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1. Introduction

Nowadays, the mimetic finite difference (MFD) method has become a very pop-
ular numerical approach to successfully solve a wide range of problems. This is 
undoubtedly connected to its great flexibility in dealing with very general poly-
gonal meshes and its capability of preserving the fundamental properties of the 
underlying physical and mathematical models. The MFD method has been applied 
with success to a wide range of linear problems, such as the diffusion problem 
in mixed36–39 and primal form,20,32 linear elasticity,13 the Stokes equations,17–19 

Reissner–Mindlin plate equations,22,24 electromagnetics,31,33 convection–diffusion 
problems,16,44 eigenvalue problems,42 modeling of biological suspensions,72 mod-
eling of flows in porous media,93 acoustic equation.71 Issues and techniques such 
as satisfaction of maximum principle,91,92 a posteriori error estimation3,12,23 and 
solution post-processing43 have been also considered. We refer the interested reader 
to the recent review paper90 and the book21 for a more detailed introduction of the 
MFD method. Recently, in Ref. 14, the mimetic approach has been recasted as the 
virtual element method, see also Refs. 15 and 40. Nevertheless, the application of 
the MFD method to nonlinear problems is even more recent.

Nonlinear and control problems play an important role in applied mathematics 
and engineering. They have been extensively used to model phenomena in a wide 
range of applications including fluid dynamics, biology, and materials science, for 
example. The application we have in mind is the extrusion manufacturing process, 
one of the most important manufacturing processes employed in industry. Extrusion 
is a manufacturing process where a raw (plastic, metal or foodstuffs) material is 
melted and pushed through a die to obtain an object with the desired cross-sectional 
profile. A wide range of objects are produce by extrusion: pipes, textiles, rails, and 
pasta, for example.

The aim of this paper is to review some recent applications of the MFD method 
to nonlinear problems (variational inequalities and quasilinear elliptic equations) 
and constrained control problems governed by linear elliptic partial differentail 
equations (PDEs). In particular, we will show through several numerical exam-
ples the efficacy of MFDs in building accurate numerical approximations. This is 
of paramount importance due to the ubiquitous presence of nonlinear and control 
problems in applied and industrial problems.

The outline of the paper is the following. In Sec. 2 we collect some useful notation 
and assumptions that will be employed throughout the paper. In Sec. 3 we consider 
the MFD approximation of the obstacle problem, a paradigmatic example of varia-
tional inequality, while in Sec. 4 we consider the performance of the MFD method 
in approximating quasilinear elliptic problems. In Sec. 5 we turn the attention to 
the mimetic approximation of optimal control problems governed by linear elliptic 
equations. Finally, in Sec. 6, motivated by the numerical simulation of the industrial 
extrusion process, we explore further applications of the MFD method to nonlinear 
Stokes equations and shape optimization/free-boundary problems, while in Sec. 7 
we draw some conclusions.
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2. Mesh Assumptions and Degrees of Freedom

The aim of this section is to introduce some notation and the mesh assumptions,
and to define the degrees of freedom for the discrete approximation spaces we are
going to introduce later on. Throughout the paper, we will follow the usual notation
for Sobolev spaces and norms (see e.g. Ref. 49). Moreover, for any subset D ⊆ R

2

and non-negative integer k, we indicate by Pk(D) the space of polynomials of degree
up to k defined on D. Finally, we will use the symbol � to indicate an upper bound
that holds up to a positive multiplicative constant independent of h.

2.1. Mesh assumptions

Let Ω be a regular enough two-dimensional domain, and let Ωh be a non-overlapping
partition of Ω into, possibly non-convex, polygonal elements E with granularity
h = supE∈Ωh

hE , being hE the diameter of E ∈ Ωh. We denote by N ◦
h and N ∂

h the
sets of interior and boundary mesh vertices, respectively, and set Nh = N ◦

h ∪ N ∂
h .

Proceeding as in Ref. 32 we also assume the following.

Assumption 2.1. (Mesh regularity assumptions) There exist an integer number
N and a shape regularity constant, both independent of h, such that for every
element E ∈ Ωh there exists a compatible sub-decomposition T E

h with at most N
shape-regular triangles.

We point out that Assumption 2.1 only requires the existence of a compatible
sub-mesh that does not have to be constructed in practice. Moreover, it is easy to
check that Assumption 2.1 guarantees that the following mesh regularity properties
are satisfied:

(i) There exists Ne > 0 such that every element E has at most Ne edges;
(ii) There exists γ > 0 such that for every element E and for every edge e of E, it

holds |e| ≥ γhE , where |e| is the length of e;
(iii) For every E ∈ Ωh and for every edge e of E, the following trace inequality

holds

‖ψ‖2L2(e) � h−1
E ‖ψ‖2L2(E) + hE |ψ|2H1(E) ∀ψ ∈ H1(E).

2.2. Degrees of freedom for scalar and vector fields

In the following we will require to discretize scalar fields in H1(Ω) and L2(Ω), as
well as vector fields in H(div,Ω). Therefore, the scope of this section is to introduce
the corresponding finite-dimensional spaces Vh, Qh, and Xh together with suitable
interpolation operators from the continuous spaces to the associated discrete ones,
and set up some notation.

We start defining the finite-dimensional space Vh aiming at approximating the
elements of H1(Ω). Every discrete function vh ∈ Vh is a vector of real components
vh = {vv}v∈Nh

one per mesh vertex, so that the dimension of Vh equals to the
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numbers of vertices of the mesh Ωh. We also define V g
h as the subset of Vh consisting

of functions satisfying a Dirichlet-type boundary condition

V g
h = {vh ∈ Vh : vv

h = g(v) ∀ v ∈ N ∂
h },

with g a given smooth enough function. Accordingly, V 0
h represents the space of

discrete functions vanishing at the boundary nodes.
The space Vh is endowed with the following discrete seminorm:

‖vh‖21,h =
∑

E∈Ωh

‖vh‖21,h,E =
∑

E∈Ωh

|E|
∑
e∈Eh
e⊂∂E

[
1
|e|(v

v2 − vv1 )
]2
, (2.1)

which becomes a norm in V 0
h . Here v1 and v2 are the two endpoints of e ∈ Eh, and

|E| is the area of the element E ∈ Ωh.
We define the following interpolation operator from the space C0(Ω̄) ∩ H1(Ω)

into the discrete space Vh. For any v ∈ C0(Ω̄) ∩H1(Ω), vI ∈ Vh is defined as

vv
I = v(v) ∀ v ∈ Nh. (2.2)

Notice that, under Assumption 2.1, the above interpolation operator satisfies clas-
sical approximation estimates, see Ref. 4. The local version of the operator (2.2) is
defined accordingly. That is, for any v ∈ C0(Ē) ∩H1(E), vI ∈ Vh|E is given by

vv
I = v(v) ∀ v ∈ NE

h ,

with NE
h the set of vertices of the polygon E ∈ Ωh.

Next we introduce the discrete space Qh describing the degrees of freedom asso-
ciated to a scalar field in L2(Ω). Every discrete function qh ∈ Qh is a vector of real
components one per mesh cell, so that the dimension of Qh equals the number of
polygons in Ωh. That is, for qh ∈ Qh we have qh = {qE}E∈Ωh

, with qE ∈ R the
value of the discrete variable associated to the polygon E ∈ Ωh.

We endowed Qh by the following scalar product

[ph, qh]Qh
=
∑

E∈Ωh

|E|pEqE ∀ ph, qh ∈ Qh, (2.3)

and denote by ‖·‖Qh
the induced norm, i.e.

‖ph‖2Qh
= [ph, ph]Qh

∀ ph ∈ Qh. (2.4)

Notice that (2.3) coincide with the L2(Ω) scalar product for piecewise constant
functions.

