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Optimal under-actuated kinematic motion planning on the ε-group �

Helen C. Henningera, James D. Biggsa,

a Dipartimento di Scienze e Tecnologie Aerospaziale, Politecnico di Milano, Via La Masa 34 - 20156 Milano, Italy

Abstract
A global motion planning method is described based on the solution of minimum energy-type curves on the frame bundle of con-

nected surfaces of arbitrary constant cross sectional curvature ε. Applying the geometric framing of Pontryagin’s principle gives rise

to necessary conditions for optimality in the form of a boundary value problem. This arbitrary dimensional boundary value problem is

solved using a numerical shooting method derived from a general Lax pair solution. The paper then specializes to the 3-dimensional

case where the Lax pair equations are integrable. A semi-analytic method for matching the boundary conditions is proposed by using

the analytic form of the extremal solutions and a closed form solution for the exponential map. This semi-analytical approach has the

advantage that an analytic description of the control accelerations can be derived and enables actuator constraints to be incorporated via

time reparametrization. The method is applied to two examples in space mechanics: the attitude control of a spacecraft with two reaction

wheels and the spacecraft docking problem.
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1 Introduction
This paper addresses the motion planning problem on the frame

bundle and isometry group of m-dimensional simply connected

surfaces of constant cross sectional curvature ε. The motion plan-

ner considered here deals with the case where ε is arbitrary with

frame bundle, coined here, the ε-group Gε. While according to

the Killing-Hopf theorem, any complete connected Riemann space

Mm, m ≥ 2 of constant curvature ε has a universal cover Sm, Hm

or Em and so the value of ε is usually set to 1, 0 or -1, we consider

ε ∈ [−1, 0) ∪ (0, 1] so that ε = 0 can be considered only as a

limiting case. This is useful in that for ε �= 0 the trace form is non-

degenerate and our optimal control problem reduces to solving an

identity derived from a Lax pair form. Moreover, a simple iterative

map can be developed from this identity to numerically solve for

the optimal solution g ∈ Gε. In the case ε = 0 no such Lax pair

form exists due to the fact that it has a degenerate bi-linear trace

form, but its solution can be considered in the limit.

The structure-preserving numerical method for solving opti-

mal trajectores in this paper can be applied to arbitrary dimensions

and for arbitrary curvature of the underlying space form (approx-

imately optimal in the case ε = 0 where we approximate it by a

very small number in part of the numerical integration). In addi-

tion, the paper specializes to the completely integrable 3-D case

where the extremal curves can be solved explicitly in terms of el-

liptic functions. Furthermore, the exponential map used to solve

the boundary conditions is solved in closed-form for arbitrary ε.
This leads us to a novel semi-analytic formulation for solving this

class of optimal control problems on 3-D Lie groups for arbitrary

ε. Moreover, in the integrable case the velocities and acceleration

components can be derived from the analytically defined extremal

curves and as such time-parameterization can be used to ensure

dynamic feasibility of the kinematically feasibile solution.

As we consider m-dimensional Riemann spaces, the isometry

group Gε will correspond to the groups SO(m + 1) (in the case

ε = 1), SE(m) (in the case ε = 0) and SO(m, 1) (in the case

ε = −1). The dimension of Gε is then n = m(m+1)
2 . This pa-

per initially considers systems whose configuration space g ∈ Gε
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satisfies the following differential constraint{
ġ = g(

∑n
i=1 viAi)

g(0) = g0 and g(tf ) = gd.
(1)

The vector [v1, v2, ..., vn]
� ∈ Rn are continuous functions, g ∈

Gε, and A1, ..., An is the basis of the ε-Lie algebra gε.
There are a plethora of applications that can be modeled by (1).

For example, the kinematics of various autonomous systems such

as the attitude kinematics (ε = 1, n = 3) of spacecraft [1–3],

including those with velocity constraints [4] and those under-

actuated in control [5,6]. Systems such as wheeled robots, robotic

grippers and slender underwater vehicles that exhibit a sliding-type

constraint (ε = 0, n = 2 or n = 3 ) [7–14] and in wider fields

such as switched electrical networks [15], problems of quantum

control [16] and planning curvature- and torsion-constrained 3D

printed implants for facilitating radiation therapy [17]. Various

methods have been developed to tackle the motion planning prob-

lem of left-invariant (respectively right) systems defined on ma-

trix Lie groups of the form (1) where it is necessary to match the

boundary condition g(0) = g0 and g(T ) = gT . For example, the

works [18] and [13] introduce the idea of solving non-holonomic

motion planning problems by expressing the control analytically

in terms of either elliptic functions [18] or sinusoids [13]. The pa-

rameters of these analytic control functions must then be computed

to match the boundary conditions imposed on the motion planning

problem. While the method we construct in this paper consid-

ers systems with non-holonomic constraints, for the purposes of

controls these systems are treated as kinematic systems, i.e., the

velocities are assumed to be directly controlled or equivalently the

dynamics of the system can be perfectly canceled with the con-

trol. The distinction between these systems and dynamic non-

holonomic systems is detailed in [31]. In [3], the author solves

the necessary conditions for optimality using Pontryagin’s princi-

ple and suggests using a standard numerical shooting method to

solve for the boundary conditions via numerical integration. The

paper [19] applies classical averaging theory; they produce sinu-

soidal controls that solve this motion planning problem with O(εp)
accuracy in general, and exactly if the Lie algebra is nilpotent. The

projection to the group is determined in local coordinates using

the Wei-Norman product of exponentials representation and the

Magnus single exponential representation. The paper [20] solves

the problem for semi-simple and compact Lie groups via a con-

tinuation method. The restriction to a compact group is crucial

to their handling, since the continuation method requires that the

Wazewski equation must have a global solution. [21] proposes a

general strategy for solving (1)-(19) by making use of an extended

system, which comprises the original system plus higher-order Lie

brackets of the system vector fields. The control which is deter-

mined by such a system provides an exact solution of the original

problem if the given system is nilpotent or for the class of sys-

tems they classify as "feedback nilpotentizable", and for all other

systems the solutions are approximate. The thesis [33] analyses

the sub-Riemannian optimal control problems on SO(3) using a

variational approach, while Brockett [34] and Jurdjevic [23] use

the Pontryagin maximum principle. The work [32] analyzes the

Hamiltonian structure of kinematic optimal control problems, par-

ticularly the sub-Riemannian optimal control problems on com-

pact semi-simple Lie groups and gives a Lax pair form defining

the necessary conditions for optimality for the special case where

Gε is the frame bundle of a Riemannian symmetric space; in this

paper, Gε is semi-simple and compact only in the case ε > 0.

