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Abstract

A 3D peridynamic formulation of the thermo-mechanical problem allows to
efficiently simulate the occurrence and propagation of cracks due to extreme
thermal loading. The model is weakly coupled since no internal heat gen-
eration due to material deformation and damage is accounted for. As such,
it is suitable to simulate low strain rate phenomena. Since the typical time
scales of the mechanical and thermal systems may differ of several orders of
magnitude, using a multirate explicit integration technique is suggested by
the nature of the problem itself. Finally, the proposed formulation is used to
model the thermal shock behavior of thin and thick slabs, in order to observe
respectively a 2D ordered set of parallel cracks and a 3D honeycomb crack
pattern addressed as columnar jointing.

Keywords: Peridynamics; brittle failure; thermal shock; ceramics;
thermo-mechanics.

1. Introduction

Most of the theories developed to simulate fracture nucleation and propa-
gation are based on the local continuum theory. The effectiveness of standard
finite elements for such problems is however severely impaired by the well-
known mesh-dependency of the solution and the need to remesh the domain
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as the fracture propagates. Many numerical techniques have been developed
so far in order to overcome some of the above mentioned shortcomings of the
standard FEM; among them, the cohesive elements, meshless methods and
the eXtended-FEM (X-FEM) are worth citing. Cohesive elements bypass the
mesh-dependency problem by explicitly accounting for the finite dimension of
the elements, thus allowing to account for a proper energy balance, as shown
by e.g. Wells and Sluys (2001) and de Borst et al. (2004). Meshless methods
allow to easily adapt the discretization in order to follow the crack tip, see
e.g. Belytschko et al. (1996). This is often balanced by an increased over-
all complexity of the numerical formulation, as well summarized by Nguyen
et al. (2008). The X-FEM allows to account for fracture propagation without
the need to remesh the domain, see e.g. Moës and Belytschko (2002); similar,
simplified techniques can be applied also to meshfree methods, as shown e.g.
by Rabczuk and Belytschko (2004). The regularized variational formulation
proposed by Bourdin et al. (2013) is also worth citing.

A completely different class of approaches for the study of fracture for-
mation and propagation is based on the direct application of Newtonian
mechanics. These techniques are based on networks of concentrated masses
connected by springs, and have been used, among other things, to study
columnar fracture process in granule-water mixtures (Nishimoto et al., 2007),
crack propagation in crystals (Hayakawa, 1994a,b), failure of brittle materi-
als (Curtin and Scher, 1990) and composite materials transverse ply cracking
Wittel et al. (2003).

The peridynamic (PD) theory, first proposed by Silling (2000), is a non-
local formulation that allows to easily account for localization and fractures.
Peridynamics has been successfully applied to the study of many problems,
ranging from impact and/or penetration to crack propagation and bifurca-
tion, dynamic fracture of membranes and mesoscale fracture modeling. Some
noteworthy applications are shortly mentioned hereafter. Silling (2003) mod-
eled the Kalthoff and Winkler (1988) experiment and correctly predicted the
crack propagation angle in a notched plate made of maraging steel hit by a
steel impactor. Later, Silling and Askari (2004) simulated the impact of a
spherical, infinitely rigid projectile on an elastic-fragile thin disk. Demmie
and Silling (2007) simulated structures under extreme loading conditions.
Madenci and Oterkus (2016) developed a formulation to simulate plastic
deformations based on von Mises yield criteria with isotropic hardening,
while O’Grady and Foster (2014) addressed the bending of a Kirchhoff-Love
plate.
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Thermal deformations have been taken into account in order to predict
crack paths due to prescribed thermal temperature histories in the body. For
example, Kilic and Madenci (2009) predicted complex crack growth patterns
plates after quenching. More recently Amani et al. (2016) simulated the
Taylor-bar impact, accounting for temperature change due to plastic dissipa-
tion, but completely neglecting thermal conduction thanks to the extremely
short time of the impact.

Besides structural mechanics, PD has been used to to develop complex
models of multiphysics phenomena by e.g. Gerstle et al. (2007), where the
thermal diffusion problem was reformulated for the first time using peri-
dynamics. Later on, Bobaru and Duangpanya (2010; 2012) independently
reformulated the heat equations in 1D and 2D, respectively. Their non-local
solution tends to the local one as the coefficient that defines the material
non-locality, addressed to as the horizon, tends to zero. Furthermore, Agwai
(2011) proposed a PD formulation of the heat problem and a coupled for-
mulation for the multiphysics thermo-mechanical problem and applied it to
one dimensional elastic problems. Madenci and Oterkus (2014, Chapter 13)
simulated two- and three-dimensional thermo-elastic problems. As a mat-
ter of fact, the PD reformulation of both the mechanical and the thermal
problem presents some advantages, such as the possibility to use the same
discretization to study both the mechanical and thermal transient problems
and the capability of both models to take into account the onset of frac-
ture surfaces during the simulation. However, none of the previous coupled
thermo-mechanic papers did account for fractures; only very recently Oterkus
and Madenci (2017) approached the coupled thermo-mechanic set of equa-
tions to simulate the thermal cracking of uranium dioxide fuel pellet.

This paper addresses the coupled PD thermo-mechanical problem in pres-
ence of evolving damages due to extreme thermal loading. Hence, the multi-
physics thermo-mechanical problem is reformulated via PD, with the thermal-
induced deformation affecting the mechanical response, and the onset of frac-
ture surfaces preventing the transmission of heat. The formulation is imple-
mented within the Open Source code Peridigm, see Park et al. (2012) for
details.

The paper is organized as follows. The weakly coupled thermo-elastic
peridynamics is briefly summarized in Sect. 2; due care is given to the def-
inition of thermal boundary conditions, see Subsect. 2.2. The thermal code
is validated in Sect. 3. Finally, two thermo-mechanical crack problems are
dealt with in Sect. 4.
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2. Weakly coupled thermo-elastic peridynamics

The PD formulation of the fully coupled thermo-mechanics has been de-
veloped by Gerstle et al. (2007), and later by Agwai (2011) and Madenci
and Oterkus (2014, Chapter 13). In their work Madenci and Oterkus pro-
vided also a non-dimensionalization of the equations and some benchmark
tests, such as a semi-infinite bar under thermal loading, thermo-elastic vibra-
tions of a bar and a block of material under thermal loading. Agwai (2011)
and Madenci and Oterkus (2014) solved the coupled problems without con-
sidering the possibility of an evolving damage in the domain of interest. The
three-dimensional formulation here proposed, instead, follows a slightly dif-
ferent approach. The thermal problem is reformulated similarly to what
proposed by Bobaru and Duangpanya (2010, 2012). Additionally, weak cou-
pling between the thermal and the mechanical problem is assumed, so that a
variation of temperature may introduce a thermal loading in the structure,
but a change of the loading conditions cannot cause a variation of temper-
ature. This assumption is generally valid for brittle-elastic materials, such
as ceramics. This is the reason for which the case studies addressed in this
paper simulate the behavior of alumina samples. A damage model based on
the critical stretch criterion is introduced in the equations. This allows to
properly account for material failure.

