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The objective of the running EU project DESICOS (New Robust DESign Guideline for 

Imperfection Sensitive COmposite Launcher Structures) is to formulate an improved 

shell design methodology in order to meet the demand of aerospace industry for lighter 

structures. Within the project, this paper discusses the development of a probability-based 

methodology developed at Politecnico di Milano. It is based on the combination of the 

Stress-Strength Interference Method and the Latin Hypercube Method with the aim to 

predict the bucking response of three sandwich composite cylindrical shells, assuming a 

loading condition of pure compression. The three shells are made of the same material, 

but have different stacking sequence and geometric dimensions. One of them presents 

three circular cut-outs. Different types of input imperfections, treated as random 
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variables, are taken into account independently and in combination: variability in 

longitudinal Young’s modulus, ply misalignment, geometric imperfections and boundary 

imperfections. The methodology enables a first assessment of the structural reliability of 

the shells through the calculation of a probabilistic buckling factor for a specified level of 

probability. The factor depends highly on the reliability level, on the number of adopted 

samples and on the assumptions made in modeling the input imperfections. The main 

advantage of the developed procedure is the versatility as it can be applied to the buckling 

analysis of laminated composite shells and sandwich composite shells including different 

types of imperfections. 

Keywords 

Probabilistic Methods; Buckling; Probabilistic Buckling Factor; Sandwich Composite 

Shell; Cut-outs. 

  



ACCEPTED MANUSCRIPT 

 

ACCEPTED MANUSCRIPT 3 

1. Introduction 

Due to their high performance and low weight, sandwich structures are widely used in the 

aerospace industry, especially in the design of space launch vehicles, where the buckling is one 

of the dimensioning criteria. The current shell design mainly relies on NASA SP-8007 

guideline
1
, which provides recommendations for isotropic and laminated composite shells, and 

for sandwich shells whose facesheets are made of isotropic material and the core is elastic. Such 

a guideline proposes the use of an empirical knockdown factor to account for the manufacturing 

and in-service imperfections, which are the primary source of the discrepancy between analytical 

predictions and experimental results
2,3

. However, the use of the empirical knockdown factor may 

often lead to overly conservative design. Singer et al.
2
 pointed out the availability of 

imperfection data as one of the prerequisites for developing and validating an advanced shell 

design methodology. Bisagni
3,4,5

 carried out numerical and experimental studies of buckling and 

post-buckling phenomena of shells and obtained a good numerical-experimental correlation by 

including the imperfections measured on test specimens into the numerical model. The numerical 

and experimental investigation of composite cylindrical shells under a loading condition of pure 

compression and of compression combined with torque displayed the influence of the stacking 

sequence on the buckling response and the independence of the buckling load on the sequence of 

application of the two types of load. 

In the past twenty years, the literature concerning buckling investigation of axially compressed 

cylindrical shells has extensively focused on the use of methods of probabilistic analysis with the 

goal to define stability design methodology
6-9

 for shells. Considering the input imperfections in a 
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probabilistic manner, as proposed by Bolotin
6
, allows for assessing the response variability of 

cylindrical structures. Elishakoff et al.
7
 adopted the First-Order Second-Moment Method to 

predict the structural reliability function of isotropic cylindrical shells and the Monte Carlo 

Method to verify the results. Through exploiting the two stated approaches, Arbocz and 

Hilburger
8 

developed a probability-based analysis method and applied it to the buckling study of 

laminated composite shells under pure compression. The goal was to achieve an “improved” 

knockdown factor starting from input probabilistic parameters that were experimentally derived. 

The Monte Carlo Method was used by Kriegesmann et al.
9
 to perform a probabilistic analysis of 

laminated composite shells including both geometric and boundary imperfections regarded as 

random parameters, which were defined on the basis of the results of statistical analysis of 

experimental measurements. Takano
10

 carried out a statistical analysis of buckling test data 

concerning shells with different geometric dimensions, material and layup from open literature in 

order to calculate two statistical knockdown factors, the A-basis equal to 0.479 and B-basis equal 

to 0.626. The main assumption of the statistical analysis of Takano is that the calculated factors 

are independent on radius over thickness ratio of shells. 

The running EU project DESICOS
11

 (New Robust DESign Guideline for Imperfection Sensitive 

COmposite Launcher Structures) has the goal to meet the demand of aerospace industry for 

lighter structures through the development and the validation of improved shell design criteria. 