For further use, we also introduce the following operator from L1(Ω) onto Qh

qI|E =
1
|E|

∫
E

qdV ∀E ∈ Ωh, ∀ q ∈ L1(Ω). (2.5)

Finally, we introduce the finite-dimensional space Xh aiming at approximating
the elements of H(div,Ω). In order to completely describe a vector field Gh ∈ Xh,
we associate to any mesh edge e ∈ Eh a real number Ge ∈ R, so that for Gh ∈ Xh,
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we have Gh = {Ge}e∈Eh
. Clearly, the dimension of Xh is equal to the cardinality

of Eh.
The scalar product in Xh is defined by assembling elementwise contributions

from each element, i.e.

[Fh, Gh]Xh
=
∑

E∈Ωh

[Fh, Gh]E ∀Fh, Gh ∈ Xh, (2.6)

where the precise definition of [·, ·]E will made be clear later on. The space Xh is
equipped with the induced norm i.e.

‖Fh‖2Xh
= [Fh, Fh]Xh

∀Fh ∈ Xh.

For any edge e ∈ Eh, we denote by ne the unit normal vector to e ∈ Eh fixed
once and for all, and define the projection operator fromH(div,Ω)∩[Ls(Ω)]2, s > 2,
onto Xh as follows:

GI|e =
1
|e|

∫
e

G ·nedS ∀ e ∈ Eh ∀G ∈ H(div,Ω). (2.7)

Finally, we define the discrete divergence operator form, the space Xh onto Qh,

DIVh :Xh → Qh,

DIVh(Gh)|E =
1
|E|

∑
e⊆∂E

|e|GE
e ∀E ∈ Ωh,

(2.8)

where GE
e = Gene ·nE

e ∈ R and nE
e is the unit normal vector to e pointing outward

to E ∈ Ωh. It is immediate to check that DIVh(GI) = (divG)I for all sufficiently
regular vector fields G, where the first interpolation is in Xh and the second in Qh.

The local bilinear forms (2.6) are defined as in Ref. 36 and satisfy the following
two conditions:

(S1) Continuity and coercivity : For any E ∈ Ωh, it holds∑
e⊆∂E

|E|(GE
e )2 � [Gh, Gh]2E �

∑
e⊆∂E

|E|(GE
e )2 ∀Gh ∈ Xh.

(S2) Local consistency : For every linear function q1 on E ∈ Ωh, it holds

[(∇q1)I, Gh]E +
∫

E

q1DIVh(Gh)dV =
∑

e⊆∂E

GE
e

∫
e

q1dS ∀Gh ∈ Xh.

3. The Obstacle Problem

The goal of this section is to show that MFD methods can be successfully applied
to discretize variational inequalities. To this aim we consider the simplest example,
namely the obstacle problem, which consists in finding the equilibrium position of
an elastic membrane whose boundary is held fixed, and which is constrained to lie
above a given obstacle. In Sec. 3.1 we recall the continuous problem, then Sec. 3.2
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is devoted to present the MFD discretization and the approximation results and 
finally Sec. 3.3 presents some numerical computations. In the sequel, we will assume 
that the computational domain Ω is an open, bounded, convex set of R2, with either 
a polygonal or a C2-smooth boundary.

3.1. Problem and literature

The elliptic obstacle problem can be considered as a model problem for variational 
inequalities (see e.g. Ref. 67), and it has found applications in a number of differ-
ent fields as elasticity and fluid dynamics. For example, applications include fluid 
filtration in porous media, optimal control, and financial mathematics.83,86

The problem is written as follows. Let ψ ∈ H2(Ω) be a given function that 
satisfies ψ ≤ g on ∂Ω, where g is the trace of a given function in H2(Ω), and let K 
be the convex set defined as

K = {v ∈ H1(Ω) : v = g on ∂Ω and  v ≥ ψ a.e. in Ω}.

The obstacle problem can be written as the following variational inequality:

Find u ∈ K such that a(u, v − u) ≥ F (v − u) ∀ v ∈ K, (3.1)

where the bilinear form a(·, ·) :H1(Ω) × H1(Ω) → R and the linear functional
F (·) :H1(Ω)→ R are defined as

a(u, v) =
∫

Ω

∇u ·∇vdV , F (v) =
∫

Ω

fvdV , (3.2)

respectively, with f ∈ L2(Ω) a given function. It can be shown that under the above
data regularity assumption, the elliptic obstacle problem (3.1) admits a unique
solution u ∈ H2(Ω), see e.g. Ref. 30 and Corollary 5:2.3 in Ref. 109.

The finite element analysis of problem (3.1) dates back to the seventies. In
Ref. 60 the author develops a theoretical analysis for the method that is valid
for a general class of variational inequalities and is then applied to the elliptic
obstacle problem. Following a different technique, in Ref. 34 the authors develop an
optimal convergence result of orderO(h) for linear elements and order O(h3/2−ε) for
quadratic elements. In Ref. 35, optimal error bounds are proved also for the mixed
finite element discretization of the obstacle problem. In Ref. 118 the result of Ref. 34
for quadratic elements is slightly improved by abandoning the “free-boundary finite
length” hypothesis.

Another classical finite element approach to the problem, that must be men-
tioned, is that of using penalty formulations to enforce the obstacle constraint.
This approach can be found in the early work,85 where a convergence result is
obtained by showing that the penalized solution converges (when the penalty
parameter goes to zero) to the discrete solution of the mixed method in Ref. 35.
Numerical results for the penalty method can be found in Ref. 112, while in Ref. 113
the time-dependent case was also investigated.
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An area of research that received a lot of attention in the literature is that
of a posteriori error estimation for the obstacle problem. In Ref. 1 a posteriori
error indicators are obtained by using the dual principle, while Ref. 78 uses a
combination of the primal and dual formulation. In Ref. 47, by using an ad hoc
interpolation operator that requires minimal regularity, the authors analyze a new
residual-based error estimator. Sharp a priori bounds for the estimator are also
provided. In Ref. 116 it is developed a new approach to obtain a posteriori error
estimators without resorting to the positivity preserving interpolation of Ref. 47.
In Ref. 28 the author shows that the error estimation of the obstacle problem can
be derived with arguments that are rather near to the standard ones for the linear
case. In Ref. 11 a gradient-averaging type of error estimator for the finite element
obstacle problem is introduced and shown to be reliable and efficient. Furthermore,
in Ref. 29 an error estimator based on jump contributions of standard residuals is
developed and combined with an adaptive strategy. A theoretical analysis is also
shown for the case of a model obstacle problem. A posteriori error indicators of
hierarchical type have been proposed and analyzed in Refs. 80 and 88 and more
recently in Refs. 114 and 124. Regarding the a posteriori error analysis for the
penalty formulation of the obstacle problem, we mention the seminal work84 where
an a posteriori upper bound is obtained under the hypothesis ψ = 0. Later studies
have been carried out in Refs. 66 and 26. In the first work, an error estimator
for the maximum norm is proposed and analyzed. Such estimator is applicable
both in the case of smooth but also rough obstacles. In the second paper an a
posteriori error indicator in maximum norm for the time-dependent problem is
investigated.

3.2. Discrete problem and convergence

We denote by ah(·, ·) :Vh × Vh → R the discretization of the bilinear form a(·, ·),
defined as follows:

ah(vh, wh) =
∑

E∈Ωh

aE
h (vh, wh) ∀ vh, wh ∈ Vh, (3.3)

where aE
h (·, ·) : Vh|E×Vh|E → R are symmetric bilinear forms built on each element

E ∈ Ωh in such a way that the following properties are satisfied (see Ref. 32):

(S1) Continuity and coercivity: For every uh, vh ∈ Vh and each E ∈ Ωh, we have

‖vh‖21,h,E � aE
h (vh, vh), aE

h (uh, vh) � ‖uh‖1,h,E‖vh‖1,h,E.