The following section briefly summarizes the weakly-coupled thermo-
elastic peridynamic theory. It is by no means intended to be an exhaustive
introduction to peridynamics; many results are reported without the corre-
sponding proofs, that can be found in the cited references. Note also that
even the notation developed throughout the years for the peridynamic theory
is somewhat different from that of classical continuum mechanics. Notwith-
standing our effort to be accurate and self-contained, the reader not accus-
tomed to peridynamics is thus encouraged to refer to Silling et al. (2007),
Silling (2010) and Silling and Lehoucq (2010) for a thorough introduction.

2.1. Governing equations
The peridynamic formulation that was first proposed is called bond-based

peridynamics (BB-PD). It defines the density f of internal (bond) forces per
unit of volume which are exchanged between different material points within
a continuum. Thus, material points interact through bonds, with bond force
densities depending only on the two interacting material points. Bonds forces
are assumed to be non null only within a finite distance δ addressed as
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horizon. The horizon is a material constant, and directly defines the material
non-locality (see Ren et al. (2016) for an improved formulation with variable
horizon). Note that f , often referred as bond forces, are actually density of
forces per unit of volume, i.e. forces per unit of volume squared. The force
per unit of volume applied at any given point x is thus given by the integral,
performed over the volume defined by the horizon, of the bond forces. The
resulting equation of motion is thus

ρ(x)ü(x, t) =

∫
Sδ

f(u(x′, t)− u(x, t),x′ − x)dVx′ + b(x, t) (1)

with ρ the material density, u the displacement, b the applied forces per
unit of volume and Sδ the sphere of radius δ centered in x; dVx′ means that
the integral is performed over Sδ by keeping x fixed and varying x′. The
relative position of two points in the reference configuration is often referred
as ξ = x′−x; their relative displacement is η = u′−u, so that their relative
position in the deformed configuration is y′ − y = ξ + η, cfr. Fig. 1. Silling
(2000) showed that, for a microelastic brittle BB-PD material, bond forces
are co-axial with the deformed configuration relative position y′−y = ξ+η,
and their magnitude is a function of the relative distance in the reference and
deformed configurations, ‖ξ‖ and ‖ξ+η‖. Having bond forces co-axial with
the relative position of the interacting points guaranties that the balance of
angular momentum is automatically satisfied, see e.g. Silling et al. (2007)
for details.
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Figure 1: Kinematics in the reference and deformed configurations for a PD continuum.

Although successful, bond-based peridynamics suffers from some serious
shortcomings; among them, the Poisson’s ratio of any isotropic elastic mate-
rial is fixed and equal to ν = 1/3 for two-dimensional problems and ν = 1/4
for three-dimensional problems, see Silling and Askari (2005). More impor-
tantly, it is difficult to relate bond forces to constitutive laws developed in
classical mechanics, i.e. based on the notion of contact forces. To overcome
these – and other – limitations Silling et al. (2007) proposed the so-called
state-based peridynamics (SB-PD). To do that, they introduced the concept
of state. A state A of order m is a tensor function of order m, function of
the position ξ inside a sphere of radius δ centered at the origin. The some-
what unusual notation A〈ξ〉 stands for tensor that is the image of ξ under
the state A. A state field is a state-valued function of position x and time
t. The location and time at which a state field is evaluated are in square
brackets to distinguish them from ξ. Thus, A[x, t]〈x′−x〉 stands for a state
field, evaluated at the reference position x and time t, for ξ = x′ − x. The
following states are introduced:

the reference position state: X[x, t]〈x′ − x〉 = x′ − x,
the displacement state: U [x, t]〈x′ − x〉 = u′ − u,

the deformed position state: Y [x, t]〈x′ − x〉 = y′ − y.
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Departing from Eq. 1, the state-based peridynamic equation of motion reads

ρ(x)
∂2u

∂t2
(x, t) =

∫
Sδ

(
T [x, t]〈x′−x〉−T [x′, t]〈x−x′〉

)
dVx′ + b(x, t), (2)

where T is called the force vector state field. This equation reduces to
Eq. 1 whenever T [x′, t]〈x − x′〉 = −T [x, t]〈x′ − x〉. However, in general,
T [x′, t]〈x − x′〉 6= −T [x, t]〈x′ − x〉, i.e. force densities are not pairwise
equilibrated. This is possible because T [x, t]〈x′ − x〉 is assumed to de-
pend on all the points within the horizon of x, although this is not made
explicit by the notation. The bond-based peridynamics assumes, instead,
that T [x, t]〈x′ − x〉 does depend only on x and x′, and this implies that
T [x′, t]〈x− x′〉 = −T [x, t]〈x′ − x〉.

A material for which the force vector state field is co-axial with Y is
called an ordinary material. A material for which the force vector state field
is not co-axial with Y is called an non-ordinary material, see e.g. Warren
et al. (2009). Figure 2 compares these three different models. Note that the
balance of angular momentum is identically satisfied for ordinary materials;
on the contrary, it is not automatically satisfied for non–ordinary state-based
materials, and this introduces a restriction on the form of T , see again Silling
et al. (2007) and Silling and Lehoucq (2010) for details. To be objective, the
force vector state field T should transform like Y under rigid body rotation.
That is, T (QY ) = QT (Y ) for any Q ∈ SO(3). A sufficient condition for
objectivity of ordinary materials is that T = Y

‖Y ‖t(‖Y ‖), where t(‖Y ‖) is a
scalar state function of ‖Y ‖.

As shown e.g. by Silling et al. (2007), Silling and Lehoucq (2010) and
Tupek and Radovitzky (2014) it is possible calibrate state-based material
models in such a way that they give the same results, for a homogeneous
state of deformation, that would be obtained with a classical, stress-based
constitutive law.
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Figure 2: BB-PD: Pairwise equilibrated force densities; SB-PD: Ordinary unequal aligned
force densities, NOSB-PD: arbitrarily oriented force densities.