The project is mainly focused on the combination of probabilistic and deterministic approaches 

including, in particular, the Single Perturbation Load Approach. The Single Perturbation Load 

Approach
 
was studied by NASA and by Hühne et al.

12
 starting from the experimental 

observation that the dimple shape imperfection is similar to the dimple that forms in a 
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compressed cylindrical shell at the onset of buckling. The buckling is trigged by a lateral load 

imposed to the shell before applying the axial compression. By increasing the lateral load, the 

buckling load decreases up to an almost constant magnitude which is taken as the design load. 

Orifici and Bisagni
13

 studied two laminated composite shells and two sandwich composite shells 

with a rectangular cut-out by the Single Perturbation Load Approach. Castro et al.
14

 made a 

comparison among different approaches of modeling the geometric imperfections. To this 

purpose, the buckling load of composite shells, considering different models of imperfections, 

was graphed as knockdown factor in function of the imperfection amplitude. The results 

indicated that the axisymmetric geometric pattern seemed to be the most detrimental. 

This paper discusses the development of a probability-based methodology, which provides a 

unified framework for the probabilistic buckling analysis of shells subjected to axial 

compression. The Stress-Strength Interference Method and the Latin Hypercube Method are 

combined to perform the probabilistic structural analysis of the scaled models of the Dual 

Launch System (SYLDA) and of the Interstage Skirt Structure (ISS) of Ariane 5 launcher. The 

SYLDA model is also studied with the presence of three circular cut-outs (SYLDA with cut-

outs). The scaled models of the three shells were designed by Airbus Defence & Space. These 

structures are three sandwich composite shells made of the same material but with different 

stacking sequence and geometric dimensions. 

The procedure of the probability-based methodology is described, showing the potentiality of a 

probabilistic analysis. The probabilistic approach aims to assess the probabilistic buckling factor 
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of the shells taking different types of input imperfections into account, and assuming loading 

condition of pure compression. 

The main advantage of the probability-based methodology is the versatility because it can be 

applied to buckling analysis of laminated composite shells and sandwich composite shells 

including different kinds of imperfections and using different sampling techniques. The 

modeling of input imperfections can be adapted on the basis of the available data and it does not 

require approximations, against other probabilistic methods like the First-Order Second-Moment 

Method. 

Firstly, the main results of the buckling and post-buckling deterministic analysis of these 

sandwich shells are presented. Next, the probabilistic buckling analysis is performed using the 

developed probabilistic procedure. 

2. Shells Description and Finite Element Models 

The scaled models of the Dual Launch System (SYLDA) and of the Interstage Skirt Structure 

(ISS) are here investigated. The diameter of the shells is equal to 700 mm; the length of SYLDA 

is equal to 700 mm, while the length of ISS is 358 mm. As two tabs are bonded to the ends of the 

shells to perform the experimental tests, the free length is limited to the central part and measures 

620 mm for SYLDA and 318 mm for ISS. A third shell is moreover studied: SYLDA scaled 

model including the presence of three cutouts. The configuration of SYLDA with cut-outs 

consists of a cut-out of diameter equal to 92 mm located on one side of the shell and two smaller 
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cut-outs of diameter equal to 46 mm on the other side. The centers of the two smaller cut-outs 

have a distance of 92 mm. 

The shells are made by a sandwich consisting of two composite facesheets and a core. The 

facesheets are laminates made of Hexcel IM7/8552 UD carbon prepreg, whose material 

properties are taken from literature
15,16,17

 and are listed in Table 1, with ply thickness of 0.131 

mm. 

The core material is EVONIK Rohacell WF200
18

 with thickness of 1.5 mm for SYLDA models, 

and 2.6 mm for ISS model. The material properties are reported in Table 2. 

The stacking sequence of SYLDA and SYLDA with cut-outs is [19°/-19°/90°/CORE/90°/-

19°/19°] for a total thickness equal to 2.286 mm, whereas ISS has layup [30°/-30°/0°/CORE/0°/-

30°/30°] for a total thickness equal to 3.386 mm. 

The finite element model of each shell is set up using the commercial FE code ABAQUS 6.13
19

 

with S4R shell elements. The mesh size of SYLDA and of ISS is equal to 10 mm x 10 mm and 10 

mm x 9.94 mm, respectively. The finite element model of SYLDA with cut-outs is generated 

using a global mesh size of 10 mm x 10 mm. The area around each cut-out is meshed with 

smaller elements: 4 mm x 4 mm around the larger cut-out, and 3.6 mm x 3.6 mm around the two 

smaller cut-outs. 