The general approach in this paper is to focus on a class of

optimal solutions to the motion planning problem. Moreover, in

addition to considering matching the boundary conditions the fol-

lowing quadratic cost is imposed

J =

∫ tf

0

s∑
i=1

civi(t)
2dt (2)

where s ≤ n the time tf is a fixed variable and ci > 0 are con-

stant scalar weights. Integrability of the extremal equations for

an optimal control problem of this type has been detailed in [31].

Minimizing the cost (2) leads us to solve the system (1) as an opti-

mal control problem, using the geometric framing of Pontryagin’s

maximum principle. However, the boundary conditions are not

contained in the cost function and to match them specific values of

the initial conditions of the extremal curves have to be computed.

In this paper we derive an identity from the general Lax Pair so-

lution that arises from this optimal control problem on Lie groups

and use it to construct an iterative approach to solve the motion

planning problem for prescribed boundary conditions. The ap-

proach has the advantages over previous methods as (i) it general-

izes to a large class of n-dimensional systems with a left-invariant

differential constraint defined on the frame bundles of spaces of

arbitrary constant cross sectional curvature (ii) It does not require

any analytical approximation methods such as averaging (iii) The

curve g(t) on the group is a global, co-ordinate-free solution. This

means that the method avoids singularities and the un-winding

problem that can be encountered when parameterizing the group

(iv) the derived numerical shooting and integration method used

for matching the boundary conditions preserves the first integral

and the structure of the group.

The last section of the paper specializes to the completely in-

tegrable 3-D case for arbitrary ε. For the case where the optimal

control problem lifts to a quadratic Hamiltonian a general solu-

tion to the extremal curves are explicitly solved in terms of Jacobi

elliptic functions. Furthermore, a closed-form solution of the ex-

ponential map is derived which allows the construction of a semi-

analytical shooting method. Due to the semi-analytical nature of
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this case the required velocities,accelerations and controls can also

be constructed analytically. The integrable cases, therefore, lend

themselves to the possibility of time-paramaterization which can

be used to ensure dynamic feasibility in practical problems. To

this end the method is applied to two problems in space mechan-

ics 1) the slewing of an underactuated spacecraft using only two

reaction wheels and 2) a spacecraft docking problem where the

spacecraft can only thrust in the forward and backwards directions

of the body-fixed frame and it must rotate to point the thrusters in

the required direction in inertial space.

2 Optimal trajectories of minimum-
energy type on the ε-group

This section presents background to the geometric framing of Pon-

tryagin’s principle for the m-dimensional ε-group and some well-

known properties of Gε and its Lie algebra gε (§§2.1) as well as the

form of the Lax pair equations for the n-dimensional case. A novel

identity is constructed expressing the extremal curves on the Lie

algebra gε in terms of the curve g(t) which holds for all ε values

(ε = 0 is approached as a limiting case as ε → 0). This iden-

tity is then used to construct a simple iterative method alonside a

first-order Lie symplectic Euler scheme to determine the initial ex-

tremals that are required to match the boundary conditions on the

group.

2.1 Background
Here we review some known facts of optimal control on matrix

Lie groups and facts about the ε-Lie algebra and fix notation. Ref-

erences used are [22–25, 31, 32].

Given the matrix g ∈ Gε, and defining the m+ 1×m+ 1 matrix

Jε = diag(1, · · · , 1, 1
ε ), then for all integer ε,

1. gJεg
� = Jε

2. det(g) = 1.

Note that in the case ε = 1, g1 = so(m+ 1), g−1 = so(m, 1)
and g0 = se(m), the Lie algebras of the Special Orthogonal

Group, Lorenz group and Special Euclidean Group, respectively.

For all values of ε, gε can be written as a direct sum gε = p⊕k,
where in the case ε �= 0, this direct sum is a Cartan decomposition,

i.e. the subalgebras p and k have the relations [p, p] ⊆ k, [p, k] = p
and [k, k] ⊆ k. In the case ε = 0, [p, p] = 0 and the properties of

the Cartan decomposition are lost.

For ε �= 0, the bilinear form

κ(A,B) = −1

2
tr(AB), A,B ∈ gε (3)

is nondegenerate. Let E1, E2, ..., Em denote the standard basis for

p such that

a1E1 + ...+ anEm =

⎡⎢⎢⎢⎣
0 · · · 0 a1
...

...
...

...

0 · · · 0 am
−εa1 · · · −εam 0

⎤⎥⎥⎥⎦
and let p1, p2, ..., pm denote the coordinate of a point p in p∗ rela-

tive to the dual basis E∗
1 , E

∗
2 , ..., E

∗
m.

For each p ∈ p∗, let hε in gε be defined via the relation

p(A) = κ(hε, A) for all A ∈ gε.

We denote hi = p(Ai) for any p ∈ g∗ε . It follows that

hε =

⎡⎢⎢⎢⎣
0 · · · 0 1

εh1

...
...

...
...

0 · · · 0 1
εhm

−h1 · · · −hm 0

⎤⎥⎥⎥⎦ .

The basis A1, A2, ..., An of gε is chosen, such that Ei = Ai

for i = 1, 2, ...,m and k = {Am+1, ..., An} (in the case n = 3 this

corresponds to the basis (19)).

Given an element A of gε in the case ε = 0, A = Ap + Ak

where Ap ∈ p, Ak ∈ k, a natural quadratic form can be defined:

〈A,B〉0 = Âp · B̂p + 〈Ak, Bk〉 (4)

where the map ̂ : p→ Rn denotes the hat map

̂⎡⎢⎢⎢⎣
0 · · · 0 a1
...

...
...

...

0 · · · 0 am
0 · · · 0 0

⎤⎥⎥⎥⎦ =

⎡⎢⎣a1
...

am

⎤⎥⎦ .

For a, b ∈ Rn, a = [a1, · · · , am]�, b = [b1, · · · , bm]�, the

product a ∧ b denotes the m×m antisymmetric matrix such that

(a ∧ b)(x) = (a · x)b− (b · x)a for all x in Rm. (5)

Since using the nondegenerate form 〈·, ·〉0 in the case ε = 0,

g∗ε may also be identified with gε, and therefore in what follows all

functions on g∗ε will be mapped to gε for ε ∈ [0, 1].
The Pontryagin Maximum Principle [26] is a necessary con-

dition for optimality which is most naturally expressed in the lan-

guage of the geometry of the cotangent bundle T ∗Gε of Gε. The

cotangent bundle T ∗Gε can be trivialized (from the left) such that

T ∗Gε = Gε × g∗ε , where g∗ε is the dual space of the Lie algebra

gε [23]. The Pontryagin maximum principle associates to (1)-(2)

an optimal Hamiltonian function H on T ∗Gε = Gε × g∗ε . Using
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the nondegenerate forms (3) and (4) g∗ε will be identified with gε
for all ε ∈ [0, 1] and so in our case the Hamiltonian function is a

function on Gε × gε.
An optimal trajectory g(·) : [0, tf ] → Gε is a projection of

an integral curve (g(·), h(·)) of the time-varying Hamiltonian vec-

tor field
−→
H that satisfies the boundary conditions given in (1)-(2).