Material model
The material model considered here is the Linear Peridynamic Solid

(LPS) introduced by Silling et al. (2007).
Define the weighted volume as

M[x] =

∫
Sδ

ω〈ξ〉x〈ξ〉x〈ξ〉 dVx′ , (3)

where x〈ξ〉 = ‖X‖ = ‖ξ‖ and ω〈ξ〉 is a scalar influence function that allows to
weight differently the state of points at different ξ; note again that dVx′ means
that the integral is performed over Sδ by keeping x fixed and varying x′.
Seleson and Parks (2011) investigated the effects on the structural response
of choosing different influence functions. Define the extension scalar state as

e[x, t]〈ξ〉 = y − x = ‖Y ‖ − ‖X‖. (4)

The dilatational component of the extension scalar state is defined as

θ =
3

M

∫
Sδ

ω〈ξ〉x〈ξ〉 e〈ξ〉 dVx′ , (5)

while the deviatoric component is

ed = e− θ

3
x. (6)

The LPS is an ordinary material, thus only force states co-axial with the
relative position in the deformed configuration are considered. After defining
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the deformed direction vector state, M〈ξ〉,

M〈ξ〉 =


ξ + η

‖ξ + η‖ if ‖ξ + η‖ 6= 0

0 otherwise
. (7)

the force state for a three dimensional thermoelastic LPS material with a
thermal contribute can be written as

T [x, t]〈ξ〉 =
ω〈ξ〉M〈ξ〉
M

(
3Kθ‖ξ‖+ 15µ

(
ed〈ξ〉 − α(Θ−Θσ=0)‖ξ‖

))
, (8)

where K is the bulk modulus, µ is the shear modulus and α is the thermal
expansion coefficient. In the following we will consider only constant influence
functions, ω〈ξ〉 = 1. Note that the coefficients of Eq. 8 would be different
for two-dimensional problems, see e.g. Ren et al. (2016) for details.

Thermal problem
The reformulation of the thermal diffusion problem is proposed by means

of the BB-PD: the heat flux per unit volume between two points x and
x′ is assumed to depend only on the temperature in x and x′. The first
BB-PD formulation of the thermal problem was proposed by Bubaru and
Dunagpanya (2010; 2012). Later, Agwai (2011, Chapter 12) and Madenci
and Oterkus (2014, Chapter 12) introduced a slightly different form of the
BB-PD thermal problem, based on energetic considerations.

The BB-PD form of the thermal diffusion problem can be written, after
defining the pairwise heat exchanged per unit of volume squared fh, as

ρ(x)cv
∂Θ

∂t
(x, t) =

∫
Sδ

fh
(
Θ(x′, t)−Θ(x, t),x′(t)− x(t), t

)
dVx′

+ hs(x, t) ∀ x ∈ R, ∧ ∀ t > 0, (9)

where ρ is the material density, cv is the specific heat and hs is an internal
heat source. The pairwise exchanged heat density is found to be

fh
(
Θ′(t)−Θ(t),x′(t)− x(t), t

)
= κ

Θ(x′, t)−Θ(x, t)

‖x′(t)− x(t)‖ , (10)
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where Θ′(t) = Θ(x′, t), Θ(t) = Θ(x, t); the coefficient κ is named micro-
conductivity, and is computed by equating the local and non-local thermal
potential. The microconductivity depends on the classical thermal conduc-
tivity, on the horizon δ and on the problem dimensions (i.e. it is different for
1D, 2D or 3D problems).

Critical stretch damage model
The damage model is introduced to allow bonds to break within the body.

A bond breakage is an irreversible phenomenon. When a given bond breaks
the interactions between particles are suddenly interrupted. After defining
the bond stretch as

s(‖ξ‖, ‖ξ + η‖) =
‖ξ + η‖ − ‖ξ‖

‖ξ‖ , (11)

a bond is assumed to be broken when the stretch becomes larger than the
so-called critical stretch sc. The critical stretch depends on the fracture
energy, Gc, i.e. on the energy per unit length necessary to create a new free
surface. Madenci and Oterkus (2014, Chapter 12) have found the critical
stretch expression for 2D and for 3D problems:

sc2D =

√√√√√ Gc(
6
π
µ+ 16

9π2

(
K − 2µ

))
δ

, (12)

sc3D =

√√√√√ Gc(
3µ+

(
3
4

)4(
K − 5

3
µ
))
δ

. (13)

The boolean state φ[x, t]〈ξ〉 is equal to zero if the bond is broken, otherwise
it is equal to one:

φ[x, t]〈ξ〉 =

{
1 if s < sc

0 if s ≥ sc
. (14)
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The complete PD form of the multiphysics thermo-mechanical problem with
damage becomes:{

ρ(x) ü(x, t) =
∫
Sδ

φ[x, t]〈ξ〉
(
T [x, t]〈ξ〉 − T [x′, t]〈−ξ〉

)
dVx′ + b(x, t)

ρ(x) cvΘ̇(x, t) =
∫
Sδ

φ[x, t]〈ξ〉fh
(
Θ(x′, t)−Θ(x, t), ξ(t), t

)
dVx′ + hs(x, t)

.

(15)

The global damage of the material point x, namely Φ(x, t), is defined as

Φ(x, t) = 1−
∫
Sδ
φ dVx′∫

Sδ
dVx′

. (16)

Thus, Φ(x, t) = 1 if all the bonds at a point x are broken.

2.2. Thermal boundary conditions
Prescribed temperature

Prescribed temperature, an essential boundary condition (BC), can be
enforced by simply assigning the correct value to the boundary points, as
shown by Bobaru and Duangpanya (2010).

Θ(xBC , t) = ΘxBC (t). (17)

Prescribed heat flux
Natural BCs need a special treatment in peridynamics, as first shown

by Silling (2000) for the mechanical problem. This is because the stress at
a point does depend on the state of its whole family. Following Silling’s
approach, Madenci and Oterkus (2014, Chapter 12) proposed an analogue
procedure for thermal problems BCs. The same approach is adopted in the
present study, too. Natural and mixed BCs in peridynamics can be enforced
by adding external volume forces b(x, t) for the mechanical problem, and
internal heat sources hs(x, t) for thermal problem. These volume forces and
heat sources need to transmit to the body the same power that would be
introduced by the corresponding boundary condition of the local theory. Note
that PD BCs are actually imposed over the volume represented by the family
of points of the external surface and not over the points of the surface alone.
Nonetheless, if the horizon tends to zero, then the PD BC converges to the
local BC.
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A prescribed heat flux, i.e. a Neumann BC, is introduced in the solid
through an internal heat source. We denote with Sq the boundary surface
with a prescribed heat flux per unit of surface q, with n the unit normal
to the surface and with Vq the volume of the boundary particles on which
the prescribed internal heat sources have to be introduced. Eq. 18 must be
satisfied in order to compute the equivalent volume heat source hq:

hqVq = −
∫
Sq
q · n dS. (18)

This means that, assuming constant heat flux q and a planar surface Sq one
has

hq =
−
∫
Sq q · n dS
Vq

= −q · nSqSq∆
= −q · n

∆
, (19)

where ∆ is the distance from the boundary such that Vq = Sq∆.