The shell models are fixed at one edge, while all degrees of freedom except the axial translation 

are constrained at the loaded edge. 
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3. Deterministic Buckling and Post-Buckling Analysis 

The buckling and post-buckling response of SYLDA, SYLDA with cut-outs and ISS under 

compression load is analyzed by performing explicit dynamic analysis. The load is introduced 

through an axial displacement imposed at a loading ratio of 1 mm/s. Firstly, nominally perfect 

geometry is assumed; next, the sensitivity of the shells to axisymmetric geometric imperfections 

is numerically assessed. 

The meshes of SYLDA, SYLDA with cut-outs and ISS are illustrated in Figure 1, where the 

meshes around the cut-outs are also displayed. The amplified imperfection shape of each shell is 

shown in the figure. 

The imperfection amplitude is quantified by the amplitude to thickness ratio ξ taking into 

account the total thickness of the shell. Three levels of ξ are here considered: 0%, 10% and 50%. 

Figure 2 illustrates the load-shortening curves of SYLDA for the three values of ξ. The NASA 

knockdown factor
1
 is also highlighted in the figure. It is determined using the formulae provided 

by NASA guideline for laminated composite shells under the assumption that SYLDA is 

considered as a laminate of seven plies. The nominal response of the shell is linear until buckling 

which takes place at 1.78 mm for a load of 417 kN. As the imperfection amplitude increases, the 

load-carrying capacity of the shell decreases. For ξ equal to 50%, the buckling phenomenon 

yields a reduction of shell stiffness. 

The deformed configurations of SYLDA corresponding to the three levels of ξ are shown in 

Figure 3 at 2.50 mm of shortening. In the case of nominally perfect geometry, the displacement 
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contour exhibits two rows of buckles along the axial direction. The deformed configuration for ξ 

equal to 10% is characterized by two rows of fully developed buckles, whereas it displays a 

chessboard-like pattern for ξ equal to 50%. 

The buckling and post-buckling response of SYLDA with cut-outs is predicted for the three 

levels of ξ and is shown in Figure 4. The geometrically perfect shell presents an initial local 

instability close to the cut-outs at 0.90 mm for a load of 200 kN. The shell withstands an 

additional amount of load until 1.31 mm where it buckles globally for 287 kN. The collapse 

occurs at 1.45 mm for a load of 294 kN. As the imperfection amplitude increases, the maximum 

load decreases and the response curve changes remarkably. 

Figure 5 illustrates the deformed configurations of SYLDA with cut-outs for the three 

magnitudes of ξ at 2.50 mm of imposed shortening. It is possible to note that the cut-outs 

dominate the buckling response. 

Figure 6 reports the load-shortening curves of ISS for the three levels of ξ and the NASA 

knockdown factor, which is assessed with the assumption that the shell is regarded as a laminate 

of seven plies. 

The shell exhibits a pre-buckling nominal response that is linear up to about 1 mm of shortening; 

later, the slope of the load-shortening curve decreases, indicating a non-linear behavior. At 1.23 

mm and 513 kN the load drops and an instability phenomenon develops. As the imperfection 

amplitude ξ increases, ISS displays a gradual reduction of pre-buckling stiffness. The sudden 

drop of load following the buckling is observed only for the nominally perfect structure. 
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The deformed configurations of ISS are illustrated in Figure 7. The post-buckling pattern of the 

shell without imperfections presents a single row of buckles, while the shell with imperfections 

shows axisymmetric deformation. 

4. Probabilistic Procedure for Buckling Analysis 

Figure 8 illustrates the block diagram of the probability-based methodology, which is developed 

by combining the Stress-Strength Interference Method and the Latin Hypercube Method in order 

to perform a probabilistic structural analysis for axially compressed cylindrical shells. The goal 

is to determine the probabilistic buckling factor for a probability level equal to 99%. 

This factor enables to evaluate the sensitivity of the shell to the different types of input 

imperfections, but is highly influenced by the assumed variability of the input parameters, by the 

adopted sample size and by the required standard of probability. The influence of the input 

imperfections, treated in probabilistic manner, is assessed separately and in combination. The 

imperfections here considered are geometric imperfections, non-uniform loading effects and 

variability in longitudinal Young’s modulus and in laminae orientation. The product between the 

probabilistic buckling factor and the buckling load of the nominally perfect shell is the load 

associated with 99% probability that the shell withstands compression load without undergoing 

buckling. 