This is called the projection "downstairs", and h(·) is the extremal

curve, or the projection "upstairs" of (g(·), h(·)). The projection

downstairs satisfies the differential equation

g−1(t)

(
dg

dt

)
= dH

where dH =
∑m

i=1
∂H
∂hi

Ai +
∑n

j=m+1
∂H
∂hj

Aj and we denote

Ωε =
∑m

i=1
∂H
∂hi

Ai ∈ p and Ωk =
∑n

j=m+1
∂H
∂hj

Aj ∈ k.

Here a proposition is presented which gives the differential

equation in Lax pair form satisfied by the projection upstairs on

gε.

Proposition 1. [25] For optimal control problems of the form (1)-
(2) in the case ε �= 0, the extremal is the solution of the following
differential equations:

ġ = g(t)dH (6)

ḣk = [hk,Ωk] +
1

ε
[εhε,Ωε] (7)

εḣε = [εhε,Ωk] + ε[hk,Ωε] (8)

where h ∈ gε, h = hk + hε, hk = hm+1Am+1 + ...+ hnAn ∈ k.
In the case ε = 0, the equations (7)-(8) are given by

ḣk = [hk,Ωk] + L̂p ∧ Ω̂0 (9)

ḣp = [hp,Ωk] (10)

where hp = limε→ εhε. The equations (9)-(10) follow from equa-
tions (7)-(8) as ε→ 0.

We prove a new result which will be needed for solving the

extremal equations in the non-integrable case in such a way that

ε ∈ [−1, 1] can be dealt with in an inclusive fashion.

Theorem 1. Given the solution curve upstairs, h(t) = hk(t) +
hε(t), on gε for ε �= 0, it satisfies the equation

g(t)(εhk(t) + εhε(t))g−1(t) = C, (11)

a constant. In the case ε = 0, h(t) = hp(t) + hk(t) satisfies the
equation

g(t)hp(t)g(t)−1 = C (12)

where (12) is the limiting case of equation (11) as ε→ 0.

Proof. In the cases ε �= 0, this can be seen by multiplying the
equation (11) through by 1

ε and differentiating on both sides, mak-
ing use of equation (6) to note that ġ(t) = g(t) dH

ḣk + ḣε =
(
g(t)−1 C g(t)

)
˙

= −g−1(t)ġ(t)g−1(t)(C)g(t) + g(t)−1 C ġ(t)

= −g−1(t)(g(t)(Ωε +Ωk))g
−1(t)(C)g(t)

+g(t)−1 C (g(t)(Ωε +Ωk))

= −(Ωε +Ωk)g
−1(t)(C)g(t) + g(t)−1 C (g(t)(Ωε +Ωk))

= [hk,Ωε] + [hε,Ωε] + [hk,Ωk] + [hε,Ωk]

⇒ ḣk = [hε,Ωε] + [hk,Ωk]

ḣε = [hk,Ωε] + [hε,Ωk]

which is consistent with (7)-(8). Similarly, in the case ε = 0, this

can be shown by differentiating (12) on both sides

ḣp =
(
g(t)−1 C g(t)

)
˙

= −g−1(t)ġ(t)g−1(t)Cg(t) + g−1(t)Cġ(t)

= −(Ω0 +Ωk)h
p(t) + hp(t)(Ω0 +Ωk)

= [hp(t),Ω0] + [hp(t),Ωk]

= [hp(t),Ωk]

where Ω0 =

⎡⎢⎢⎢⎣
0 · · · ∂H

∂h1

0 · · · ...

0 · · · ∂H
∂hn

0 · · · 0

⎤⎥⎥⎥⎦ and the last line follows since

[p, p] = 0 in the case ε = 0, and so [hp(t),Ω0] = 0. This equa-

tion is consistent with equation (10). Taking the limit as ε → 0 in

equation (11), note that limε→0 εh
k = 0, and limε→0 εh

ε = hp,

and so (11) tends to (12) as ε→ 0.

Proposition 2. The function

M = h2
1 + h2

2 + ...+ h2
m + ε(h2

m+1 + ...+ h2
n)

is a first integral of the system (7)-(8).

Proof. This follows directly from theorem 1: since g(t)(hk(t) +
hε(t))g−1(t) = C, then

κ(g(t)h(t)2g−1(t)) = κ(C2)

⇒h2
1(t) + ...+ h2

m(t) + ε(h2
m+1(t) + ...+ h2

n(t)) = constant

Using the discrete representation

gi+1 = gi exp(Ωih) (13)

where h is a chosen step-size, ti = h · i and Ωi = εhε(ti)+hk(ti),
it is possible to construct a, structure-preserving, iterative method
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to compute the numerical solution to equations (6)-(8) using equa-

tion (11). Firstly, denoting P (t) = εhk(t) + εhε(t), then from

(11),

g(t)P (t)g(t)−1 = g(0)P (0)g(0)−1,

which can be expressed in a discrete form as:

Pi+1 = g−1
i+1giPig

−1
i gi+1 (14)

where from (13), g−1
i gi+1 = exp(Ωih), and so

Pi+1 = exp(Ωih)
−1Pi exp(Ωih). (15)

We then notice that Pi = Ωp
i + εΩk

i by definition, where Ωp
i stands

for the projection on p of Ωi, and Ωk
i is the projection on k (in the

3-D case, for example, Ωp
i = Ω13

i A1 +Ω23
i A2 and Ωk

i = Ω21
i A3).

Thus, we arrive at the first-order Lie symplectic Euler method

gi+1 = gi exp(Ωih)
Pi+1 = exp(Ωih)

−1 Pi exp(Ωih)
Ωi = P p

i + 1
εP

k
i

(16)

where the initial step values are Ω0 = (εhε)0 + (hk)0, P0 =
(εhε)0 + (εhk)0 and g0 = g(0) (where (hε)0, (hk)0 are the un-

knowns to be solved for in the shooting method). This is similar

to the forward Euler scheme developed in [28] which is devel-

oped specifically for the case ε = 1. Using such a scheme has

an advantage over the popular Runge-Kutta schemes which typi-

cally preserve neither the first integrals nor the characteristics of

the configuration space; in this case, both are preserved and ad-

ditionally, as with the method described in [28], it allows one to

construct Lie group variational integrators of arbitrarily high or-

der. Also, there is no need for a parametrization of Gε using local

coordinates.