Convection
The convection BC is defined as

q(x, t) · n = h
(
Θ(xB, t)−Θ∞), (20)

where h and Θ∞ are the convective heat transfer coefficient and the tem-
perature of the fluid surrounding the domain, while Θ(xB, t) is the domain
boundary temperature. Dividing Eq. 20 by ∆ allows to compute the internal
heat source that is necessary to enforce the convection BC via peridynamics

hh(x, t) = h

(
Θ∞ −Θ(xB, t))

∆
. (21)

2.3. Numerical discretization
It is customary to search an approximated solution of peridynamics equa-

tions by direct collocation. To this end, the equations of motion are written
at a finite number of points, often referred to as particles in the peridynam-
ics literature. Note that this nomenclature is somewhat misleading, at least
in our opinion, because these particles are not actually discrete masses, as
would be the case with approaches based on mass point mechanics, such as
spring network models (see e.g. Curtin and Scher, 1990) or nearest-neighbor
methods (see e.g. Hayakawa, 1994a). Rather, they are the points at which
the equations are enforced. Equation 15 is thus collocated at the particle
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location x(i). The integrals of Eq. 15 are approximated by assigning to each
particle a finite volume ∆V(i). The set of particles x(j) belonging to the
family of a given particle x(i) is called P(i):

P(i) = {x(j) 6= x(i) : ‖x(j) − x(i)‖ ≤ δ} (22)

Thus, the semi-discrete PD thermo-mechanical balance equations for particle
x(i) can be approximated as

ρ(i)ü(i)(t) =
∑

x(j)∈P(i)

φijf
(
x(i),x(j)

)
∆V(j) + b(i)(t)

ρ(i)cv(i)Θ̇(i)(t) = κ
∑

x(j)∈P(i)

φij

{
Θ(x(j),t)−Θ(x(i),t)

‖x(j)−x(i)‖

}
∆V(j) + hs(i)(t)

, (23)

where f
(
x(i),x(j)

)
= T [x(j), t]〈x(j) − x(i)〉 − T [x(i), t]〈x(i) − x(j)〉, φij =

φ[x(i), t]〈x(j) − x(i)〉 and the volume integral is approximated by assuming
that all the finite volume ∆V(j) of particle x(j) does belong to the family of
particle x(i). Note, again, that the resulting set of discrete equations may
resemble, at a first glance, what one would obtain with mass point mechanics.
The derivation, however, is completely different.

2.4. Multirate integration
Explicit integrators are a good choice to integrate the PD thermo-mechanical

problem because they are well suited to deal with large displacements and
evolving discontinuities. However, Von Neumann stability analyses show
that the ratio between the thermal problem critical time step, ∆tTHcr , and
the mechanical critical time step, ∆tME

cr , can reach values as large as 1e6.
As a matter of fact, the typical time scales for elasto-dynamic phenomena
do depend on the propagation velocity of stress waves in the material, hence
on the speed of sound in the material; the time scales of thermal problems,
instead, are much larger, since they depend on the thermal diffusivity of the
material. For this reason the discretized problem cannot be based on a single
time step, since both problems have to be solved towards their natural evolu-
tion velocity. Doing otherwise, i.e. using a single time step for the mechanical
and thermal problem still guaranteeing the overall numerical stability, could
lead to a temperature increment within a time step smaller than the machine
epsilon multiplied by the current temperature. In other words, the loss of
precision for the temperature could – and has been verified that it would –
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Figure 3: Multirate integration scheme.

be so dramatic that the temperature would keep unchanged throughout the
entire simulation. This suggests to adopt a multirate integrator (for further
details about multirate integrators, the reader should refer to Gear and Wells
(1984), Savcenco and Mattheij (2010) and Seny et al. (2014)), that is well
suited for multiphysics problems characterized by substantially different time
scales.

The Velocity Verlet integration scheme is used for the mechanical prob-
lem, while the Forward Euler is preferred for the thermal problem. The
thermal solution is updated each M time steps and it is considered to re-
main constant between ∆t(n) and ∆t(n+M), as schematically shown in Fig. 3.
The Alg. 1 better explains the adopted multirate integration technique.

3. Numerical implementation and validation of peridynamic ther-
mal diffusion

The peridynamic thermal transient solution, for a prescribed discretiza-
tion and horizon, is compared with the classical solution. For the convergence
tests, the non-locality parameter m is defined as the ratio of the horizon δ
and the distance between two material particles, ∆x, namely m = δ/∆x.
The convergence is investigated by considering the definitions given by Bo-
baru et al. (2009), were the concepts of m-convergence and δ-convergence
were introduced. As regards the m-convergence, the horizon δ is kept con-
stant and the non-locality parameter tends to infinite, m→∞ (cfr.Fig. 4a).
In this case, the numeric peridynamic solution has to converge to the exact
non-local peridynamic solution for the prescribed δ. For the δ-convergence,
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Algorithm 1 Multirate integration scheme
Input: Initialize problem variables and estimate critical time steps
1: n = 0 // Time step indexing: n ∈ 1 : N
2: t = 0 // Initialize time variable
3: ∆t

ME

cr // Critical time step -mechanical problem-
4: ∆t

TH

cr // Critical time step -thermal problem-
5: M = N

N
// Synchronization interval between the problems

6: u, a = 0 // Initialize kinematic variables
7: Reading material properties
8: Apply the Initial Conditions
Output: Updated variables
9: un+1, vn+1, an+1, fn+1 // Mechanical pb. to be solved at each time step
10: Θn+M , Q̇n+M // Thermal pb. to be solved every M time steps
11:

12: procedure Multirate Integrator
13: for n = 1,N do
14: t(n+1) = t(n) + ∆t

ME // Update the time step.
15: t(n+ 1

2
) = 1

2

(
t(n) + t(n+1)

)
// Evaluate the mid step

16: v(n+ 1
2

) = v(n) +
(
t(n+ 1

2
) − t(n)

)
a(n) // Velocity Verlet I

17: Apply velocity BCs at the mid step
18: u(n+1) = u(n) + ∆t

ME
v(n+ 1

2
) // Velocity Verlet II

19: Apply displacements BCs at t(n+1)

20: if n
M

is integer then
21: Compute

∫
Sδ
f

(n+1)
h dVx′ // Compute heat exchanged

22: Θ(n+1) = Θ(n) + ∆t
ρcv

TH(∫
Sδ
f

(n+1)
h dVx′ + hs

)
// forward Euler

23: Apply Thermal BCs at t(n+1) // See Sec. 2.2
24: end if
25: Compute f

(n+1)
int // Compute internal force density

26: Eventually, compute f
(n+1)
cont // Compute contact force density

27: f (n+1) = f
(n+1)
int + f

(n+1)
cont + b(n+1) // Compute force density

28: a(n+1) = diag {ρ}−1 f (n+1) // Compute acceleration
29: v(n+1) = v(n+ 1

2
) + ∆t

2

ME

a(n+1) // Velocity Verlet III
30: Stability check (energy balance)
31: end for
32: end procedure
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δ

m→ ∞, δ fixed

δ

(a) m-convergence scheme.