4.1. Probabilistic Properties of Imperfection Parameters 

The parameters of the different kinds of input imperfections considered in the probabilistic 

analysis are here described. 
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4.1.1. Geometric Imperfections 

The geometric imperfections are defined as the radial deviation of the effective surface of the 

shell from the nominal one. The geometric imperfections applied to the nominal geometry of 

each shell are the same used in the deterministic investigation and shown in Figure 1. They are 

assumed to have an axisymmetric shape modeled by the sine function  w / t= ξsin iπz / l  where 

w is the radial displacement, t and l are the total thickness and the length of the shell, and z is the 

axial direction. The number of axial half-waves i is selected equal to 12 for SYLDA and SYLDA 

with cut-outs because a numerical investigation has shown that this shape results to have the 

most detrimental effect on the load-carrying capability of the shells. The axisymmetric 

imperfections have been selected also for ISS and in this case the number of axial half-waves i is 

set to 4, equal to the first buckling mode. The imperfection amplitude ξ is here assumed to be a 

random variable. 

Arbocz and Hilburger
8
 described the geometric imperfections using a two-mode initial 

imperfection model, whose parameters were determined from experimental measurements of 

laminated composite shells. The mean value ξ̅ and the standard deviation ξs  of the imperfection 

amplitude are here taken on the basis of Ref. 8 considering the worst case of superposition of the 

two reported modes: ξ     (ξ̅   ξ)    -               .. 

4.1.2. Variability in Longitudinal Young’s Modulus 

An experimental program to identify the statistical properties of the Hexcel IM7/8552 UD 

Carbon Prepreg is described in literature
20

. The mean value and standard deviation of the 

longitudinal Young’s modulus E11 are equal to 171.42 GPa and 2.38 GPa, respectively. These 
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statistical estimators are referred to the tensile properties of the material. Since statistic data of 

the compression properties of the material are not available, the ones of tensile properties are 

here used in order to illustrate the probabilistic procedure. 

Current practices
21

 recommend the use of material design allowables to reduce the probability of 

material failure due to material properties variability, manufacturing process variations, etc. They 

are material property values that are statistically calculated from test data. Typical allowable 

design values are the A-basis and B-basis. The A-basis is the allowable value that is exceed by 

99% of population of the material property with 95% confidence level to be exceed. The B-basis 

is the allowable value that is exceed by 90% of population of the material property with 95% 

confidence level to be exceed. 

On the hypothesis that the longitudinal Young’s modulus is normally distributed 

with        ( ̅        )                         ,, the B-basis and A-basis allowable design 

values of E11 are equal to 163 GPa and 158 GPa. The material design allowable that is exceed by 

99.99% of population of E11 with 95% confidence level to be exceed is equal to 150 GPa. It is 

identical to the compressive longitudinal Young’s modulus reported in Refs. 15, 16, 17 and in 

Table 1 and used in the deterministic buckling analysis of the three shells. Since the variability of 

the longitudinal Young’s modulus is here treated in a probabilistic manner, the adopted mean 

value of E11 is equal to 171.42 GPa and not 150 GPa. 

A preliminary probabilistic investigation of the three shells with variability of E11 displayed that 

the assumption of 11E  ~ N(171.42 GPa, 2.38 GPa)  yields results less conservative than the ones 

obtained by deterministic buckling analysis using material design allowable equal to 150 GPa. In 
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order to be conservative, the upper bound of the 95% confidence interval of the standard 

deviation 
11Es  of E11 is used in place of 

11Es . The probabilistic study of the influence of the 

longitudinal Young’s modulus is so carried out under the assumption that 

11E  ~ N(171.42 GPa, 6.84 GPa) . The value of E11 is regarded identical for each lamina, because 

it is supposed that all laminae come from the same batch of production. 

4.1.3. Ply Misalignment 

The orientation of each lamina is taken to have a Gaussian distribution with mean value equal to 

the nominal value of the angle and a tolerance of ±2°, typical in the aerospace industry. The 

angles are regarded independent on each other. As consequence of the assumption of 

independence, the laminate resulting from the application of the Latin Hypercube Method can 

present anisotropy. 