A potential drawback of this method is the fact that it cannot be

used on the entire system (6) for the case ε = 0 due to the de-

generacy of Eq. (12). However, if ε is chosen to be sufficiently

small (e.g. ε = 1× 10−10in the example on SE(2) in Section 4.3)

solutions can be considered near-optimal.

2.2 Matching the boundary conditions of curves
satisfying the necessary conditions of optimal-
ity

The most obvious way to solve the problem (1)-(2) is to solve

the system of equations (6), (21) numerically via a Runge-Kutta

scheme, making use of the shooting method to match the bound-

ary conditions in (1) to determine the appropriate initial conditions

h0. This is the method that was first proposed in [3]. The method

we develop is similar in that the boundary conditions in (1)-(2) is

used directly to set up the shooting function by making use of the

"error matrix" gerror = g(tf , h
0)g−1

d , and construct the shooting

function

S(tf , h
0) = ‖Id− gerror‖1 (17)

where ‖ · ‖1 is matrix 1-norm, given for an n×m matrix by

‖A‖1 = maxj

(
m∑
i=1

|Aij |
)

for j = 1, 2, ...n.

The Lie symplectic Euler scheme (16) is applied to solve for

(g(t), h(t)) in terms of the initial guess h0. We then solve for

the root h0 using an iterative Newton’s method: set Δ0 = S(h0)
DS(h0)

(where DS(h0) is the Jacobian of the shooting function (17) which

we compute numerically) for the starting guess h0. The algorithm

can be applied iteratively to obtain

h0
n+1 = h0

n −
S(h0

n)

DS(h0
n)

for n = 1, 2, 3, ..... Solving equation (2) in the form of equa-

tion (6) ensures R(t) satisfies the orthonormality property for all t,

which is not guaranteed when solving numerically by Runge-Kutta

schemes.

3 Optimal solutions in the 3-D case
In this section we first solve the extremals in the case where the op-

timal control problem lifts to a quadratic Hamiltonian. Secondly,

we solve the exponential map for the frame bundles of the planar

forms where the underlying symmetric space has arbitrary ε.
In the 3-D case, the system (1) has the form{

ġ = g(
∑j

i=1 viAi), 1 < j ≤ 3

g(0) = g0 and g(tf ) = gd.
(18)

where A1, ..., A3 are the basis elements

A1 =

⎡
⎣ 0 0 1

0 0 0
−ε 0 0

⎤
⎦ , A2 =

⎡
⎣0 0 0
0 0 1
0 −ε 0

⎤
⎦ , A3 =

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦ ,

ε ∈ [−1, 1]. (19)

3.1 Solving the extremals in the 3-D case
For the left-invariant control system (18) subject to a cost function

of the form (2) yields the optimal Hamiltonian is given by

H =
1

2

(
h2
1

c1
+

h2
2

c2
+

h2
3

c3

)
(20)
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for hi ∈ gε, and so the equations (7) -(8) take the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ḣ1 = h3h2
c3 − εh3h2

c2

ḣ2 = h1h3ε
c1 − h1h3

c3

ḣ3 = h1h2
c2 − h1h2

c1

(21)

These equations describe the case j = 3 in equation (18): the

extremal equations in the cases j < 3 can be obtained from (21)

by taking any single weight ci → ∞. Note that no more than one

constant weight can tend to infinity at a time or the system may no

longer be controllable [23].

It is well-known that the optimal Hamiltonian H is constant

along (g(t), h(t)). However, from lemma 2, there exists a second

constant of motion

M = h2
1 + h2

2 + εh2
3

which can be seen to Poisson-commute with H , i.e. in the Lie-

Poisson bracket,

{H,M} = 0. (22)

The system (21) on gε in the 3D case is an integrable sys-

tem [23], and consequently the solution h(t) can be determined

analytically. In the general method described in Lawden [29],

such a solution may be obtained using the Jacobi elliptic functions

sn(·,m), cn(·,m) and dn(·,m):

⎧⎪⎨⎪⎩
sn(x,m) = sin(am(x,m))

cn(x,m) = cos(am(x,m))

dn(x,m) =
√

1−m2 sin(am(x,m))

(23)

where F(·, ·) is the incomplete elliptic integral of the first kind

F(x,m) =
∫ x

0
dt

1−m2 and am(·,m) = F−1(·,m). In Lawden’s

method, one assumes the general form of the solutions to equa-

tions (21) using the Jacobi elliptic functions in terms of the con-

stants h0
i , H,M and time t.

Denote sn(F (t),m), cn(F (t),m), dn(F (t),m) where F (t) =
βt + γ by sn(F (t),m), cnu, dnu respectively. We have the fol-

lowing result

Theorem 2. The solutions of (21) in the cases c3 ε > c1 > c2,

c1 > c2 > ε c3 and c2 > c1 > ε c3 have the form

Case I.
h(t) = (α1snu, α2cnu, α3dnu){

c3 ε > c1 > c2

0 <
(c1 − c2)(2Hεc3 −M)
(εc3 − c1)(−2Hc2 +M)

< 1

Case II.
h(t) = (α1snu, α2dnu, α3cnu){

c3 ε > c1 > c2

0 <
(εc3 − c1)(−2Hc2 +M)
(c1 − c2)(2εHc3 −M)

< 1

Case III.
h(t) = (α1cnu, α2snu, α3dnu){

c1 > c2 > ε c3

0 <
(c1 − c2)(−2Hεc3 +M)
(c2 − εc3)(2Hc1 −M)

< 1

Case IV.
h(t) = (α1dnu, α2snu, α3cnu){

c1 > c2 > ε c3

0 <
(c2 − εc3)(2Hc1 −M)
(c1 − c2)(−2Hεc3 +M)

< 1

Case V.
h(t) = (α1snu, α2cnu, α3dnu){

c2 > c1 > ε c3

0 <
(c2 − c1)(−2Hεc3 +M)
(c1 − εc3)(2Hc2 −M)

< 1

Case VI.
h(t) = (α1snu, α2dnu, α3cnu){

c2 > c1 > ε c3

0 <
(c1 − εc3)(2Hc2 −M)
(c2 − c1)(−2Hεc3 +M)

< 1.