(S2) Local consistency: For every element E, every function q1 ∈ P
1(E), and every

vh ∈ Vh, it holds

aE
h (vh, (q1)I) =

∑
e∈EE

h

(∇q1 ·ne
E)
|e|
2

(vv1
h + vv2

h ),

where v1 and v2 are the two vertices of e ∈ Eh.
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The meaning of the above consistency condition (S2) is that the discrete bilinear 
form respects integration by parts when tested with linear functions. The discretiza-
tion of the load term is defined as

(f, vh)h =
∑

E∈Ωh

f̄ |E
kE∑
i=1

vviωi
E , (3.4)

where v1, . . . , vkE are the vertices of E,ω1
E , . . . , ω

kE

E are positive weights such that∑kE

i=1 ω
i
E = |E|, and

f̄ |E =
1
|E|

∫
E

fdV .

Finally, we are able to define the proposed MFD method for the obstacle problem
(3.1). Indeed, let us introduce the discrete convex space

Kh = {vh ∈ V g
h : vv

h ≥ ψ(v) ∀ v ∈ Nh};

then the mimetic discretization of problem (3.1) reads as follows:

Find uh ∈ Kh such that ah(uh, vh − uh) ≥ (f, vh − uh)h ∀ vh ∈ Kh. (3.5)

It can be shown that problem (3.5) admits a unique solutions. Indeed, from property
(S1), it is immediate to infer that the bilinear form ah(·, ·) is coercive on Vh/R. Then,
the well posedness of (3.5) follows recalling that Kh ⊂ Vh is convex and closed, and
using standard results.49 The following convergence result has been proved in Ref. 4.

Theorem 3.1. Let u ∈ K∩H2(Ω) be the solution to the continuous problem (3.1),
and uh ∈ Kh be the corresponding mimetic approximation obtained by solving the
discrete problem (3.5). Then, it holds

‖uh − uI‖1,h � h.

3.3. Numerical results

We set Ω = (−1, 1)2 and consider a variant of the example presented in Ref. 4. Let
ψ(x, y) = 0, and choose as exact solution of model problem (3.1)

u(x, y) = (max{x2 + y2 − r2, 0})2, (3.6)

with r ∈ (0, 1) a parameter at our disposal. Figure 1 depicts the minimizer u given
in (3.6) together with the obstacle ψ in the case r = 0.3. The corresponding load
f(·, ·) is given by

f(x, y) =

{
−8(2x2 + 2y2 − r2) if

√
x2 + y2 > r,

−8r2(1− x2 − y2 + r2) if
√
x2 + y2 ≤ r,
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Fig. 1. Obstacle problem. Exact solution u given in (3.6), r = 0.3, and the obstacle ψ = 0.

and the Dirichlet boundary data g(x, y) = (x2 + y2 − r2)2. The obstacle problem
(3.1) has been solved numerically by the Projected Successive Over Relaxation
method (see Ref. 4 for more implementation details).

We have considered sequences of quadrilateral, median-type 1 and median-type
2 of decompositions as those shown in Fig. 2 for the first three refinement levels
� = 1, 2, 3. In Table 1 we report the errors ‖uI − uh‖1,h measured in the discrete
energy norm defined in (2.1) for the considered sequence decompositions. In the

(a) Quadrilateral meshes. Refinement levels � = 1, 2, 3

(b) Media type-1 meshes. Refinement levels � = 1, 2, 3

(c) Media type-2 meshes. Refinement levels � = 1, 2, 3

Fig. 2. Samples of quadrilateral, median-type 1 and median-type 2 decompositions of Ω =
(−1, 1)2. From left to right: refinement levels � = 1, 2, 3.
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Table 1. Obstacle problem. Computed errors ‖uI − uh‖1,h on the sequence of
quadrilateral, median-type 1 and median-type 2 decompositions.

Refinement level Quadrilateral Median-type 1 Median-type 2

� = 1 6.67435e−2 1.57514e−1 1.57514e-01
� = 2 6.04445e−2 6.71848e−2 6.20040e-02
� = 3 2.18688e−2 4.99534e−2 4.36785e-02
� = 4 1.04561e−2 2.55444e−2 1.95246e-02
� = 5 5.15400e−3 1.05753e−2 7.49375e-3

Rate 0.99210 1.02879 1.04544

last row of Table 1 we also report the computed convergence rates obtained by the
linear regression algorithm. We can observe that on all the sequences of meshes a
linear convergence rate is observed as predicted by Theorem 3.1. We refer to Ref. 5
for more numerical experiments including the numerical performance of an adaptive
MFD method driven by a hierarchical a posteriori error estimator similar to the
one proposed in Ref. 3.

4. Quasilinear Elliptic Problems

The aim of this section is to show that the MFD method can be successfully
employed to discretize quasilinear elliptic equations. In Sec. 4.1, we will recall the
model problem under investigation. In Sec. 4.2 we present the MFD discretiza-
tion and the theoretical results that will also be validated by means of numerical
experiments presented in Sec. 4.3.

4.1. Problem and literature

In this section, we discuss the application of the MFD method for the approximation
of the following quasilinear elliptic problem: Find u ∈ H1

0 (Ω) such that

b(u;u, v) = F (v) ∀ v ∈ H1
0 (Ω), (4.1)

where, as in Sec. 3.2, the source term is defined as F (v) =
∫
Ω

fvdV, for a given
function f ∈ L2(Ω), and b(·; ·, ·) is a semilinear form defined as follows:

b(u; v, w) =
∫

Ω

κ(|∇u|2)∇v · ∇wdV ∀u, v, w ∈ H1
0 (Ω). (4.2)

We assume that the nonlinearity κ : R+ → R
+ satisfies the following assumptions.

Assumption 4.1. (Nonlinearity assumptions) The nonlinearity κ : R+ → R
+

appearing in (4.2) is assumed to satisfy the following:

(i) κ(·) is continuous over [0,+∞);
(ii) there exist two positive constants k∗, k∗ such that:

k∗(t− s) ≤ κ(t2)t− κ(s2)s ≤ k∗(t− s) ∀ t > s ≥ 0.
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Among all the functions that satisfy Assumption 4.1, we are particularly inter-
ested in the Carreau law

κ(t) = η∞ + (η0 − η∞)(1 + λt)
p−2
2 , t ≥ 0, (4.3)

with η0 ≥ η∞ > 0, λ > 0 and p ∈ (1, 2). We recall that a fluid that obeys to a
Carreau law is a type of generalized quasi-Newtonian fluid where viscosity depends
upon the shear rate. For example, the rheologic behavior of many polymeric flu-
ids or rubber-like liquids are frequently described in engineering literature by the
Carreau law.