δ

δ → 0, m fixed

δ

(b) δ-convergence scheme.

Figure 4: Peridynamic convergence: δ-convergence and m-convergence for a regular 2D
square mesh.

instead, m is kept fixed while the horizon tends to zero, δ → 0 (cfr. Fig. 4b).
In this way the non-locality is gradually reduced and the non-local solution
must approximate the local one, i.e. the degenerated case δ = 0.

3.1. 1D test case
In this 1D validation study a bar with mixed Dirichlet-Neumann bound-

ary conditions is considered. The bar has lengthX = 1 m, thermal diffusivity
γ = 0.13 W m-2 s-1 and its initial temperature is 0 ◦C for 0 < x ≤ X/2 and
60 ◦C for x/2 < x ≤ X. The classical problem is defined by Eqs. (24-27):
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1

γ

∂Θ(x, t)

∂t
=
∂2Θ(x, t)

∂x2
, (24)

Θ(0, t) = 100, ∀t ≥ 0, (25)
∂Θ(X, t)

∂x
= 0, ∀t ≥ 0, (26)

Θ(x, 0) =

{
0 ∀ 0 < x ≤ X/2,

60 ∀X/2 < x ≤ X.
(27)

The classical solution is obtained numerically using the finite difference BCTS
scheme (backward in time, central in space) of Eq. 28. The bar is discretized
using 200 nodes.

Θ(x(i), t
(j+1))−Θ(x(i), t

(j))

∆t
=

1

γ

Θ(x(i+1), t
(j+1))− 2Θ(x(i), t

(j+1)) + Θ(x(i−1), t
(j+1))

∆x2
+O(∆t,∆x2). (28)

For the peridynamic discretization 100 material particles are used, and the
horizon is chosen to be δ = 3X/101 ' 0.0297X, thus m = δ/∆x = 3. The
results for t = 0.88 s and t = 3.60 s are plotted in Fig. (5), with the finite
difference and PD solutions practically coincident.

m-convergence
For the m-convergence test, four fixed values of δ (δ1 = 0.015 m, δ2 =

0.030 m, δ3 = 0.060 m and δ4 = 0.075 m) are considered in order to verify
that the non-local solution tends to the local one as the horizon approaches
zero, while the non-locality parameter tends to infinite. As the non-locality
parameter increases, the smaller the horizon is, the slower the PD solution
should move from the local one. This behavior is observed in Fig. 6, where
the mean temperature of the bar is plotted for t = 3.6 s. For m ' 3 all the
curves intersect, thus the PD solution matches the local one, independently
from the discretization.
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δ-convergence
To perform the δ-convergence test, the values 0.015 m ≤ δ ≤ 0.075 m are

used. The tests are performed for five different choices of the non-locality
parameter, m = 3, m = 9, m = 15, m = 21, m = 27. The δ-convergence
rates are obtained by defining the relative difference between the local and
the PD solution, i.e.:

ε =
||Θ

FD
−Θ

PD
||L2

||Θ
FD
||L2

. (29)

Following Bobaru and Duangpanya (2010; 2012) ε is called relative differ-
ence and not relative error since it is not relative to the unknown analytical
peridynamic solution. The results are shown in Fig. 7 and compared with
the thick continuous curve representing the 2ndorder of convergence. As ob-
served, for m = 3 the convergence rate is apparently higher than 2. For
this reason and because of the results of m-convergence tests, the value of m
chosen for the thermo-mechanical problems is 3.

3.2. 2D test case
For the 2D validation study we consider a plate with dimensions of X =

0.05 m (length), Y = 0.01 m (height) and Z = 0.001 m (thickness), and
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thermal diffusivity γ = 0.1 Wm-2 s-1. The plate is subjected to a prescribed
temperature ΘBC = 100 ◦C on its boundaries. Its initial temperature is
Θ0 = 0 ◦C. The classical formulation of the problem reads:

1

γ

∂Θ(x, y, t)

∂t
=
∂2Θ(x, y, t)

∂x2
+
∂2Θ(x, y, t)

∂y2
, (30)

Θ(0, y, t) = Θ(X, y, t) = 100, ∀t > 0, (31)
Θ(x, 0, t) = Θ(x, Y, t) = 100, ∀t < 0, (32)
Θ(x, y, 0) = 0. (33)

Again, the classical solution is obtained numerically through the BCTS finite
differences method of Eq. 34. The plate is discretized using 350 nodes along
the x axis and 70 nodes along the y axis.

Θ(x(i), y(k), t
(j+1))−Θ(x(i), y(k), t

(j))

∆t
=

1

γ

(
Θ(x(i+1), y(k), t

(j+1))− 2Θ(x(i), y(k), t
(j+1)) + Θ(x(i−1), y(k), t

(j+1))

∆x2
+

Θ(x(i), y(k+1), t
(j+1))− 2Θ(x(i), y(k), t

(j+1)) + Θ(x(i), y(k−1), t
(j+1))

∆y2

)
+

O(∆t,∆x2,∆y2) (34)

The PD problem is discretized into N =24500 material points, each one
having area ∆x × ∆y, where ∆x = X/349 is the spacing between material
points along the x axis and ∆y = Y/69 is the spacing between material
points along the y axis. From Subsec. 3.1 the optimal non-locality parameter
to approximate the local solution is m = 3, hence δ = 3 · max(∆x,∆y) is
expected to be the optimal horizon size. Recall that in a PD model the non-
local interactions are not negiglible only within the horizon, as schematically
shown in Fig. 8, thus in a 2D problem the family of a generic point x(i) is
enclosed inside a circle of radius δ.