(24)

Proof. Here it is shown how αi, β,m, γ are obtained for Case I;

the method for the other 5 cases is identical. Given the extremal

equations (21), in Case I the general form of the solution is:

h(t) = (α1sn (βt+ γ,m) , α2cn (βt+ γ,m) , α3dn (βt+ γ,m)).

Differentiating on both sides of this equation and equating the co-

efficients of ḣi(t) in this case with the coefficients in (21) gives(
1

c3
− ε

c2

)
=

α1

α2α3
β (25)(

ε

c1
− 1

c3

)
=

−α2

α1α3
β (26)(

1

c2
− 1

c1

)
=

m2α3

−α1α2
β. (27)

Further, the constants of motion

H =
1

2

(
α2
2

c2
+

α2
3

c3

)
and M = α2

2 + εα2
3

along this solution since sn(0,m) = 0, cn(0,m) = 1, dn(0,m) =
1. This is a system of 5 equations in the 5 unknowns αi,m, β and,

solving, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2
1 =

c1(2Hεc3 −M)
εc3 − c1

α2
2 =

c2(2Hεc3 −M))
εc3 − c2

α2
3 =

c3(−2Hc2 +M)
εc3 − c2

β2 =
(c3ε− c1)(−2Hc2 +M)

c1c3c2

m2 =
(c1 − c2)(2Hεc3 −M)
(εc3 − c1)(−2Hc2 +M)

(28)
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from which we obtain the constraints εc3 > c1 >
c2 (so that the solutions are real) and the constraint 0 <
(c1 − c2)(2Hεc3 −M)
(εc3 − c1)(−2Hc2 +M)

< 1 such that 0 < m < 1. The value

of γ is chosen such that at time t = 0, sn(γ) = h1(0)
α1

; thus

γ = F

(
sin−1

(
h1(0)

α1

)
,m

)
.

Since sn(βt + γ,m) = h1(t)/α1, then F
(
sin−1

(
h1(0)
α1

)
,m

)
<

F
(
π
2 ,m

)
and it follows that 0 < cn(γ,m) < 1 (since cn(0,m) =

1 and the first real root of cn(·,m) is at cn(F (π2 ,m),m) = 0).

The square roots are obtained by noting that since dn is always

positive, and dn(βt + γ) = h3(t)
α3

, then it follows that sgn(α3) =
sgn(h3(0)). Taking t = 0, then h2(0) = α2 cn(γ,m), giving

sgn(h0
2) = sgn(α2). Finally,

sgn(ḣ1(0)) = sgn(α1)(sgn(cn(γ))sgn(dn(γ)))

= sgn(α1) (29)

But, from (21), sgn(ḣ1(0)) = sgn
(

ε
c2
− 1

c3

)
sgn(h0

2)sgn(h0
3).

Thus it follows that sgn(α1) = sgn
(

ε
c2
− 1

c3

)
sgn(h0

2)sgn(h0
3).

In these solutions the constants αi, β,m are combinations of

H,M, h0
i . In equations (23) there is a constraint on the value m

such that 0 < m < 1. In order to fulfill that constraint in our solu-

tion curves h(t), we have the condition on H,M, c1, c2, c3 which

is the second condition of each case in table (24). Note that for

each ordering of ci’s there are two possible forms of the solution:

the two cases together can be seen to represent all possible solu-

tions of the equation (11) for that ordering of ci’s by noting that

the constraint on H,M, c1, c2, c3 in the first case is inverted in the

second.

The ordering of the cost values ci given in this table for each

solution will become important when considering the cases j < 3
in equation (18) by taking the limit of any single weight ci → ∞.

Clearly if it is required for example that c1 → ∞ in the case that

c2 > c1 > εc3 it would also be required that c2 → ∞ for the

solution to be defined; however, as we have stated, taking more

than one weight to infinity may destroy the controllability of the

system. Thus it must be ensured that only take the greatest weight

in any solution is taken to infinity.

Notice that we have not included all possible orderings in ta-

ble (24), i.e. for each case where ci is the greatest weight, the

other two weights have a fixed order. Since we can always divide

the cost (2) through by cj (i �= j) to obtain a scalar multiple of

the cost J , we can fix the second weight to 1 and set the small-

est weight to be in (0, 1); this removes the need to consider both

orders of the remaining cj .

3.2 Matching the boundary conditions in the 3-D
case

Here we proceed as in §§2.2 by setting up the shooting function

using the error matrix to give a shooting function of the form (17).

However, instead of solving the set of equations (6), (21) itera-

tively, the semi-analytic approach is used where the equations (21)

are solved analytically in terms of Jacobi elliptic functions as de-

scribed in §§3.1 giving a solution h(t) of the form of one of the

solutions in table (24) (or the limiting case as ci → 0 of one of

these solutions if n < 3 in (1))

The corresponding curve g(t) is then calculated using a gen-

eralized Rodrigue’s formula, as shown in the following theorem

which gives an explicit expression for the matrix exponential on

the group for constant time.

Theorem 3. Given A ∈ gε where gε is the 3D ε Lie algebra
and t ∈ R and λ =

√
ε(a21 + a22) + a23, the matrix exponential

g = exp(At) is given by the expression

exp(At) = Id+
A

λ
sin(λt) +

A2

λ2
(1− cos(λt)) (30)

Proof. The exponential series

exp(At) = Id+At+
(At)2

2!
+ ...+

(At)n

n!
+ ... (31)

can be simplified as

exp(At) =

∞∑
n=0

t2n+1A2n+1

(2n+ 1)!
+

∞∑
n=0

t2nA2n

(2n)!
. (32)

However, in the 3D-case it can be shown that the powers

A2n+1 = (−1)n−1λ2n−2A2 (33)

and

A2n = (−1)nλ2nA. (34)

Substituting into (32) gives

exp(At) =

∞∑
n=0

t2n+1((−1)nλ2nA)

(2n+ 1)!
+

∞∑
n=1

t2n+1(−1)n−1λ2n−2A2

(2n)!

=
A

λ

∞∑
n=0

(λt)2n+1(−1)n
(2n+ 1)!

+ Id

+
A2

λ2

∞∑
n=1

(
t2n+1)(−1)n−1λ2n−2A2

(2n)!

=
A

λ

∞∑
n=0

(λt)2n+1(−1)n
(2n+ 1)!

+ Id+
A2

λ2

∞∑
n=0

(tλ)2n(−1)n
(2n)!

+
A2

λ2

=
A

λ
sin(λt) + Id+

A2

λ2
(1− cos(λt)).