Nonlinear problems play an important role in applied mathematics, and engi-
neering, and have been extensively used to mathematically model phenomena in a
wide range of fields (e.g. biology, fluid dynamics, physics, and materials science).
Among all the discretizations techniques developed so far, one of the most employed
is the finite element method, including non-conforming approaches as discontinu-
ous Galerkin (DG) methods. Regarding the solution of quasilinear boundary value
problems, several finite element methods have been studied so far. For example,
Ciarlet et al., in Ref. 50, studied Galerkin methods for approximating the solu-
tions of a class of abstract monotone operator equations in Banach spaces using
the approach of Zarantonello122 and Minty.98 Finite element error estimates for
nonlinear elliptic equations of monotone type in divergence form and with gradient
nonlinearity in the principal coefficient are considered in Ref. 48. In 1975, Douglas
and Dupont58 studied a Galerkin method for the nonlinear Dirichlet problems

−∇ · (a(x, u)∇u) = f, (4.4)

subject to non-homogeneous Dirichlet boundary conditions on the boundary of the
(two- or three-dimensional) domain Ω. The proposed Galerkin method is a gener-
alization of the Nitsche’s method101 to nonlinear elliptic equations. Optimal error
estimates in the energy and the average norms are established, provided the data
are sufficiently smooth. Finite element approximations of general quasilinear elliptic
systems are considered in Ref. 53. Further extensions including variational crimes
such as numerical integration and polygonal approximation of the domain are con-
sidered in Ref. 64, see also Refs. 65 and 63 for the case of discontinuous coefficients.
A mixed finite element method is analyzed in Refs. 95 and 96: this method is the
extension to quasilinear elliptic problems of that of Raviart and Thomas.106 A pri-
mal hybrid finite element method is also considered in Ref. 97. The extension of
the streamline diffusion finite element method to quasilinear equations of second
order is provided in Ref. 10. In the last 15 years, the DG finite element method has
received a considerable interest for the discretization of nonlinear boundary value
problems. The development of DG methods for this class of equations has been
stimulated by their computational convenience due to their high degree of locality.
Rivière and Wheeler consider a nonlinear diffusion operator of the form (4.4) with
a(x, u) : Ω × R → R Lipschitz continuous with respect to its second variable.107

Extensions and improved energy estimates with applications to a single phase flow
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in porous media are presented in Ref. 108. For the a priori error analysis of an 
h-version local DG finite element approximation of quasilinear elliptic equations in 
divergence form and non-Newtonian flow problems, we refer to Ref. 41 and Refs. 68 
and 69, respectively, see also Refs. 55, 56, 61, 62 and 74 for interior penalty methods 
for the numerical approximation of non-stationary nonlinear convection–diffusion 
equations. Houston et al.81 present a class of interior penalty hp-DG finite element 
methods for the approximation of quasilinear elliptic PDEs. Using the theory of 
monotone operators,100 the hp-DG formulations are shown to be well-posed, and a 
priori energy estimates which are optimal with respect to the mesh size, and mildly 
suboptimal in the polynomial approximation degree are shown. The extension to a 
posteriori error analysis is presented in Ref. 82 where computable bounds on the 
error are derived in terms of a suitable energy norm. A two-grid hp-DG method for 
the numerical approximation of strongly monotone second-order quasilinear PDEs 
has been proposed and analyzed in Ref. 51 where a priori  and a posteriori error 
analysis is presented. The key idea at the basis of the two-grid method (originally 
introduced by Xu119–121) is that the underlying nonlinear problem is discretized on 
a coarse finite element space; the resulting “coarse” solution is then exploited as a 
datum for the (linearized) discretization on the finer space. Therefore, on the finer 
space only a linear system of equations has to be solved. The convergence anal-
ysis of DG approximations to symmetric second-order quasilinear elliptic PDEs 
in divergence form without requiring the global Lipschitz continuity or uniform 
monotonicity of the stress tensor is provided by Ortner and Süli in Ref. 102. In  the  
context of finite volume approximations of nonlinear problems see also e.g. Refs. 2 
and 27.

4.2. Discrete problem and convergence

The aim of this section is to briefly recall the mimetic approximation of (4.1); we 
refer to Ref. 7 for a more detailed discussion.

Let us consider an admissible partition Ωh of the domain Ω, as explained in 
Sec. 2. In order to introduce a mimetic discretization of problem (4.1), we first 
consider the restriction of the form (4.2) on  each element  E ∈ Ωh, i.e.

bE(u; v, w) =
∫

E

κ(|∇u|2)∇v · ∇wdV ∀u, v, w ∈ H1(E). (4.5)

Observe that, whenever ϕ ∈ P
1(E), the local form bE(ϕ; ·, ·) can be rewritten as

bE(ϕ; v, w) = κ(|∇ϕ|2)
∫

E

∇v · ∇wdV ∀ϕ ∈ P
1(E), ∀ v, w ∈ H1(E).

In view of the above relation, an MFD discretization of (4.5) can be obtained
once that a suitable discrete approximation of the nonlinear term κ(·) and of the
integral term

∫
E
∇v · ∇wdV are available. For the latter, we proceed exactly as in
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Sec. 3.2, by introducing the bilinear form (3.3) over the space Vh defined in Sec. 2.2.
Therefore, we only have to discuss the MFD discretization of the nonlinear term
κ(·) within each element E ∈ Ωh. Let us introduce the following operator

GE
h :V E

h → R
+, GE

h (uh) :=
aE

h (uh, uh)
|E| , (4.6)

on each E ∈ Ωh. Bearing in mind the fact that the bilinear form (3.3) is a dis-
cretization of the term

∫
E ∇v · ∇wdV , the operator (4.6) turns out to be a good

candidate to approximate |∇u|2 within each element. Indeed,∫
E
|∇u|2dV
|E| ∼ GE

h (uI) ∀u ∈ C0(Ē) ∩H1(E),

where the local interpolation operator uI ∈ Vh|E is defined according to (2.2) and
the symbol ∼ stands for approximation. In view of the above discussion, we obtain
the following mimetic discretization of the local form (4.5)

bEh (uh; vh, wh) = κ(GE
h (uh))aE

h (vh, wh) ∀uh, vh, wh ∈ Vh|E .

Then, the discrete formulation of problem (4.1) reads as follows: Find uh ∈ V 0
h ,

such that

bh(uh;uh, vh) = Fh(vh) ∀ vh ∈ V 0
h , (4.7)

where

bh(uh; vh, wh) =
∑

E∈Ωh

bEh (uh; vh, wh) ∀uh, vh, wh ∈ Vh,

and where the right-hand side of problem (4.7) is built as in (3.4).
In Ref. 7 it has been proved that the discrete problem (4.7) is well-posed and that

the following convergence result holds provided a suitable approximation property
is satisfied. The validity of such assumption will be verified through numerical
computations in Sec. 4.3.

Theorem 4.1. Assume that the following approximation property holds : there
exists α > 0 so that

‖κ(|∇v|2)− κ(GE
h (vI))‖∞ � hα ∀ v ∈ C0(Ω̄) ∩H1(Ω). (4.8)

Let u ∈ H2(Ω)∩H1
0 (Ω) and uh ∈ V 0

h be the solutions of the continuous and discrete
problems (4.1) and (4.7), respectively. Then, it holds

‖uI − uh‖1,h � hmin(1,α),

where uI is the interpolation of the exact solution defined as in (2.2).
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4.3. Numerical results

We propose to solve the nonlinear problem (4.7) via linearization employing the 
Kačanov method. The idealized algorithm (i.e. without any stopping criterion)
reads as follows: Given u(k)

h ∈ V 0
h

find u(k+1)
h ∈ V 0

h such that

bh(u(k)
h ;u(k+1)

h , vh) = Fh(vh) ∀ vh ∈ V 0
h , k ≥ 0.

The convergence of the sequence {u(k)
h }k≥0 to the “exact” discrete solution uh

of problem (4.7) is stated in the following result. We refer to Ref. 7 for the
proof.

Theorem 4.2. Let {u(k)
h }k≥0 be the sequence built by the Kačanov method. Then

u
(k)
h → uh in Vh, as k → +∞.

Next, we present a numerical example taken from Ref. 7, where we have
employed the feasible Kačanov method supplemented with a suitable stopping crite-
rion as described in Algorithm 4.1. The reliability of the stopping criterion employed
in Algorithm 4.1 is discussed in Ref. 7 where it is also proposed a computable error
indicator as a possible alternative strategy to stop the iterative scheme.

We suppose that the nonlinearity κ(·) obeys to the Carreau law (4.3), with
η0 = 3, η∞ = 1 and p = 1.7. The source term f is selected so that u(x, y) =
x(1 − x)y(1 − y)(1 − 2y) exp(−20((2x − 1)2)) is the analytical solution of prob-
lem (4.7). We test our scheme on the same sequences of grids as the ones con-
sidered in Sec. 3.3, and throughout this section we set the tolerance toll equal
to 10−8.