The classical and the peridynamic solution are compared in Fig. 9, where
the plate half span temperature profile (y = 0.005 m) is plotted at two
different time instants, t = 0.0005 s and t = 0.001 s.
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δ-convergence
A δ-convergence study has been performed in order to investigate the

behaviour of the PD solution w.r.t. the classical one, thus Eq. 29 is used
again. In Fig. 10 δ-convergence rates are shown for three different non-
locality parameters (m = 3 ,m = 4 ,m = 5) and at two different time instants
(t = 0.0005 s and t = 0.001 s). Since the PD solution has to converge to the
classical one when δ → 0, the relative difference is expected to reduce when
the horizon reduces. This behavior is confirmed by the results in Fig. 10.
Furthermore, the relative difference is much smaller for m = 3 than for
the other values, and this confirms that m = 3 is the optimal choice to
approximate the local solution. However, the convergence rate is reduced
to one, while in the 1D test case it was found to be equal to two, or even
greater. Such a reduction can be attributed to the definition of the family
of the point x(i): while in a 1D problem with a regular discretization it is
possible to perfectly include all the material points located at a distance
smaller than δ, in a 2 or 3D problem there will certainly be some material
points that are only partially included in the circle (or sphere) of radius δ. As
suggested by Bobaru and Duangpanya (2012) this is likely the root cause of
the reduction in the δ-convergence order from two to one. A solution to this
problem has been proposed by Yu (2011, Sec. 2.4), who suggested to use an
adaptive integration method method to compute the integral over the family
of x(i) and to take into account also the partially included particles (see
also Madenci and Oterkus, 2014, Sec 7.2 for an alternative volume correction
procedure).

3.3. Mesh sensitivity
The convergence studies performed so far were based on regular grids. It is

nonetheless important to assess how the solution behaves with irregular grids,
such as those that could be used to discretize irregular domains or that could
arise when dealing with large displacements. The mesh sensitivity of the
structural problem has already been studied by Henke and Shanbhag (2014).
The same plate of Subsec. 3.2 is discretized as a 3D body and subjected to
thermal shock boundary conditions on its lateral faces. The thermal shock
is equal to ∆Θ = −280 ◦C. Both a regular and a randomly perturbed mesh
are considered.
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Mesh Perturbation
The perturbed mesh is created starting from the definition of the element

size
elemSize =

elemLengthx + elemLengthy + elemLengthz
3

. (35)

The perturbation entity, magnitude, is defined as

magnitude = ε · elemSize, (36)

with 0 < ε < 0.5. Choosing ε ≥ 0.5 would make possible the overlapping of
two or more nodes, leading to the non-physical condition of material com-
penetration. Finally the x, y and z position components of every material
particle are perturbed according to the following formula:

x(i) =
(
2 · randomi(0, 1)− 1

)
· magnitude (37)

where randomi(0, 1) stands for a uniformly distributed random number be-
tween 0 and 1.
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Figure 11: Non-perturbed (left half, black) and perturbed (right half, gray) discretized do-
main and detail of the corresponding Voronoi tessellation, 150×30×3 points, magnitude =
0.4 · elemSize.

Voronoi tessellation
Since the distance between the particles is not constant for the irregular

mesh, the volume associated to each material particle is defined as the volume
of the convex polyhedron surrounding it. Thus, a Voronoi tessellation can be
used to compute the volumes. Typical regular and irregular discretizations
considered for this study are shown Fig. 11.

Mesh dependency study by varying the horizon
A plate with dimensions X = 0.05 m (length), Y = 0.01 m (height)

and Z = 0.001 m (thickness) is discretized with 150 material points along
the x axis, 30 points along the y axis and 3 points along the z axis. The
following non-locality parameter values are chosen: m = 3, 4, 5, 6, 7; with a
fixed discretization this corresponds to a change of horizon. The thermal
diffusivity is γ = 0.13 W m-2 s-1. The plate is subjected to thermal shock
boundary conditions on its boundaries, with the initial temperature difference
between the plate and the fluid at its lateral boundary equal ∆ΘBC(t = 0) =
−280 ◦C. Tab. 1 reports the temperature difference at time t̂1 = 0.0001 s
and t̂2 = 0.0002 s between the non-perturbed and the perturbed mesh in the
central point of the plate. The maximum temperature difference is equal to
∆Θ̂(tf ) = 6.1 ◦C, corresponding to a relative error ε%(tf ) = 3.38 %.
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m = 3 m = 4 m = 5 m = 6 m = 7

∆Θ̂(1
2
tf ), °C -4.3 4.8 3.5 -0.3 0.3

∆Θ̂(tf ), °C -6.1 3.4 1.8 3.0 3.1

Table 1: Temperature difference in the central point of the non-perturbed plate, i.e. in
x̂ = 0.025 m, ŷ = 0.005 m, ẑ = 0.0005 m, at t̂1 = 1

2 tf , t̂2 = tf , where tf = 0.0002 s.
Temperature in such point is indicated with Θ(x̂, ŷ, ẑ, t̂) = Θ̂(t̂).

m = 3 m = 4 m = 5 m = 6 m = 7
ε%(tf ) 3.38 2.45 1.23 2.02 2.14

Table 2: Percent error in x̂ = 0.025 m, ŷ = 0.005 m, ẑ = 0.0005 m, at t̂ = tf , where
tf = 0.0002 s. Temperature in such point is indicated with Θ(x̂, ŷ, ẑ, t̂) = Θ̂(t̂).

The percent errors at t = tf = 0.0002 s for different values of non-locality
parameters are shown in Tab. 2. They are always moderate and below 3.5 %;
this confirms that the peridynamic solution, for any horizon value, depends
only marginally on the discretization adopted.

In Fig. 12 the solutions for both non-perturbed and perturbed meshes are
plotted for the case m = 3 in the middle of the plate, i.e. for y = 0.005 m
and z = 0.0005 m, as a function of x. The difference between the solutions
at x = 0.025 m is equal to the 6.1 ◦C reported in Tab. 1, with the relative
error ε% = 3.38% of Tab. 2.

4. Thermo-mechanic test cases

Two thermo-mechanical problems with thermal shock boundary condi-
tions are investigated. The first case study (Example 1) involves an alumina
slab subjected to thermal shock on its lateral faces. The second case study
(Example 2) deals with a thick plate subjected to a thermal shock on its
lower face.

