-related term in (2.18) is zero, the overall effect of thickness is null as shown
in Figure 10 where flat-plate and thick airfoil results are almost coincident. This indicates
that the main effect of thickness is due to the kinematic angle of attack rather than to
the geometric angle of attack. Figure 11 shows the difference in percent between the lift
coefficient of finite thickness airfoils and that of the flat plate. Such difference is evaluated
both at the extremes of the oscillation cycle and at zero angle of attack, in the upstroke
and in the downstroke phase. It is clearly visible, that at α = −1 deg., the difference of
lift between thick airfoils and the flat plate is at least one order of magnitude lower with
respect to that visible at zero angle of attack. Additionally, this finding indicates that
the main effect induced by the thickness is related to the circulatory part of the lift and
not to the added mass, that is proportional to the airfoil acceleration.
For the upstroke the situation is opposite. Namely in the reference frame of the airfoil

dα/dt < 0. As a result the last two terms of equation (2.23) are negative and therefore
decrease the difference of potential between the upper and the lower side. So, it results
that, for thicker sections, a larger decrease in the potential difference is obtained. As a
consequence, during the upstroke, the lift developed by thick airfoils is lower with respect
to that generated by a flat plate. This is again consistent with the behavior exhibited by
the curves in figures 8 and 9.
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Figure 12. Difference of pressure coefficient between the upper and the lower side of the airfoil,
for several angles of attack along the oscillation cycle. Comparison of the Küssner solution for
the flat-plate with the numerical results obtained for NACA 0024 airfoil (ust: upstroke, dst:
downstroke); k = 0.5, Re = 106, α0 = 0 deg., αm = 1 degrees.

Figure 12 shows the difference of pressure coefficient ∆CP between the upper and the
lower side, on the NACA 0024 airfoil and on the flat-plate model at different angles of
attack along one oscillation cycle for a reduced frequency of k = 0.5, above the phase
inversion condition. The CP for the flat-plate are computed using the model developed
in Küssner & Schwarz (1941). In particular, differences between the flat-plate model and
the thick airfoil CP distribution are always observed in the leading edge area, where
as expected the flat-plate approximation is not applicable (see Barger 1975). However,
significant differences in the CP distribution on the upper and lower side are clearly visible
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Figure 14. Numerical lift phase angle versus k compared to Theodorsen’s model and to
experimental data by Halfman (1952) and Rainey (1957).

when α = 0 (upstroke and down-stroke), i.e. when the angular velocity is maximum, while
at α = ±1 deg. the difference are limited to the nose area. The differences at the trailing
edge are related to the fact that, differently from the method of Küssner & Schwarz (1941)
where the Kutta condition is explicitly imposed, in the CFD solver the fulfillment of the
Kutta conditions, both steady and unsteady, is indirectly obtained by the introduction
of the artificial viscosity in the inviscid flow equations.
Figures 13 and 14 show the effects of the thickness in terms of the amplitude and the

phase of the lift coefficient transfer function. Both the amplitude and the phase retain
a qualitative dependence on the reduced frequency that is similar to the flat-plate case,
cd. Figures 2(a) and 2(b). However, the amplitude increases at low k by increasing the
thickness and decreases at high reduced frequency, while the phase curves shift to the
right, moving the phase inversion point to higher values of k as the thickness is increase.
This behavior is in accordance with the observations above on the lift coefficient curve.
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Figure 15. Moment coefficient magnitude versus k compared to Theodorsen’s model and to
experimental data.

Indeed, because of the amplification of the lift coefficient hysteresis due to thickness,
phase inversion is observed at larger k. It appears also useful to gain a further insight in
the behavior of the lift coefficient magnitude at k = 0 in Figure 13. By recalling that the
lift magnitude is normalized with respect to that of the input motion (see Figure 2(a)
in §2 ), the modulus depicted in Figure 13 evaluated at k = 0, is equal to the slope of
the steady CL − α curve. Moreover, according to the flat plate model, such value is 2π.
For airfoils of larger thickness an increase in the value of the lift magnitude at k = 0
is observed. This is in agreement with the classical steady state aerodynamics of thick
Joukowsky airfoils, where the lift coefficient slope follows the law CLα

= 2π(1+0.77t/c),
with t the maximum airfoil thickness (see for instance Currie 2012, Chapter 4). This
correction is valid for small perturbations so that sinα ∼ α.
The amplitude and the phase of the moment coefficient transfer function are shown

in Figures 15 and 16, together with the results from Theodorsen’s theory. In this case
the disagreement with respect to the Theodorsen’s model can be explained by the fact
that the aerodynamic center location is not at c/4 (a well known fact already suggested
in Leishman (2006, pp.437-438)). As a consequence, the circulatory part of the lift has
an influence on the moment, showing a dependency of moment coefficient on the airfoil
thickness.