4.1.4. Boundary Imperfections 

The boundary imperfections are modeled as deviations from the uniform distribution of axial 

displacement imposed along the loaded edge. They are simulated using a one-dimensional 

homogeneous Gaussian field (i.e., a random function of the circumferential coordinate), whose 

mean value is equal to the nominal magnitude of applied axial displacement and the covariance Σ 

is modeled by the exponential function
22

 0 0Σ=Σ exp(- d /l ) , where d is the circumferential 

distance between two nodes of the loaded edge, l0 is the correlation length set to πr and r is the 

radius of the shell. The variance Σ0 of the Gaussian field is taken so that the resulting profile of 

the reaction forces has a coefficient of variation equal to 15%. The coefficient of variation is the 

ratio between the standard deviation and the absolute value of the mean. Σ0 is set on the basis of 
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Ref. 23 where it is reported a coefficient of variation associated to the launch vehicle static loads 

due to the thrust equal to 5%. As the shell is also subjected to other static loads during the 

launch, this value is tripled to be conservative. 

4.2. Stress-Strength Interference Method and Limit-State Function 

One of the most widely used method for the structural reliability analysis is the Stress-Strength 

Interference Method
24,25

. The overlap region of the probabilistic distributions of limit stress and 

stress of the structure determines the conditions under which it does not fail, that is the structural 

reliability Re. The difference between limit stress and stress is the limit-state function g(X). In 

buckling analysis of axially compressed cylindrical shells, the limit-state function g(X) can be 

constructed as the difference between the normalized buckling load Λs of the structure and the 

normalized loading parameter, named here probabilistic buckling factor λ: g(X) = Λs(X)-λ. The 

vector X includes the input random variables. The normalized buckling load Λs(X) is considered a 

random variable: it is characterized through its probability distribution function caused by the 

variability of the input imperfections. The normalization is performed with respect to the critical 

load of the shell without any imperfections. 

The probabilistic buckling factor λ is a constant random variable (i.e., it takes a single constant 

value with unitary probability) and has to be determined on the basis of the sources of 

imperfections. It is assessed by the definition of the reliability function Re λ , which is the 

probability that the limit-state function is positive: 

      
s se s Λ s s Λ

λ

R (λ) = Prob(g(X) > 0)=Prob Λ X  > λ  =  f   Λ  dΛ = 1 - F λ


  (4.1) 
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where 
sΛ

f  Λs) and 
sΛ

F  Λs) are the probability density function and the cumulative density 

function of Λs(X), respectively. They are unknowns and are determined using the Latin 

Hypercube Method. The reliability is therefore defined as the probability that the shell does not 

buckle under compression load. 

Thus, once the requirement of reliability level is specified and the probability distribution 

function of Λs(X) is identified, the corresponding λ is assessed by Eq. (4.1). 

4.3. Latin Hypercube Method and Distribution Identification 

The Latin Hypercube Method
22

 is applied in order to generate a data collection of the buckling 

load given the input imperfections. The general procedure of the Latin Hypercube Method is 

illustrated in Figure 8. It differs from the Monte Carlo Method
25,26

 because the Monte Carlo 

Method draws samples from uniform distribution, whereas the Latin Hypercube Method uses the 

Latin Hypercube Sampling, reducing so the variance of probabilistic buckling factor estimated 

by the probabilistic methodology. This sampling method is a form of stratified sampling where 

the marginal distribution of each variable is divided into N intervals of equal probability and then 

a value is selected from each of the intervals. The N samples generated by the Latin Hypercube 

Sampling cover the range of the distribution in much fewer samples than would be required to 

cover the range with purely random samples. 

A sample size N equal to 100 is chosen in this study in order to keep a limited computational 

time. As a consequence of the low number of random variables included here into the 

probabilistic analysis, a convergence study has proven that the adopted sample size provides 

satisfactory precise results. N samples of each input random variable are generated through the 
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Latin Hypercube Sampling and are then incorporated independently or in combination in the 

finite element model of shell. The simulation of the N finite element models of the shell with 

imperfections is carried out using FE code ABAQUS 6.13. N displacement-control implicit 

dynamic analyses are run at a loading ratio of 1 mm/s. Implicit analysis is here preferred to 

explicit analysis in order to save computational time. The obtained critical loads are then 

normalized to achieve the data collection of Λs(X). 