.
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The curve g(t) can then be solved for using the iterative expres-

sion gi+1 = gi exp(Aih) as in equation (16). In order to match the

boundary conditions, we solve for the root of the shooting function

using the iterative Newton’s method as in §§2.2.

3.3 Dynamic feasibility
In our computations the time domain is scaled with respect to true

final time so that time remains in the interval [0, 1]. This scaled

time is denoted by t to differentiate it from the real time τ . In

general, it may be assumed that τ is related to t by an equation

t = f(τ). Thus
d

dτ
=

df(τ)

dτ

d

dt
. (35)

In this way, from equation (1),

d

dτ
vi(f(τ)) =

df(τ)

dτ
F (vi) +

df(τ)

dτ
ui (36)

and correspondingly the acceleration ui in terms of real time is

ui(τ) =
dvi(f(τ))

dτ
/
df(τ)

dτ
− F (vi(f(τ))). (37)

In our particular case we will assume that t = τ
Tf

. Thus the op-

timal velocities vi and their corresponding accelerations ui (given

in equation (1)) are a functions of τ and Tf . In this way, manoeu-

vre duration affects the acceleration profile. Thus when consider-

ing dynamic feasibility, a criterion for choosing Tf such that the

calculated maximum acceleration is less than or equal to the ac-

tuator’s limit umax can be determined. Making use of the same

motion control profile but by using unscaled time τ allows us to

reduce the magnitude to within the feasible level ‖u‖ < umax by

choosing a suitably large transfer time Tf . This method is used in

sections 4.2.1, 4.3.2 to determine feasible torque and thrust values

in optimal motion planning examples.

4 Examples
In this section, two of the problems considered in references (

[1, 2], [4], [8–10]) are used to illustrate the applications of our

method. We chose to focus on the case n < 3 and consider

the cases (ε = 1, i = 1, 2) and the limiting case ε → 0 in

(ε = 0, i = 1, 3).

4.1 Orientation of an underactuated spacecraft
with reaction wheels

In [5], the dynamic equations of motion of a spacecraft with reac-

tion wheels without external disturbances is given by

Jω̇ = −ω × (Jω + L)− L̇ (38)

where ω = [ω1, ω2, ω3]
� is the angular velocity vector of the

spacecraft in body fixed co-ordinates, J is the inertia tensor and

L the angular momentum of the reaction wheels. This equation

can be expressed on the directed cosine matrix g(t) ∈ SO(3),
the Special Orthogonal Group, where the column vectors of the

matrix define an orthonormal frame fixed to the body. Thus the

kinematics are described by a differential equation of the form (1)

for αi = 0, ε = 1, n = 3.

In control of underactuated spacecraft, n < 3 so that the de-

grees of freedom of the dynamical system are higher than number

of actuators. Developing motion planning laws for such systems

allows fully actuated systems to be operated as underactuated, for

example re-pointing a spacecraft in the case of an actuator fail-

ure [19] or to conserve propellant in some manoeuvres [14]. Also

systems that are underactuated by design have the advantage over

fully actuated systems of being easier to design and cheaper to

build; therefore with the current move toward smaller, cheaper

spacecraft, underactuated control presents an advantage.

Assuming without loss of generality that there are just two re-

action wheels along the X and Y axes such that L = [L1, L2, 0]
�

then the spacecraft is controllable by the two wheels if and only if

the total angular momentum is zero

Jω + L = 0 ⇔ Jω̇ = −L̇. (39)

Thus from here on it is assumed that ω = [ω1, ω2, 0]
�. Expressing

the attitude kinematics of the spacecraft g(t) ∈ SO(3), in this case

(where J is defined relative to the center of mass aligned with the

principal axes)

ġ(t) = −g(t)
(
L1

I1
A1 +

L2

I2
A2

)
(40)

where A1, A2 are given by (19) at ε = 1, and Ii are the principle

moments of inertia of the satellite. The aim of the underactuated

re-pointing problem is to determine the angular velocities Li re-

quired to re-point a spacecraft from its initial position g(0) = g0
to a prescribed final position g(tf ) = gd while minimizing the cost

function:

J =
1

2

∫ tf

0

c1ω
2
1 + c2ω

2
2 dt (41)

where c1, c2 > 0 are constant weights. Varying the weights ci al-

lows us to produce perturbations of the curves between g0 and gd
which can be used for avoidance of certain spacecraft orientations.

We choose to focus on the case c1 = 1, c2 = 0.25; in particular,

we consider the optimal control problem
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
g0 = Id

gd = exp(−0.897A2) exp(−π
2A3)

t0 = 0, tf = 1

c2 = 0.25, c1 = 1, c3 →∞

(42)

4.1.1 Calculating the extremals

In the case of problem (42), the solution takes the form

(h1(t), h2(t), h3(t))

= (α1sn(F (t),m), α2cn(F (t),m), α3dn(F (t),m)) (43)

in table (24), for which the coefficients are the limiting case as
c3 →∞ of the coefficients αi, β,m:

⎧⎪⎪⎨
⎪⎪⎩
α1 = sgn

(
h0
2 · h0

3 ·
(
−ε
c2

))√
2Hc1

α2 = sgn(h0
2)
√
2Hc2

α3 = sgn(h0
3)
√

(M−2Hc2)
ε

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β =
√

ε(M−2Hc2)
c1c2

m =
√

(2H(c1−c2))
M−2Hc2

γ = F(sin−1
(

h0
1

α1

)
,m).

(44)

When determining the extremal curves for this particular prob-

lem by minimizing the function (17) the solution g(t) that initially

obtained has many fluctuations and does not approach the final

condition directly ; the projection of this curve on the first column

of g(t) is shown in Fig. 1. a. While this is a solution, it is clearly

not minimizing. In order to determine the a lower-cost solution,

we solved for the h0 which minimized the function (49), using

the method described in section 4.2. The projection on the first

column of the curve g(t) obtained using this method is shown in

Fig. 1.b. The αi, β, γ values obtained for this curve are used in the

computations.

(a.) (b.)

Figure 1: Projection on the first column of g(t), x = g(t) · [1, 0, 0]�
a.) Optimizing extremal; b.) Solution curve satisfying the necessary and

boundary conditions

⎧⎪⎨⎪⎩
α1 = 2.387

α2 = 1.193

α3 = −2.301

⎧⎪⎨⎪⎩
β = 4.601

m = 0.807

γ = 0.434.