4.1. Example 1
A plate with the properties of Tab. 3 is subjected to a thermal shock on

its lateral faces. The initial temperature difference between the fluid and
the wall is ∆Θ = −280 ◦C in the first case, ∆Θ = −380 ◦C in the second
case and ∆Θ = −580◦C in the third case. The experiments of Shao et al.
(2011) have shown that a regular pattern of cracks orthogonal to the bound-
aries arises, see also the results obtained by Li et al. (2013). The number
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specific heat 880 J kg-1 K-1

thermal expansion coeff. 7.2 µK−1

thermal conductivity 18 W m-1 K-1

bulk modulus 227 GPa
shear modulus 136 GPa
density 3950 kg m-3

fracture toughness 42.27 J m-2

width X 50 mm
depth Y 10 mm
thickness Z 1 mm

Table 3: Mechanical, thermal and geometric properties of the domain under exam.
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Figure 13: Thermal shock with an initial temperature difference ∆Θ = −280 ◦C; top:
peridynamic simulation; bottom: experimental results by Shao et al. (2011).

of cracks and the medium crack depth increases as the initial temperature
difference is increased; however, the cracks do not coalesce. Experimental
results from Shao et al. (2011) are shown in Fig. 13(b) (∆Θ = −280 ◦C),
Fig. 15(b) (∆Θ = −380 ◦C) and Fig. 17(b) (∆Θ = −580 ◦C). The peri-
dynamic discretization is the same for the first two cases, with the plate
subdivided in 171 500 material points, specifically 350 through its width, 70
through its depth and 7 through its thickness, as shown in Fig. 11. The inte-
gration time step is equal to ∆tME = 10.433 ns, with a mechanical problem
critical time step ∆tME

cr = 13.041 ns and a thermal problem critical time step
∆tTHcr = 2.827 ms. The third case, characterized by higher temperature gra-
dient, required a finer 700× 140× 14 mesh, with 1372000 points and halved
time steps, to get correct results.

As regards the ∆Θ = −280 ◦C case, numerical and experimental results
are in qualitative agreement: as shown in Fig. 13 both the experiment and
the simulation are characterized by a pattern of almost equally spaced cracks
orthogonal to the free surfaces, with shorter cracks interposed between the
longer ones. Note that the PD model does not require any a priori hy-
pothesis neither about the cracks nucleation points nor about their direction
of propagation. A quantitative analysis of the crack frequency, considering
only cracks whose depth w is greater than 10% of the plate half width, i.e.
w > 0.1 · Y/2, is shown in the bar diagram of Fig. 14. We observed that
the results showed by Shao et al. (2011) overestimated the number of cracks
per non-dimensionalized length both with respect to what has emerged in
this work and with respect to the frequencies that can be computed by an-
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Figure 14: Crack frequency diagram and spline interpolation of results for ∆Θ = −280 ◦C.

alyzing the image of that same paper. For this reason we recomputed the
crack lengths by post-processing the images of Shao et al. (2011). As shown in
Fig. 14, the peridynamic solution does differ from the experiments: even if the
overall number of crack is the same, the experiment has a maximum number
of cracks for a non-dimensional crack length 2w/Y = 0.2÷0.3, while the peri-
dynamic model has a less pronounced maximum for 2w/Y = 0.3÷ 0.4. Fig-
ures 15 and 16 show the corresponding results obtained for ∆Θ = −380 ◦C.
In this case the results of Fig. 16 show a better frequency match between
the experiment and the simulation. Even better results are obtained for
∆Θ = −580 ◦C, see Figs. 17 and 18, although this is likely helped by the
finer discretization. After comparing the three cases one could be tempted
to infer that the peridynamic model is better suited to reproduce the effects
of strong thermal shocks, while it is not able to correctly account for shorter,
slowly propagating cracks, at least with the adopted discretization. Another
explanation, however, could be that the experimental statistical base is not
sufficient, and that the experimental results dispersion could be higher for
lower temperature differences; as a matter of fact, no statistical data are
available from Shao et al. (2011). Note that, although the crack frequency
diagrams correlation may not seem very good at lower temperatures, it com-
pares favorably with similar diagrams obtained by Li et al. (2013). Note also
that the overall number of cracks is correctly predicted for all the three cases.
A perhaps better assessment of the simulation accuracy can be achieved by
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Figure 15: Thermal shock with an initial temperature difference of ∆Θ = −380 ◦C; top:
peridynamic simulation; bottom: experimental results by Shao et al. (2011).

0.
1÷
0.
2

0.
2÷
0.
3

0.
3÷
0.
4

0.
4÷
0.
5

0.
5÷
0.
6

0.
6÷
0.
7

0.
7÷
0.
8

0.
8÷
0.
9

0.
9÷
1.
0

0

5

10
10

9
10

3 3

9 9

3

1

9
8

5
4

8 8 8

2
1

Non-dimensional crack length 2w
Y

#
cr
a
ck
s

Crack frequency for each non-dimensionalized crack length

Experiments
Peridynamics

Figure 16: Crack frequency diagram and spline interpolation of results for ∆Θ = −380 ◦C.
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Figure 17: Thermal shock with an initial temperature difference of ∆Θ = −580 ◦C; top:
peridynamic simulation; bottom: experimental results by Shao et al. (2011).
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Figure 18: Crack frequency diagram and spline interpolation of results for ∆Θ = −580 ◦C.
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following Bourdin et al. (2013), who compare their simulations with the ex-
perimental results of Shao et al. (2011) by plotting the crack depth as a
function of the crack spacing. The same comparison is reported in Fig. 19,
where the “Experiments” data are obtained by us by analyzing Shao et al.’s
figures. The overall trend is well matched, both qualitatively and quanti-
tatively, for all the three shock temperatures. Essentially the same results,
not shown here for conciseness, are obtained with irregular grids, built by
following the procedure of Subsec. 3.3.

With uncoupled simulations, such as those performed by Bourdin et al.
(2013), the temperature profile can be computed, as a known function of
time, independently from the structural response. Here, instead, the heat
flux inside the material is blocked by cracks, see Eq. 15, and the reached
temperature distribution does depend also on the damage state of the slab.
Hence, the temperature is characterized by discontinuities along fully devel-
oped cracks, as in Fig. 20. This effect appears to be more significant for the
third thermal shock case with ∆Θ = −250 ◦C. This case, not simulated by
other authors, is characterized by a pronounced bends of the cracks. Fig-
ure 21 compares the cracks predicted by the peridynamic code when the
heat is free to flow trough the cracks (top, uncoupled peridynamic simula-
tion) and when it is blocked by cracks (middle, weakly coupled peridynamic
simulation. It is clear the the uncoupled simulation results are qualitatively
different from the coupled ones, that better matches the bent cracks of the
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Figure 20: Temperature profiles due to a peridynamic thermo-mechanical simulation,
results after t ' 5 s. Note the discontinuities in correspondence of the cracks.

experiment (bottom, experimental results). The corresponding temperature
fields are compared in Fig. 22, with the coupled simulation showing signifi-
cant temperature jumps across all the bent cracks.