5. Modified Theodorsen’s model for thick airfoils

The numerical experiments presented in the previous section indicate that thick airfoils
exhibit a qualitatively similar behavior with respect to the flat-plate Theodorsen’s model
described in §2. In the present section, a simplified aerodynamic model for oscillating
thick airfoils is therefore derived from the original flat-plate one. In particular, from the
previous section, it can be assumed that the Theodorsen’s function C(k), equation(2.26),
does not significantly change for thick airfoils. Therefore the new model can be obtained
by scaling the formulas (2.24) and (2.25) for the lift and moment coefficient. From em-
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Figure 16. Moment coefficient phase angle versus k compared to Theodorsen’s model and to
experimental data.

pirical observations, the scaling factors are independent on the reduced frequency but
only on the airfoil thickness.
Under these assumptions, the lift and moment frequency response functions are mod-

eled by the following modified Theodorsen’s expressions

CL(k, sm) = πb

[

PL
1 (sm)

α̇

U
− PL

2 (sm)
baα̈

U2

]

+

+2πC(k)

[

PL
3 (sm)α+ PL

4 (sm)b

(

1

2
− a

)

α̇

U

]

, (5.1)

Cm(k, sm) = −
1

2
πb

[

Pm
1 (sm)

1

U
α̇+ Pm

2 (sm)
b

2U2

(

1

4
− a

)

α̈

]

, (5.2)

where the maximum thickness value sm represents the airfoil thickness. The parameters
PL
1 and PL

2 and Pm
1 and Pm

2 , that depend on the airfoil thickness, are used to fit the
added mass terms for the lift and the moment. The parameters PL

3 and PL
4 , that depend

as well on the airfoil thickness, are used to fit the circulatory part of the lift. The effect
on the aerodynamic moment due to the shift of the aerodynamic center is not explicitly
considered, since the moment in equation (5.2) is computed around the aerodynamic
center of the airfoil.
The values of the coefficients PL

i and Pm
i for the four NACA airfoils considered in

the present work are now considered. A weighted least squares fitting procedure is used
to compute the values of the P coefficients, considering seventeen reduced frequencies
ranging from k = 0.05 to k = 0.75. Notice that higher weights are associated to the points
with higher reduced frequency, since they are affected by a smaller numerical error. The
coefficients obtained are reported in table 2.
The fitting procedure is now extended to the case of an airfoil of arbitrary thickness

by using an interpolation of the coefficients computed for the reference airfoils. A fourth
order polynomial is used to interpolate the PL

i and Pm
i coefficients with respect to the
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Table 2. Fitted coefficients for the modified Theodorsen’s formula (5.1) and (5.2) of the lift
and moment coefficients of thick airfoils, respectively.

max thickness % P
L

1 P
L

2 P
L

3 P
L

4 P
m

1 P
m

2

4 0.9659 1.0687 1.0111 1.0627 1.0194 0.8932
12 1.2449 0.9045 1.0393 0.7001 0.9416 0.8934
18 1.6232 0.7431 1.0623 0.2536 0.8502 0.8596
24 1.7637 0.6671 1.0567 -0.902e-2 0.7427 0.8476
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Figure 17. Polynomial interpolation of the coefficients versus the airfoil thickness of the
modified Theodorsen’s function.

maximum thickness to obtain (see figure 17)

PL
1 (sm) = 1− 2.09sm + 25.73s2m + 160.94s3m − 735.68s4m, (5.3)

PL
2 (sm) = 1 + 3.93sm − 64.71s2m + 244.47s3m − 280.08s4m, (5.4)

PL
3 (sm) = 1 + 0.31sm − 1.65s2m + 24.26s3m − 77.97s4m, (5.5)

PL
4 (sm) = 1 + 4.17sm − 68.51s2m + 75.45s3m + 269.26s4m, (5.6)

Pm
1 (sm) = 1 + 1.32sm − 24.64s2m + 98.24s3m − 154.77s4m, (5.7)

Pm
2 (sm) = 1− 4.92sm + 71.09s2m − 403.38s3m + 756.28s4m. (5.8)

To assess the validity of the obtained interpolation formulae, the symmetric NACA
0020 and the non-symmetric NACA 23012 airfoils are chosen as test cases, each of them
oscillating with an amplitude of 1 degree around zero at several reduced frequencies. The
NACA 23012 is selected also to test the reliability of the proposed formulation on slightly
cambered airfoils.

The hysteresis curves for CL and Cm, computed with the new formulation, are com-
pared to the numerical results and to the classical Theodorsen’s formulation. For brevity,
only a case at k = 0.5 is herein reported. Figures 18 and 19, highlight better accordance
of the modified models for the CL with the numerical tests if compared with the flat
plate Theodorsen’s model. An increase of the accuracy can be also observed in figures 20
and 21, where the Cm hysteresis curves are reported.
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Figure 18. NACA 0020 CL hysteresis curves at k = 0.5. Stars: CFD computations; dashed
line: classical Theodorsen’s model; solid line: modified Theodorsen’s model.
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Figure 19. NACA 23012 CL hysteresis curves at k = 0.5. Stars: CFD computations; dashed
line: classical Theodorsen’s model; solid line: modified Theodorsen’s model.