In Table 2 we report the computed relative errors ‖uI−uh‖1,h/‖uI‖1,h measured
in the discrete energy norm (2.1) as a function of the refinement level �. The last
row of Table 2 also shows the computed convergence rate obtained by the linear
regression algorithm. We observe that the error goes at a rate that is slightly better
than predicted by our theoretical results given in Theorem 4.1, probably due to
some improved convergence rate at the nodes of the mesh.

Algorithm 4.1: Feasible Kačanov algorithm

1 Given the initial guess u(0)
h , set toll, k = −1, u(−1)

h = u
(0)
h ;

2 while ‖u(k+1)
h − u(k)

h ‖1,h ≥ toll do
3 k + 1← k;

4 SOLVE bh(u(k)
h ;u(k+1)

h , vh) = Fh(vh) ∀ vh ∈ Vh;
5 end

6 SET uh = u
(k+1)
h ;
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Table 2. Quasilinear elliptic problem. (Example taken from Ref. 7) Computed
relative errors ‖uI − uh‖1,h/‖uI‖1,h in terms of the refinement level �.

Refinement level Median-type 1 Median-type 2 Quadrilateral

� = 1 2.6147e+0 2.6147e+0 4.0053e−1
� = 2 1.1489e+0 1.0159e+0 1.7027e−1
� = 3 4.8404e−1 6.0820e−1 5.5403e−2
� = 4 1.8830e−1 2.3530e−1 1.6881e−2
� = 5 5.8092e−2 8.6861e−2 5.7466e−3

Rate 1.5580 1.2843 1.2633
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Fig. 3. Quasilinear elliptic problem and numerical validation of assumption (4.8): the behavior
of ‖κ(Π0|∇u|2) − κ(GE

h (uI))‖∞,h vs. 1/h (loglog scale) is reported, with u denoting the exact
solution.

Finally, we present a numerical approach to validate hypothesis (4.8). Let us
introduce the following discrete norm

‖vh‖∞,h := sup
v∈Nh

|vv
h| ∀ vh ∈ Vh,

and let us denote with Π0 the projection onto the space of piecewise constant func-
tions defined on Ωh. By keeping in mind standard interpolation error estimates,
hypothesis (4.8) can be validated by checking the numerical behavior of the follow-
ing quantity

‖κ(Π0|∇u|2)− κ(GE
h (uI))‖∞,h,

where uI is the interpolation of the exact solution. The numerical results are
reported in Fig. 3, from which the value α = 1 can be guessed. Then, we can
conclude that the optimal parameter α appearing in (4.8) can be set equal to one.

5. Optimal Control Problems

In this section we show the ability of the MFD method to approximate elliptic opti-
mal control problems. To this aim we consider a paradigmatic problem, namely a
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linear-quadratic elliptic control problem. In Sec. 5.1 we recall the continuous prob-
lem, then Sec. 5.2 is devoted to present the MFD discretization and the approxi-
mation results and finally Sec. 5.3 presents some numerical results.

5.1. Problem and literature

In linear-quadratic elliptic control problems the goal is to drive the solution of a 
linear elliptic PDE to be close, in the least square sense, to a given function by 
acting on a control variable (for example, the right-hand side of the differential 
problem). The a priori error analysis of the finite element discretization of this 
class of problems dates back to the 1970s, in particular to the pioneering works.59,70 

More recently, the subject has seen a great renewal of interest and the literature has 
considerably grown. For sake of brevity we refer only to the works9,77,110 and to the 
recent unified analysis of Ref. 45 (see also the references therein). In particular, in 
Ref. 45 an abstract result for smooth nonlinear programming problems in Banach 
space is employed to derive new error estimates under the hypothesis that the state 
equation is approximated by a finite element scheme, while different discretization 
methods are used for the control functions. We also mention the a priori error 
analysis performed in Ref. 46 for a mixed finite element approximation of convex 
optimal control problems.

In contrast to this, a posteriori error analysis is quite recent and its origin can be 
traced back to Ref. 94 where residual-type error estimates have been obtained for 
distributed convex optimal control problems. Compared to the huge literature on 
a posteriori error estimators for linear problems the existing results for the optimal 
control problems are rather limited. Among the papers dealing with residual-based 
a posteriori error estimators for elliptic control problems we mention Refs. 76, 79 
and 111 and the unified analysis of Ref. 87. Recently, in Ref. 123 a multilevel trust 
region SQP technique has been combined with an adaptive mesh refinement strat-
egy based on residual a posteriori error estimators. Parallelly, quite an effort has 
been devoted to the study of the dual weighted residual method as an alterna-
tive technology to drive adaptive strategies to approximately solve elliptic optimal 
control problems (see e.g. Refs. 25, 75, 105 and 117).

In the sequel we will focus on the following prototypal problem: Find (F, y, u) 
such that

min
u∈K

{
1
2
‖y − y∗‖2L2(Ω) +

1
2
‖F − F ∗‖2L2(Ω) +

α

2
‖u− u∗‖2L2(Ω)

}
,

F = −∇y in Ω,

div(F ) = f + u in Ω,

y = 0 on ∂Ω,

(5.1)

where K is a given convex subset of L2(Ω), f, y∗, u∗ ∈ L2(Ω) and F ∗ ∈ [L2(Ω)]d are
given functions and α is a positive real number.
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We start introducing the variational formulation of problem (5.1) that reads as
follows. Find (F, y, u) ∈ H(div,Ω)× L2(Ω)×K such that

min
u∈K

{
1
2
‖y − y∗‖2L2(Ω) +

1
2
‖F − F ∗‖2L2(Ω) +

α

2
‖u− u∗‖2L2(Ω)

}
,

(F,G)L2(Ω) − (y, div(G))L2(Ω) = 0 ∀G ∈ H(div,Ω),

(div(F ), q)L2(Ω) = (f + u, q)L2(Ω) ∀ q ∈ L2(Ω).

It is well known (see e.g. Ref. 89) that the above problem admits a unique solution
(F, y, u) ∈ H(div,Ω) × L2(Ω) ×K if and only if there exists (P, z) ∈ H(div,Ω) ×
L2(Ω) such that (F, y, P, z, u) ∈ H(div,Ω)×L2(Ω)×H(div,Ω)×L2(Ω)×K satisfies
the following optimality conditions:

(F,G)L2(Ω) − (y, div(G))L2(Ω) = 0 ∀G ∈ H(div,Ω),

(div(F ), q)L2(Ω) = (f + u, q)L2(Ω) ∀ q ∈ L2(Ω),

(P,G)L2(Ω) − (z, div(G))L2(Ω) = −(F − F ∗, G)L2(Ω) ∀G ∈ H(div,Ω),

(divP, q)L2(Ω) = (y∗ − y, q)L2(Ω) ∀ q ∈ L2(Ω),

(α(u − u∗)− z, w − u)L2(Ω) ≥ 0 ∀w ∈ K.