The data collection is used to identify the statistical characteristics and the distribution of Λs(X) 

by means of goodness-of-fit statistics. They are statistical measurements that enable to reject or 

accept the assumption that the data have a given distribution. Three techniques, the Probability 

Plot (e.g., quantile-quantile plot), the Kolmogorov-Smirnov test and the Anderson-Darling test, 

are here adopted to choose the distribution that best fits the observations of Λs(X). The histogram 

and the statistical estimators (mean value, standard deviation, coefficient of variation, skewness, 

etc.) of tests of Λs(X) allow to draw few conclusions about the distribution of the normalized 

buckling load. 

The distribution of Λs(X) is limited in such a way that the probabilistic buckling factor cannot 

assume values larger than one: 

 
 
   

 
 

s s

s ss s

Λ s Λ s

s s

Λ ΛΛ s Λ s

s s

F Λ   f Λ
  if  Λ  < 1   if  Λ  < 1

F 1 F 1F Λ  =  f Λ  =

1 if  Λ    1 0 if  Λ    1 

 
 
 
 
 

 (4.2) 

sΛ
F (1) stands for the cumulative density function of Λs(X) that is evaluated in Λs(X) = 1. 
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4.4. Assessment of Probabilistic Buckling Factor 

After having defined the distribution of the normalized buckling load, the probabilistic buckling 

factor λ is estimated through Eq. (4.1), using the inverse cumulative density function 
s

1

ΛF  of 

Λs(X), for a probability level of 99%: 

      
s s

yields
 -1

e s Λ Λ eR = Prob  Λ X  > λ  =1 - F λ             λ = F  1 - R  (4.3) 

This factor corresponds to the load value such that the probability that the shell withstands 

compression load without undergoing buckling is equal to 99%. In the case that the normalized 

buckling load is normally distributed and is uncorrelated from the probabilistic buckling factor, 

Eq. (4.3) can be re-formulated using the reliability index    (Λ̅ -λ)  Λ ⁄   and the relationship Re 

  Φ   
22

: 

     Φ  (   )  Φ ( 
Λ̅  - λ 

 Λ 
 )  

      
→   λ   Λ̅  -      Λ  (4.4) 

where Φ is the standard normal cumulative density function. The probabilistic buckling factor is 

thus expressed as a function of the sample mean valueΛ̅ , the sample standard deviation
sΛ

 s  of 

Λs(X) and of the reliability index  . This is the margin between the mean value of Λs(X) and the 

loading parameter λ normalized by the standard deviation of Λs(X). A reliability of 99% implies a 

reliability index of 2.33. 

The use of Eq. (4.3) rather than of Eq. (4.4) relies on which probabilistic distribution, Gaussian 

or not Gaussian, is identified to best describe the buckling response Λs(X) of shell. 
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5. Results 

The developed probabilistic procedure for buckling analysis is here applied to the study of 

SYLDA, SYLDA with cut-outs and ISS, assuming loading conditions of pure compression. The 

probabilistic buckling factor is calculated to define the sensitivity of the three shells to the input 

imperfections, whose influence is investigated independently and in combination. 

5.1. Probabilistic Buckling Analysis of SYLDA Shell 

Table 3 summarizes the results of the probabilistic buckling analysis of the scaled model of 

SYLDA. The probabilistic buckling factor λ of the shell is estimated for a probability level equal 

to 99% in the different analysis cases. 

To obtain the data collection Λs(X), the data set of buckling load is normalized by the buckling 

load of the nominally perfect shell, which is equal to 459 kN. The nominally perfect shell refers 

to the scaled model of SYLDA considering the nominal values of the input imperfections. It 

corresponds to SYLDA without geometric and boundary imperfections, without error of ply 

angles and with longitudinal Young’s modulus E11 of laminae equal to 171.42 GPa. Indeed, the 

influence of the variability in material properties is here studied in probabilistic manner rather 

than taken into account through the allowables. 

The NASA knockdown factor is determined for SYLDA using the formulae recommended in 

NASA SP-8007 guideline
1 

for laminated composite shells on the hypothesis that SYLDA can be 

considered a laminate of seven plies. It is equal to 0.57 and corresponds to a load of 262 kN. 
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Table 3 points out that, among all imperfections, the geometric imperfections turn out to be the 

most dominant in determining the buckling response of SYLDA. When the boundary 

imperfections, the variability of longitudinal Young’s modulus and the ply misalignment are 

considered in addition to the geometric imperfections, the λ value of the shell decreases from 

0.73 to 0.71. However, the individual influence of the boundary imperfections drops the buckling 

load of SYLDA by 11%. 