(45)

Substituting into the equations ωi =
hi

ci
, the angular velocities are

obtained

ω1 = 2.387 sn(4.601 t+ 0.434, 0.807) rad · s−1 (46)

ω2 = 4.77 cn(4.601 t+ 0.434, 0.807) rad · s−1 (47)

ω3 = 0. (48)

4.2 Optimal motions of minimum energy type
The method described in the previous sub-section is used to deter-

mine the extremals of the optimal control problem (1)-(2). How-

ever, there may be several possible extremals for this problem,

since in the Pontryagin’s principle extremality is only a necessary

condition for optimality, and a method is require to select the cost-

minimizing extremal (this is illustrated in Fig. 1 for a particular

example).

To implement this using parameter optimization, a new function is

constructed which is used to select the extremal which addition-

ally minimizes the quadratic performance metric J in equation

(2). Although the expressions of v1, v2 and v3 are analytic, and

so the function J can be determined analytically in each case, we

use the function trapz of matlab which performs numerical inte-

gration of time-dependent vectors via the trapezoidal method. This

method approximates the integration over an interval by breaking

the area down into trapezoids with more easily computable areas.

This gives rise to the function

J =
tf
2N

N∑
n=1

(

3∑
i=1

ci(vi(tn)
2 − vi(tn+1)

2)). (49)

where N+1 is the number of evenly-spaced points in the integrand

v(t). We seek the minimum of the function

y(h0, tf ) = ‖Id− gerror‖1 + wJ (50)

using the matlab function fminunc. The weight w in (50) must be

fixed, since determining the minimum of (50) so that the bound-

ary conditions are still met is a multi-objective problem requiring

to minimize both the condition (17) and the performance metric

value (49). In practice, it serves us best to minimize y(h0, tf ) for

some low value of w to obtain an h0 value for which cost is mini-

mized, and then to decrease w incrementally to the case w = 0 to

obtain the h0 which initializes the low-cost extremal.
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4.2.1 Dynamically feasible curves

Using the condition ω3 = 0 required from the zero-angular mo-

mentum condition, and substituting into equation (39) gives

u1 = ω̇1I1 (51)

u2 = ω̇2I2 (52)

Substituting the right hand side of equation (43) into (72)-(73)

gives the torques (in the case of scaled time):

u1 =
I1 α1 β

c1
dn(βt+ γ,m) cn(βt+ γ,m) N ·m (53)

u2 = −I2 α2 β

c2
dn(βt+ γ,m) sn(βt+ γ,m) N ·m.(54)

Substituting in the values for α1, α2, β and m and the inertia val-
ues I1 and I2 for a typical cubesat (I1 = 0.141728kg ·m2, I2 =
0.153784 kg ·m2, I3 = 0.079546 kg ·m2) gives the torques

u1 = 1.556 cn(4.601 t+ 0.434, 0.807) ·
dn(4.601 t+ 0.434, 0.807) N ·m

u2 = −3.378 sn(4.601 t+ 0.434, 0.807) ·
dn(4.601 t+ 0.434, 0.807) N ·m.

Choosing the reaction wheel torque of 10mNm, it is clear that
the torques obtained lie outside of this feasible value. In order
to address the problem of dynamic feasibility we then convert the
problem on t ∈ [0, 1] to one on τ ∈ [0, Tf ]. On this time interval,
using equation (35), the torques take the form

ui(τ, Tf ) =
−Ii
T 2
f

ω̇

(
τ

Tf

)
. (55)

Using equation (55), the torques u1 and u2 are related to the final
true time Tf through the equations

u1(τ, Tf ) = −α1 β

c1

I1
T 2
f

cn(
βτ

Tf
+ γ,m) dn(

βτ

Tf
+ γ,m) N ·m(56)

u2(τ, Tf ) =
β α2

c2

I2
T 2
f

sn(
βτ

Tf
+ γ,m) dn(

βτ

Tf
+ γ,m) N ·m,(57)

which gives us a lower bound for total transfer time,

Iiαiβ

max(ui)ci
≤ T 2

f . (58)

Substituting our maximum reaction wheel torque value

umax = 10 × mNm into equation (58) allows us to pick a fea-

sible time Tf , which will bring our torque values in equation (55)

back into alignment with feasible reaction wheel values. For the

torque u1 the lower bound is 12.476s, and for the torque u2, the

lower bound is 18.378s. Thus, substituting Tf = 20s into equa-

tions (75)-(76) gives feasible torques ui(τ), i = 1, 2 developing in

real time which can be used to carry out the manoeuvre optimally

with torque magnitudes below the practical constraints.

4.3 Planar spacecraft optimal docking problem
with velocity constraints

Rendezvous and docking manoeuvres between an active spacecraft

and a passive target are of importance to space station applications.

For a realistic spacecraft docking manoeuvre, the approach direc-

tion is constrained along a target docking axis (as in Fig. 2) and

the approach must be carried out in an optimal way.

Consider an active spacecraft traveling in the e1 − e2 plane driven

by thrusters located at either end of one axis of the spacecraft and

able to rotate at an angular velocity ω about the e3 axis due to

torque provided by a reaction wheel, and equipped with a brake.

The dynamic equations of motion of such a spacecraft without ex-

ternal disturbances are given by [9]

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

uv = Wv̇ (59)

uω = ω̇I3 (60)

where v is translational velocity, uv is the thruster force, W is the

mass of the active spacecraft and uω is the torque of the reaction

wheel. This problem is equivalent to the Reeds-Shepp framing of

the problem of Dubins. Dubins showed in [9], using geometrical

arguments that any such path will consist of maximum curvature

and/or straight line segments. The same result was later shown us-

ing Pontryagin’s maximum principle [30]. Here we demonstrate

the simple semi-analytical method to compute the optimal path.

The configuration space of the active spacecraft can be de-

scribed by a curve g(t) ∈ SE(2), the 3D Special Euclidean Group,

and expressed in matrix form as:

g(t) =

⎡⎣cos θ − sin θ x
sin θ cos θ y
0 0 1

⎤⎦ . (61)

The assumption that the spacecraft can move backward or for-

wards at a controlled velocity v is a sliding constraint:[
ẋ
ẏ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
v
0

]
. (62)

Differentiating equation (61) and taking into the account the con-

straint (62) it is easily shown that the non-holonomic kinematic

constraint can be expressed as a left-invariant differential equation:

ġ = g(t)

⎡⎣0 −ω v
ω 0 0
0 0 0

⎤⎦ . (63)
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In terms of the basis A1, A2, A3 in (19) at ε = 0, this is the

equation

ġ(t) = g(t) (vA1 + ωA3) (64)

i.e. the control system is of the form (1) with ε = 0, i = 1, 3. The

performance metric is:

J =
1

2

∫ tf

0

c1v
2 + c3ω

2dt (65)

where ci > 0, i = 1, 3 are constant weights. Varying the weights

ci allows us to produce perturbations of the curves between g0 and

gd for obstacle avoidance. We choose the weighs c3 = 1, c1 = 0.2.

a) b)

Figure 2: a.) The active/passive spacecraft configuration used in prob-

lem (66) b.) Configuration of active and passive spacecraft used in the

computations for Fig. 3 c.) and 3 d.)