4.2. Example 2
A thick slab made of fragile material with the geometric, thermal and

mechanical properties of Tab. 4 is subjected to a thermal shock on its lower
face. The initial temperature difference between the fluid and the slab is
∆Θ = −500 ◦C. The integration time step is equal to ∆tME = 10 ns, with
a mechanical problem critical time step ∆tME

cr = 18.938 ns and a thermal
problem critical time step ∆tTHcr = 5.962 ms. This thermo-mechanical prob-
lem shows a peculiar crack evolution known as columnar jointing. Columnar
jointing is a geologic structure where sets of closely spaced fractures, referred
to as joints, form a regular array of polygonal prisms, addressed as columns.
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Figure 21: Thermal shock with an initial temperature difference of ∆Θ = −250 ◦C. top:
uncoupled peridynamic simulation; middle: weakly coupled peridynamic simulation; bot-
tom experimental results by Shao et al. (2011).

Figure 22: Temperature profile due to a peridynamic thermo-mechanical simulation; top:
uncoupled simulation; bottom: weakly-coupled simulation.
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specific heat 880 J kg-1 K-1

thermal expansion coeff. 7.2 µK−1

thermal conductivity 18 W m-1 K-1

bulk modulus 227 GPa
shear modulus 136 GPa
density 3950 kg m-3

fracture toughness 42.27 J m-2

width X 6 cm
depth Y 6 cm
thickness Z 2 cm

Table 4: Mechanical, thermal and geometric properties of the domain under exam.

Many studies about this fascinating phenomenon can be found in literature;
the reader can find further details about columnar jointing in e.g. Beard
(1959); Spry (1962); Jagla and Rojo (2002); Bahr et al. (2009); Goehring et al.
(2009); Bourdin et al. (2013). The onset and propagation of basalt columnar
cracks is often modeled by resorting to fracture mechanics or to the finite
elements method. Energy minimization can be invoked to justify the polygo-
nal structure of columnar basalts. Jagla and Rojo (2002) showed that if one
considers a small increase in the crack length, the perfect hexagonal pattern
relieves the maximum amount of elastic energy for a given total length of
fractures. Later on, Jungen (2012) proposed a variational approach in which
the fundamental hypothesis is that a fracture nucleates to minimize the total
amount of stored elastic energy in the system. Columnar jointing has already
been simulated numerically with good results. For example, Bourdin et al.
(2013) proposed a quasi-static gradient damage model that leads to the well-
known complex crack pattern, with many small cracks joining together and
arranging themselves into a prismatic patter after reaching a certain depth
through the domain thickness. Bourdin et al.’s typical result, obtained with
44e+6 degrees of freedom and using 1536 cores of the NSF-XSEDE cluster
Stampede at Texas Advanced Computing Center, is shown in Fig. 23. The
present peridynamic model makes use of 4.5e6 material points arranged in a
regular pattern; the horizon is chosen to be δ = 3X/299 ' 0.6 mm, therefore
m = δ/∆x = 3. The computation was performed on four cores of a standard
desktop pc, using an Intel® Core(TM) i7 950 (3.07 GHz); the explicit inte-
gration took almost 18 h. The resulting crack pattern is shown in Fig. 24. A
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Figure 23: Columnar jointing computed using a quasi-static gradient damage model; image
taken from Bourdin et al. (2013).

dense pattern of small cracks nucleates on the lower face of the slab. After
that, the cracks propagate through the domain thickness; after reaching a
depth of z ≈ 3 mm the propagation becomes stable, with the typical hexag-
onal pattern and the formation of columns. Finally, the somewhat reduced
thickness of the specimen, limited by the computational resources at hand,
leads to the propagation of two major transverse crack that almost break it
in four parts. The simulated crack pattern is compared, in Fig. 25, with
a typical basalt formation. By taking slices of the mesh at different heights
it is possible to identify the joining of smaller columns into bigger ones, a
phenomenon described e.g. by Bahr et al. (2009), see Fig. 26. The sequence
of Fig. 27 shows the joining of three columns. This joining can occur mul-
tiple times throughout the thickness of the slab, as shown in Fig. 28.
Figure 29 shows the crack pattern obtained for an stronger thermal shock
of ∆Θ = −800 ◦C. Following again Bourdin et al. (2013), Fig. 30 plots the
average crack size d =

√
A, where A is the average column area at a given

height, as a function of the distance a from the exposed face. Data are in
good agreement with the two-dimensional scaling law of Bahr et al. (2010),
both for the ∆Θ = −500 ◦C. and the ∆Θ = −800 ◦C cases. The same Figure
reports for completeness all the numerical results obtained by Bourdin et al.
(2013) for a wider set of lengths of the slab side.

5. Concluding remarks

The proposed weakly coupled peridynamic formulation allows to effec-
tively simulate the onset of 2D and 3D mode-I thermally-induced cracks. No
prior knowledge of the cracks number, point of initiation, direction of prop-

35



Figure 24: Peridynamic simulation of columnar jointing, considering a thick slab, ∆Θ =
−500 ◦C.

(b1)

Figure 25: Peridynamic simulation (b1) and real basalt (b2) cracks.
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Figure 26: Sequence of slices through a tomogram of columnar joints growing into the
depth of drying corn starch slurry (22a) and idealized interpretation of the joining mech-
anism (22b). Images taken from Bahr et al. (2009).

(a) z = 0.0 mm (b) z = 0.05 mm (c) z = 1.5 mm

(d) z = 2.0 mm (e) z = 2.8 mm (f) z = 3.8 mm

0.3 0.4 0.5 0.6 0.7

Damage

Figure 27: Three columns merge into one through the thickness of the slab.
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(a) z = 0 mm (b) z = 0.05 mm (c) z = 0.4 mm

(d) z = 0.8 mm (e) z = 2.5 mm (f) z = 3.6 mm

0.0 0.25 0.5 0.75 1.0

Damage

Figure 28: Merging of three columns occurring twice through the slab thickness: first
merge from (28a) to (28c), second merge from (28c) to (28f).
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Figure 29: Peridynamic simulation of columnar jointing, considering a thick slab, ∆Θ =
−800 ◦C.
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Figure 30: Average crack size as a function of distance from the exposed face.
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agation or size is needed. Due to the remarkably different time scales of the
mechanics and thermal subsystems the explicit integration scheme requires
a multirate approach. That said, the overall computation effort and the re-
sults obtained are comparable with those of the competing implicit approach
proposed by Bourdin et al. (2013).

A peculiarity of the implementation is that the predicted temperature
distribution does depend on the cracks onset; it is thus different from what
one would obtain by independently integrating the mechanical and thermal
subsystems, as Figs. 20 and 22 make clear. The assumption of Eq. 15, where
the heat flux is prevented by the mechanical damage, may be deemed rea-
sonable for opening mode-I crack; it should however be critically evaluated,
and possibly modified with the introduction of appropriated contact conduc-
tance terms, whenever closing and/or mode-II and mode-III cracks have to
be accounted for.
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