(5.2)

5.2. Discrete problem and convergence

Let Xh and Qh be defined as in Sec. 2, and suppose that Kh ⊆ Qh is a closed
subset of Qh; then the discrete formulation of problem (5.2) is easily obtained as
follows: Find (Fh, yh, Ph, zh, uh) ∈ Xh ×Qh ×Xh ×Qh ×Kh such that

[Fh, Gh]Xh
− [yh,DIVh(Gh)]Qh

= 0 ∀Gh ∈ Xh,

[DIVh(Fh), q]Qh
= [fI + uh, qh]Qh

∀ qh ∈ Qh,

[Ph, Gh]Xh
− [zh,DIVh(Gh)]Qh

= −[Fh − F ∗
I , Gh]Xh

∀Gh ∈ Xh,

[DIVh(Ph), q]Qh
= [y∗I − yh, qh]Qh

∀ qh ∈ Qh,

[α(uh − u∗I )− zh, wh − uh]Qh
≥ 0 ∀wh ∈ Kh,

(5.3)

where fI, y∗I , F
∗
I and of u∗I are the interpolation of f, y∗, F ∗ and of u∗, respectively,

defined according to (2.5) and (2.7), and DIVh is the discrete divergence operator
defined in (2.8). Moreover, we can state the following a priori error estimates for
the MFD discretization of problem (5.2) which has been proved in Ref. 6.

Theorem 5.1. Let (F, y, P, z, u) ∈ X×Q×X×Q×K be the exact optimal solution
to (5.2) and let (Fh, yh, Ph, zh, uh) ∈ Xh×Qh×Xh×Qh×Kh be the discrete optimal
solution to (5.3). Then,

‖uI − uh‖Qh
� h,
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where uI ∈ Qh is the projection of u as defined in (2.5) and

‖FI − Fh‖Xh
+ ‖yI − yh‖Qh

� h,

‖PI − Ph‖Xh
+ ‖zI − zh‖Qh

� h,

where yI, zI ∈ Qh are the projection of y and z, respectively, defined as in (2.5), and
FI, PI ∈ Xh are the interpolants of F and P, respectively, defined according to (2.7).

We recall that the above estimates can be extended analogously to high-order
MFD method (see Ref. 6).

5.3. Numerical results

The numerical example presented in this section has been performed on the quadri-
lateral, median-type 1 and median-type 1 decompositions of the domain Ω = (0, 1)2

shown in Fig. 2. The optimization problem has been solved numerically by using the
Primal–Dual strategy and the constant α appearing in the optimality conditions
(5.2) has been set equal to 1. We have chosen

y∗ = (1− 2π2)y, F ∗ = −∇y, u∗ = exp(x2
1 + x2

2) sin(5πx1) + sin(5πx2),

and f = −∆y − u, so that the exact solution (F, y, P, z, u) of problem (5.2) is
given by:

y = sin(πx1) sin(πx2), z = −sin(πx1) sin(πx2), u = max(u∗ + z, 0),

F = −∇y, P = −∇z.

In Fig. 4 (loglog scale) we report the errors ‖yI − yh‖Qh
, ‖zI − zh‖Qh

, ‖uI − uh‖Qh

computed in the discrete energy norm defined in (2.4) versus 1/h. We can observe
that the errors of the primal and the dual variables y and z go to zero quadratically,
whereas for the control variable z we observe a convergence rate equal to 3/2 as
the mesh size h goes to zero. Moreover, let us recall that the error estimates given
in Theorem 5.1 predict a linear convergence rate for all of the variables, while the
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Fig. 4. Optimal control problem. Computed errors ‖yI − yh‖Qh
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vs.

1/h (loglog scale).
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computed rates seem to be at least half-order better than predicted. For a similar
problem in the finite element context, such a superconvergence phenomenon has
already been observed in Ref. 46, where a proof of this behavior for the case of the
lowest-order Raviart–Thomas elements is presented.

6. Towards a Real Industrial Problem: The Extrusion Process

Many problems in mechanical engineering and physics are mathematically modeled
by PDEs defined on domains which are not known a priori. The boundaries of
these domains are called free boundaries and must be determined as part of the
solution. This means that the problem, named free-boundary problem, apart from
the usual unknown quantities (e.g. velocity, pressure), contains additional geomet-
rical unknowns. A technologically and industrially important category of such free-
boundary problems is formed by the viscous free-boundary flow problems, which
occurs, for example, in polymer or rubber extrusion.

In the extrusion process the solid material is heated beyond the melting point
to be enough malleable. Then, the material is forced by one or more screws through
a special die to produce a continuous manufactured item (see Fig. 5). With such
a manufacturing process, it is possible to obtain, for example, sheets, films, pipes,
sections, layers and slabs. The main problem linked to extrusion is the die swell
phenomenon which is the increase of the cross-section of the material when it leaves
the die (see Fig. 6).

In the following, we briefly discuss a simplified mathematical model of the extru-
sion process that has been employed in Ref. 8. Let Ω ⊂ R

2 be the computational
domain. Let us consider Ω1,Ω2 ⊂ Ω such that Ω2 = Ω\Ω̄1. The region Ω1 (the
so-called barrel) includes the extrusion die, while Ω2 includes the free surface (see

Fig. 5. Extrusion process outline.
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(a) sketch of an horizontal extruder (b) Picture of a vertical polymeric extruder

(Courtesy of RadiciYarn s.p.a.)

Fig. 6. Die swell phenomenon.

Fig. 7. Two-dimensional sketch of the boundary conditions.

Fig. 7). The flow is modeled as non-Newtonian, incompressible, steady and isother-
mal. More precisely, the stationary extrusion process is described by the following
free-boundary problem: Find the free surface Γfree, the velocity u and the pressure
p such that 

divT(u, p) = 0 in Ω,

div u = 0 in Ω,

u = ud on Γinlet ∪ Γwall,

u ·n = 0 on Γfree,

T(u, p) ·n = 0 on Γout ∪ Γfree,

(6.1)

where T(u, p) = κ(|ε(u)|)ε(u)−pI is the stress tensor, ε(u) = (∇u+∇uT )/2 is the
strain tensor and |ε(u)| is the shear rate. As a consequence of the non-Newtonian
nature of the flow, the viscosity κ(·) depends on the shear rate |ε(u)|. Some of
the most common models employed in the literature (e.g. Carreau law and Cross
model) will be considered in Sec. 6.1.
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Finally, we denote by n the outer normal vector and define ud as follows:

ud =

{
uinlet on Γinlet,

0 on Γwall.
(6.2)

We remark that on Γfree two boundary conditions are simultaneously imposed;
this explains why Γfree (the free-boundary) is part of the unknowns.

In the rest of this section, we will shortly present two very recent lines of investi-
gation naturally stemming from the aim of assembling and testing the main building
blocks to perform, in the near future, the MFD numerical simulation of the extru-
sion process described above. To be more specific, in Sec. 6.1 we will address the
approximation of nonlinear Stokes equations, while in Sec. 6.2 we will study the
numerical solution of a simple free-boundary elliptic problem. The latter will be
first recast as a shape optimization problem, i.e. a control problem where the con-
trol variable is represented by the computational domain. In parallel to this, we will
also explore the capability of the MFD method to deal with very general polygonal
decomposition by considering the mimetic approximation of some other simple, but
paradigmatic, shape optimization problems.

6.1. Nonlinear Stokes problems

In this subsection, we briefly describe the numerical performance of the MFD
method for the approximate solution of nonlinear Stokes problems. In particular,
we will consider two different non-Newtonian fluids; the first one governed by the
Carreau law and the latter by the Cross model.

Carreau law. We address the solution of the following nonlinear Stokes problem:
−divT(u, p) = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

(6.3)

where T(u, p) = κ(|ε(u)|2)ε(u) − pI and the nonlinear function κ(·) obeys the
Carreau law, i.e.

κ(|ε(u)|2) = η∞ + (η0 − η∞)(1 + λ|ε(u)|2)
p−2
2 ,

with η0 ≥ η∞ > 0, λ > 0 and p ∈ (1, 2). The above nonlinear Stokes problem (6.3)
is approximated by resorting to the Uzawa’s iterative method which requires the
solution of a quasilinear elliptic problem at each iteration. The latter is addressed by
employing the MFD method that is an extension of the scheme in Sec. 4. Without
addressing the details, we just mention that we search for uh ∈ [Vh]2 and ph ∈ Qh.