As in the Fig. (2.b), we choose the active spacecraft initial po-

sition at the origin [0, 0], and the initial direction to be θ(0) = 0.

The final desired orientation is the angle θ(tf ) =
π
2 at which ori-

entation the satellite is positioned at [0,−1]. Accordingly, the fol-

lowing parameters are used:⎧⎪⎪⎪⎨⎪⎪⎪⎩
g0 = Id

gd = exp(−A2) exp(A3
π
2 )

t0 = 0, tf = 1

c1 = 0.2, c3 = 1.

(66)

4.3.1 Calculating the optimal extremal

For the problem (66), the form of solution h(t) is

(h1(t), h2(t), h3(t))

= (α1sn(F (t),m), α2cn(F (t),m), α3dn(F (t),m)) (67)

in table (24), where the coefficients are the limiting case as c2 →
∞ of the coefficients αi, β,m, to give

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = sgn(h0
2 · h0

3 · c2−εc3
c2c3

)
√

c1(M−2Hc3ε)
c1−c3ε

α2 = sgn(h0
2)
√
M − 2Hc3ε

α3 = sgn(h0
3)
√
2Hc3

β = 2H(c1−c3ε)
c1c3

m =
√

(M−2Hc3ε)
2H(c1−c3ε)

γ = F(sin−1
(

h0
1

α1

)
,m)

(68)

By finding h0 such that the function (49) is minimized for

w = 1 × 10−5 and making use of method described in sec-

tion 4.2 to obtain a low-cost solution, the initialization h0 =[
0.387 −0.594 1.558

]
is obtained. Fig. 3 shows the motion

of an x − y-frame attached to the spacecraft at the initial position

(1, 0), (0, 1) to show the evolution of the frame to the final position

given by (66); the result for this transfer is shown in Fig. 3.a); the

motion of the body frame for three other possible similar transfers

as computed by using this method are shown in 3.b) to 3.d).

The numerical values of the coefficients αi, β,m, γ in equa-

tions (67) are given by⎧⎪⎨⎪⎩
α1 = −0.709
α2 = −0.709
α3 = 1.782

⎧⎪⎨⎪⎩
β = 1.782

m = 0.890

γ = −0.609
(69)

giving rise to the angular velocity ω and linear velocity v,

v = −3.547 sn(1.782 t− 0.609, 0.890) m · s−1 (70)

ω = 1.782 dn(1.782 t− 0.609, 0.890) rad · s−1. (71)

4.3.2 Feasible curves

From (59)-(60), the torque of the reaction wheel uω and the
thruster force uv (in the case of scaled time) are

uv(t) =
α1 βW

c1
dn(βt+ γ,m) cn(βt+ γ,m) N (72)

uω(t) = −I3 α3 βm
2

c3
sn(βt+ γ,m) cn(βt+ γ,m) N ·m.(73)

As in section 4.2.1, substituting in the values for α1, α2, β and

m and the inertia values I1 and I2 for the typical cubesat used in

section 4.2.1 into (73) gives

uω(t) = −0.200 sn(1.782 t− 0.609, 0.890) ·
cn(1.782 t− 0.609, 0.890) N ·m

for which the magnitude lies outside of the maximum feasible

reaction wheel torque of 10× 10−3N ·m.
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Furthermore, substituting in the feasible cubesat mass 10kg
into equation (72) gives rise to

uv(t) = −63.213 cn(1.782 t− 0.609, 0.890) ·
dn(1.782 t− 0.609, 0.890) N.

Since the thrust magnitude for cubesat actuators is typically of the

order of 10−4N , this thrust is not feasible.

From equation (55) the relation of the final "true" time Tf to t
gives lower bounds on the total transfer time,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Wα1β
max(u1)c1

≤ T 2
f

I3m
2α3β

max(u3)c3
≤ T 2

f .

(74)

Substituting in our max torque value max(u3) = 10mNm
gives a lower bound of 4.474. However, the lower bound on Tf

arising from the maximum thrust force max(u1) = 6.5× 10−4N
is 311.850. Thus, clearly the manoeuvre is made in a cost-
minimizing way with feasible thrust values by using the equations
in true time

uv(τ) = −α1 β

c1

W

T 2
f

cn(
βτ

Tf
+ γ,m) dn(

βτ

Tf
+ γ,m) (75)

uω(τ) =
β α3

c3

I3
T 2
f

sn(
βτ

Tf
+ γ,m) cn(

βτ

Tf
+ γ,m), (76)

where Tf = 320s, the numerical values of αi, β, γ are given in

(69) and the ci-values in (66).

a) b)

c) d)

Figure 3: Motion of the x-y-frame attached to the spacecraft during the

transfer: a)-b) with the configuration in Fig. 2 b.) and c)-d) with the con-

figuration in Fig 2 a.)

5 Conclusion

The proposed method provides a motion planning algorithm for a

class of mechanical control systems that does not require param-

eterization of the systems configuration space. New techniques

for solving a boundary value problem that arises from the appli-

cation of Pontryagin’s maximum principle to a class of optimal

control problems on 3-D Lie groups is presented. While prior

work has concentrated either on numerical shooting or using an

extended system or continuation methods for systems with kine-

matics defined on the frame bundles of spaces with a particular

curvature, our method is applicable to frame bundles for spaces

of arbitrary constant curvature and in n dimensions. In the 3-D

case, the method reduces the boundary value problem to a semi-

analytic shooting method by exploiting the analytic solution to the

extremal equations. The method reduces the number of equations

to be integrated compared to the fully numerical shooting method.

In addition, since the optimal velocities and corresponding control
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accelerations for this class of problems can be expressed in terms

of Jacobi elliptic functions, the dynamic constraints can be satis-

fied along the derived curve by reparametrizing time. While we

cannot claim rigorously that the resulting motion satisfies the suf-

ficient conditions for optimality, we provide a numerical scheme

which chooses the most optimal curve amongst the curves com-

puted that satisfy the necessary and boundary conditions. The ap-

proach could be equally applicable to problems in robotics that

evolve on the 6-D group SE(3).
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