5.1. Applicability of the modified Theodorsens model to viscous flows

The modified Theodorsen model devised in the previous section was identified by ne-
glecting the effect of the viscosity, since unsteady flows without major separation were
considered. In section 3 it was shown through a comparison with experimental data how
the not-separated model remains valid also for large oscillations, for the NACA 0012 up
to 6 deg. of oscillation as shown in figure 3(a). Additionally, it was shown that the effects
of viscosity are negligible for the NACA 0012.
Since the modified Theodorsen’s model proposed in the previous section extends to
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Figure 20. NACA 0020 Cm hysteresis curves at k = 0.5. Stars: CFD computations; dashed
line: classical Theodorsen’s model; solid line: modified Theodorsen’s model.
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Figure 21. NACA 23012 Cm hysteresis curves at k = 0.5. Stars: CFD computations; dashed
line: classical Theodorsen’s model; solid line: modified Theodorsen’s model.

airfoil thickness up to 24%, it is important to check if the hypothesis of low relevance
of the viscosity up to this thickness is still valid. For this reason several numerical tests
were performed with a pitch amplitude of 1 deg. using a RANS viscous models at a
reduced frequency of k = 0.5 with the NACA 0018, 0020 and 0024 airfoils. The Spalart &
Allmaras (1994) turbulence model is used for viscous computations, which are performed
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Figure 22. Comparison of the hysteresis curve obtained by inviscid and viscous (Re = 106)
CFD models at k = 0.5 with the flat-plate Theodorsen’s model results.

at a Reynolds number of one million. The comparison of the hysteresis cycles obtained
with and without viscosity are shown in figure 22.
Figure 22 shows that the modification of the hysteresis cycle due the viscosity for

attached flow on thick airfoils is less significant than the effect due to the thickness in
inviscid flows up to airfoils thicknesses of 18%. Over 18% the modification due to viscosity
becomes significant. The inclusion of viscosity cause a modification of the slope of the
hysteresis cycle only, without affecting the amplitude of the cycle. On the contrary, from
the present simulations the inclusion of thickness in an inviscid flow was shown to lead
to a change of the amplitude of the hysteresis cycles.
It is possible to speculate that this modification of the slope of the hysteresis due

to viscosity may be caused by a shift downstream of the location of the point where
the Kutta condition must be enforced, in a similar fashion to what happens for airfoils
equipped with Gurney flaps (see Liebeck 1978; Motta & Quaranta 2015). In fact for thick
airfoils, the thickness of the boundary layer at the trailing edge becomes significant, and a
small recirculation region appears behind the trailing edge. The shift downstream of the
Kutta condition causes an increase of the equivalent chord of the airfoil, which in turns
leads to a increase of the apparent reduced frequency. This increase of apparent reduced
frequency may explain the change of slope, since there is a direct dependency between the
increase of slope of the hysteresis cycle and the increase of reduced frequency, as shown
in (Leishman 2006, pp. 434–436). A detailed investigation of these effects is beyond the
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scope of this work, however it is possible to affirm that the inclusion of the viscosity
leads to further modifications of the loads that are significant only above a thickness of
18%. Moreover, the effect of viscosity can be accounted for by fine tuning the modified
Theodorsen’s model here presented. In any case, given the nature of the modification of
the cycle induced by the viscosity, it not expected to find a significant modification of
the inversion reduced frequency due to viscosity.
In conclusion, it is possible to state that the presented correction model should be

considered valid up to a thickness of 18%, and somehow still valid up to a thickness 24%,
at least for what regards the amplitude of the hysteresis cycle. For airfoils with thickness
above 18%, an additional effect due to viscosity on the slope of the hysteresis should be
considered.

6. Conclusions

The effects of the airfoil thickness on the aerodynamic loads generated by an har-
monic motion were investigated numerically. As expected from a detailed analysis of the
boundary conditions, a dependency of the linearized lift and moment coefficient on the
thickness was studied for the case of pitch movements.
Numerical results obtained using the flow solver ROSITA showed a dependency of

the loads on the thickness. In particular, the inversion reduced frequency—at which
the phase inversion of the lift-coefficient curve occurs—depends on the thickness of the
airfoil. The amplitude of the lift hysteresis cycle is larger for thicker airfoils, for reduced
frequencies below the inversion frequency, and smaller for reduced frequencies above it.
This modification results in a shift of the phase inversion point towards higher reduced
frequencies for thicker airfoils.
A fitting procedure was applied to identify a modified Theodorsen’s linear model that

accounts for the airfoil thickness. The flat-plate Theodorsen’s model was used as a start-
ing point. The resulting simplified model was found to accurately predict the unsteady
lift and moment coefficients for symmetric and slightly cambered airfoils of arbitrary
thickness, from 4% to 24%, in the considered range of reduced frequencies under the
assumptions of the small-perturbation theory. Additional modifications due to viscosity,
and related to the slope of the hysteresis cycle, have been identified for airfoils with a
thickness above 18%.
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