In the following, we present a numerical example taken from Ref. 51 where
the nonlinearity is set equal to the Carreau law with the following parameters:
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η∞ = 1, η0 = 2, λ  = 1  and  p = 1.2. We set Ω = (0, 1)2 and we choose the forcing 
term f in such a way that the exact solution of (6.3) is

u =
[(

1− cos
(

2π(epx − 1)
ep − 1

))
sin(2πy),

−pepx sin
(

2π(epx − 1)
ep − 1

)
1− cos(2πy)

ep − 1

]
,

p = 2πpepx sin
(

2π(epx − 1)
ep − 1

)
sin(2πy)
ep − 1

.

We run the numerical test on the set of meshes depicted in Fig. 2. The computed
errors ‖pI − ph‖Qh

and ‖uI − uh‖1,h versus the mesh size h are reported in Fig. 8.
Here, (uh, ph) denotes the exact discrete solution, (pI,uI) are the interpolations
of the exact continuous solution defined as in Sec. 2.2, ‖·‖1,h is the energy norm
defined as in (2.1), and ‖·‖Qh

is the mesh-dependent norm introduced in (2.4). We
can observe a linear convergence for both variables.

Then, for completeness, we present a numerical example on the unitary square
Ω = (0, 1)2 where the exact solution (u, p) of problem (6.3) is set as follows:

u = [−cos(2πx) sin(2πy) + sin(2πy), sin(2πx) cos(2πy)− sin(2πx)],

p = 2π(cos(2πy)− cos(2πx)).

and we choose η0 = 3, η∞ = 2, λ = 1 and p = 0. Strictly speaking, due to the par-
ticular choice of the parameter p, the resulting non-Newtonian flow is not governed
by a Carreau law.

In Fig. 9 (loglog scale) we report, for the set of computational meshes depicted
in Fig. 2, the computed errors ‖pI − ph‖Qh

and ‖uI − uh‖1,h versus the mesh size
h. As before, we can observe that the computed errors go to zero linearly as the
mesh size h goes to zero.
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Fig. 8. Nonlinear Stokes problem: MFD discretization of problem (6.3). Computed errors vs. 1/h.
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Fig. 9. Nonlinear Stokes problem: MFD discretization of problem (6.3). Computed errors vs. 1/h.
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Fig. 10. Nonlinear Stokes problem: MFD discretization of problem (6.4). Computational domain
Ω (above) and obtained numerical velocity field (below).

Cross model. We now consider a different non-Newtonian fluid, namely one gov-
erned by the Cross model (see (6.5) below). The computational domain corresponds
to a simplified barrel (cf. Ω1 in Fig. 7). In particular, the domain Ω is depicted in
Fig. 10 (above). The boundary ∂Ω is labeled as follows: Γin := {(x, y) :x = −4}
and Γout = {(x, y) :x = 4} are the inlet and outlet boundary, respectively, while
Γs := {(x, y) : y = 0} and Γw := {(x, y) : y = 1} are the lower and upper part of the
channel, respectively.

The nonlinear Stokes problem reads as follows:



divT(u, p) = 0 in Ω,

div u = 0 in Ω,

u = ud on Γw ∪ Γin,

T(u, p) ·n = 0 on Γout,

u ·n = 0, (T(u, p) ·n) · t = 0 on Γs,

(6.4)
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Table 3. Parameter of the Cross

model (6.5) (taken from Ref. 8).

Parameter Value

η0 162.18
η∞ 0
λ 0.0003244
p 0.9493

where T(u, p) := κ(|ε(u)|)ε(u) − pI and the nonlinear function κ has been chosen
equal to the Cross model

κ(|ε(u)|) := η∞ +
η0 − η∞

1 + (λ|ε(u)|)p
, (6.5)

where the values of the parameters η0, η∞, p, λ reported in Table 3 are representative
of a polymeric fluid (see Ref. 8). We set

ud =

{
[1− y2, 0]T on Γin,

0 on Γw.

Note that on Γs we enforce an axial-symmetry boundary condition.
In Fig. 10 (below) we report the obtained numerical velocity field.

6.2. Shape optimization problems

In this section, we apply the MFD method to solve shape optimization problems of
the form:

Find Ω∗ ∈ Uad :J (Ω∗, y(Ω∗)) = inf
Ω∈Uad

J (Ω, y(Ω)),

where J is a given cost functional, Uad is the set of admissible domains in R
2

and y(Ω) is the solution of a PDE on Ω (see e.g. Ref. 52 for an introduction to
shape optimization). In this context, the crucial issue in obtaining reliable numeri-
cal simulations is to correctly handle the deformation of the computational domain
that usually requires a massive use of re-meshing techniques to preserve mesh reg-
ularity (see e.g. Ref. 99). Here, we show that the MFD method represents a very
promising technology to solve shape optimization problems, without resorting to
any re-meshing strategy, since the MFD method can naturally deal with meshes
made of very general polygons.

In the rest of the section we will address three different problems. The first two
are classical shape optimization problems governed by an elliptic equation and a
Stokes equation, respectively. The third one is related to the solution of an elliptic
free-boundary problem.

Elliptic problem. We consider the benchmark problem introduced in Ref. 54. In
particular, we consider the domain Ω ⊂ R

2 with ∂Ω = Γf ∪Σ1 ∪Σ2 as depicted in
Fig. 11. Moreover, let D be an open bounded subset of Ω. The set Uad of admissible
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Fig. 11. Computational domain for the optimization problem (6.6) and (6.7).

domains contains all domains obtained through a deformation of Ω by keeping Σ1

and Σ2 fixed and by moving only Γf in such a way that Γf ∩D = ∅. We define the
cost functional as follows:

J (Ω, y(Ω)) :=
1
2

∫
D

(y(Ω)− zg)2dV +
γ

2

(∫
Γf

dS − P
)2

, (6.6)

where γ > 0 is a penalization parameter for the length of the moving boundary
Γf , P is a target value for the perimeter, zg :D → R is a given function and y(Ω)
is the solution of the following elliptic problem on Ω

−∆y = 0 in Ω, y = 0 on Σ1, ∂ny = 0 on Σ2, ∂ny = 1 on Γf . (6.7)

Let x = (x1, x2), and let ‖·‖ denote the Euclidean norm. In the numerical test, we
choose the region D equal to the half-ring {2 ≤ ‖x‖ ≤ 2.5} ∩ {x2 > 0} and zg is
the exact solution of (6.7) on Ω = {1 < ‖x‖ < 3} ∩ {x2 > 0}. We point out that a
global minimizer exists and it is exactly Ω∗ = {1 < ‖x‖ < 3} ∩ {x2 > 0}.

In Fig. 12 we report the starting computational domain Ω0 and the final optimal
computational domain obtained after four iterations of a steepest-descent like algo-
rithm (see e.g. Ref. 54 for more details). In the algorithm, we solve problem (6.7)
using the mixed MFD method as in Sec. 5.2, see also Refs. 36 and 39. Boundary
conditions are suitably modified to include the Neumann term. In Fig. 15 we report
the convergence history in terms of the iteration numbers, while in Fig. 13 (right)
we can observe the deformation of the elements close to the moving boundary;
numerical simulations show that they do not affect the efficiency of the algorithm.
Therefore, re-meshing technique seems not to be necessary when using the MFD
method for solving shape optimization problems. This issue will be the object of
further investigations.

In the sequel, we briefly explore the possibility of incorporating mesh adaptivity
into the optimization process (see e.g. Ref. 99 for a similar approach in the FEM
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Fig. 12. Shape optimization problem (non-adaptive strategy). Starting computational domain
Ω0 (left) and final one Ω4 (right) obtained after four iterations.

Fig. 13. Shape optimization problem (non-adaptive strategy). Zoom on the elements of the initial
domain Ω0 (left) and the final domain Ω4 (right). The computational mesh of Ω4 exhibits distorted
elements.

context). To drive the adaptive procedure we employ heuristic indicators, postpon-
ing a more rigorous analysis to future works. In particular, we employ the sum of
the following two local error indicators:

(η1) for every polygon E ⊂ Ωh the indicator η1(E) is the local discrete H1(E)
norm of the MFD approximate solution to (6.7);

(η2) for every polygon E ⊂ D the indicator η2(E) is the MFD approximation of
the quantity 1

2

∫
E(y(Ω)− zg)2dV and is set to zero outside D.

The local error indicators (η1 + η2)(E) are then employed to mark the elements
to be refined, while the marking procedure relies on the Dörfler strategy57 with
marking parameter θ = 0.5. The refinement modulus is the one described in Ref. 3.
We decide a priori to perform an adaptive refinement step every two iterations
of the minimization process. More sophisticated strategies (see e.g. Ref. 99) will
be explored in future investigations. In Fig. 14 we report some snapshots of the
adaptively refined computational meshes at iteration n = 0, 2, 4, 6. Due to the mesh
refinement performed close to the movable boundary Γ, the optimal configuration
Ω∗ results to be more accurately approximated than in the non-adaptive case.

Finally, we compare the performances of the adaptive and non-adaptive strate-
gies. In Fig. 15 we plot the histories of convergence in terms of the functional
J1 = 1

2

∫
D

(y(Ω) − zg)2dV , whereas in Table 4 we report the values of J1 together
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Fig. 14. Shape optimization problem (adaptive strategy). Snapshots of adaptively refined com-
putational meshes at iteration n = 0, 2, 4, 6.

Fig. 15. Shape optimization problem. Comparison of the adaptive and non-adaptive strategies
in terms of the convergence history of the functional J1.

with the employed degrees of freedom. From a close inspection, it is evident that
at comparable number of degrees of freedom the adaptive strategy obtains lower
values of the cost functional.

Drag minimization. In the second example, we are interested in modeling the
flow of a fluid around an obstacle, whose optimal form has to be determined in
order to minimize the drag (see e.g. the pioneering works Refs. 103 and 104). Let
Ω ⊂ R

2 be a bounded domain (channel) as depicted in Fig. 16 (left) where the
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Table 4. Adaptive and non-adaptive strategies: Cost functional versus dofs.

Non-adaptive Adaptive

Iteration Ndofs J1 Ndofs J1

0 1207 9.990754E−03 157 8.780796E−03
1 1207 6.501192E−03 157 5.103216E−03
2 1207 1.493240E−03 283 5.735032E−04
3 1207 9.618140E−04 283 4.441652E−04
4 1207 8.911968E−04 564 1.368972E−04

5 — — 564 5.677177E−05
6 — — 1194 7.538973E−05
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Fig. 16. Drag minimization. Initial configuration of the domain Ω (left), obtained domain (mid-
dle) and computed drag versus the number of iteration (right).

obstacle is represented by the half-circle lying on the lower part of the domain and
it is denoted by Γf . The remaining parts of the boundary are labeled as follows:
Γin := {(x, y) :x = −1} and Γout := {(x, y) :x = 1} are the inflow and the outflow
layers, respectively while Γs := {(x, y) : y = 0} and Γw := {(x, y) : y = 1} are the
lower and upper part of the channel, respectively. The set Uad of admissible domains
contains all domains obtained through a deformation of Ω by moving only Γf and
keeping fixed the remaining parts of the boundary.

The fluid flow is modeled by the following linear Stokes problem:

−div(T(u, p)) = 0 in Ω,

div u = 0 in Ω,

u = ud on Γw ∪ Γf ∪ Γin,

T(u, p) ·n = 0 on Γout,

u ·n = 0(T(u, p) ·n) · t = 0 on Γs,

(6.8)

where T(u, p) := 2µε(u)− pI denotes the Cauchy tensor and µ = 1 is the viscosity.
We set

ud =

{
[1− y20]T on Γin,

0 on Γf ∪ Γw.
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Note that on Γs we imposed an axial-symmetry boundary condition while on Γw

we set a non-slip boundary condition. We choose to minimize the following cost
functional:

J (Ω,u, p) := −
∫

Γf

(T(u, p)n) · v̂∞dS +
λ

2

(
|Ω0| −

∫
Ω

dx
)2

, (6.9)

where (u, p) solves (6.8), v̂∞ = [1, 0] is the direction of the fluid and |Ω0| is a given
target value for the volume. The first term of the functional (6.9) represents the
drag of the fluid, while the second one penalizes the volume constraint. In Fig. 16
we plot the initial and final configuration and we report in Fig. 17 the values of the
drag −

∫
Γf

(T(u, p)n) · v̂∞dS versus the number of iterations. We note that the drag
decreases along the iterations and the obtained final configuration is in agreement
with the so-called rugby-ball optimal shape known in Ref. 103.

Free-boundary problem. In the last example, we are interested in solving a free-
boundary elliptic problem of the form: Given λ < 0 and Γ, find the free-boundary
Γf := ∂Ω\Γ̄, so that 

−∆u = 0 in Ω,

u = 1 on Γ,

u = 0 on Γf ,

∂u

∂n
= λ on Γf .

(6.10)

A possible approach to solve (6.10) is to formulate it as a shape optimization prob-
lem (see Refs. 73 and 115 for more details). In particular, we aim at minimizing the
cost functional

J (Ω, u) =
∫

Γf

u2dS , (6.11)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

iteration number

 obstacle drag

Fig. 17. Drag minimization. Computed drag vs. the number of iteration.
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where u solves the following auxiliary boundary value problem:
−∆u = 0 in Ω,

u = 1 on Γ,

αu +
∂u

∂n
= λ on Γf .

(6.12)

It is worth noting that the cost functional (6.11) has been chosen in order to incor-
porate into (6.12) the Dirichlet boundary condition set on Γf in the original free-
boundary problem (6.10).

The minimization of the functional J (Ω, u) is performed over the set Uad of
admissible configurations Ω obtained by keeping fixed the boundary Γ and deform-
ing only Γf (the free-boundary).

As the exact solution of the free-boundary problem (6.10) is zero on Γf , the
dumping parameter α > 0 appearing in (6.12) can be chosen freely. However, fol-
lowing Ref. 115, it turns out that α = H , with H being the mean curvature of Γf ,
is a good choice leading in practice to a more robust numerical procedure.

We implement a numerical example originally introduced in Ref. 115. We con-
sider an annular domain, where the fixed boundary is Γ = {‖x‖ = 1}. We choose
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Fig. 18. Free-boundary. Initial (left) and final (right) configuration.
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Fig. 19. Free-boundary. Computed functional (6.11) vs. the number of iteration.
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λ = −1 and iteratively solve the problem (6.12) on the half-annulus by imposing
proper axial-symmetry boundary conditions on the x-axis (cf. Fig. 18). The ini-
tial (non-circular) approximation of the free-boundary Γf is depicted in Fig. 18
(left), while the (circular) final configuration is reported in Fig. 18 (right). Finally,
in Fig. 19 we plot the value of the functional (6.11) versus the number of total
iterations.

7. Conclusions

In this paper we reviewed some recent applications of the MFD method to nonlin-
ear problems (variational inequalities and quasilinear elliptic equations) and con-
strained control problems governed by linear elliptic PDEs. In all these cases we
showed the efficacy of MFDs in building accurate numerical approximations. More-
over, driven by a real-world industrial application, the simulation of the extrusion
process, we also presented two very recent lines of investigation naturally stemming
from the problems and the techniques considered in this review, namely the impact
of the MFD method on the approximate solution of nonlinear Stokes equations and
shape optimization/free-boundary problems.
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