The three goodness-of-fit tests are used to verify the assumption that the normalized buckling 

load Λs(X) of SYLDA shell combining all the sources of input imperfections is normally 

distributed. 

The quantile-quantile plot of Gaussian distribution is shown in Figure 9. The black line stands 

for the Gaussian quantile QN(q) that is expressed as a linear function of the standard Gaussian 

quantile Q1(q): 

 
 
( )    

Λ 

 - ( )   Λ̅     Λ Φ
 - ( )   Λ̅     Λ   

( ) (5.1) 

where q is the empirical cumulative density function; Λ̅  and 
sΛ

s  are the sampled mean value and 

the sampled standard deviation of the tests of Λs(X), respectively. The dotted gray lines in the 

figure represent the 95% confidence bounds of the quantile QN(q). Since the data collection of 

Λs(X), depicted as empty circles on the Gaussian quantile-quantile plot in the figure, falls 

approximately on a straight line and no data are outside the confidence interval, the data set 

follows the Gaussian distribution. 
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The Kolmogorov--Smirnov statistic quantifies the distance between the empirical and the 

Gaussian cumulative density functions. The two distributions are compared in Figure 10. The 

maximum percentage distance between them is equal to 5%. The empirical cumulative density 

function presents a swinging trend due to the use of a sample of the population of Λs(X). 

The procedure of the Anderson-Darling (AD) test is applied to the observations of Λs(X). The AD 

test statistic is calculated in accordance with Ref. 21: 

    
s s

 N

Λ s, i Λ s, N +1-i 

 i=1

2i-1
AD = -N -      ln F Λ  - ln  1 - F  Λ    

N
 
   = 0.30 (5.2) 

and the modified Anderson-Darling test is obtained as  AD*=AD 1+0.2 / N =0.30 . 

The decision to reject or not to reject the assumption that data have the hypothesized distribution 

is based on the comparison between the observed significance level OSL and the recommended 

significance level α of the test. The OSL for the Gaussian distribution is: 

 
  * *

1
OSL    0.51

1 + exp  -0.48 + 0.78ln AD  + 4.58 AD    
   (5.3) 

Since OSL>α = 0.05, the assumption of Gaussian distribution is not rejected. The significance 

level is here set to 0.05, because the value 1-α = 95% is by far the most commonly used 

confidence level. 

As consequence of the results of the three goodness-of-fit tests, the normalized buckling load 

Λs(X) of SYLDA shell with joint imperfections is accepted to have a Gaussian distribution. 



ACCEPTED MANUSCRIPT 

 

ACCEPTED MANUSCRIPT 21 

In the assumption that Λs(X) is normally distributed, the reliability Re λ  of SYLDA including the 

input random variables in combination is determined by Eq. (4.4) as function of the probabilistic 

buckling factor λ and plotted in Figure 11. 

The region below the curve represents the “safe region” where the shell withstands axial load 

without undergoing buckling; on the contrary, the buckling takes place in the “unsafe region” 

above the curve. The dashed black line highlights the λ value of the shell, equal to 0.71, for 99% 

probability. The corresponding value of buckling load of SYLDA combining all the sources of 

imperfections is equal to 326 kN. This outcome depends highly on the modeling of the input 

random variables. For instance, changing the shape and the amplitude of the geometric 

imperfections, the resulting λ differs. As an example, the probabilistic buckling factor falls off by 

26% with a tripling of the standard deviation of the imperfection amplitude. Increasing the 

requirement of probability, the resulting λ decreases, as evident in Figure 11. For instance, the 

probabilistic buckling factor drops from 0.71 to 0.61 when the reliability level is raised from 

99% to 99.99%. 

The evaluated probabilistic buckling factors is affected by the sample size. As an example, the 

convergence study reveals that the λ factor of SYLDA with joint imperfections turns out to be 

0.70 for a number of simulations equal to 300. Hence, in this case, the adopted sample size of 

100 provides satisfactory precise results. 

The deterministic buckling analysis of SYLDA was performed using longitudinal Young’s 

modulus E11 equal to 150 GPa. The reduction of E11 from the mean value 171.42 GPa to the 

design allowable 150 GPa decreases the buckling load of SYLDA from 459 kN to 417 kN. The 
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superposition of the axisymmetric geometric imperfections for ξ = 10% causes an additional 

reduction of the buckling load from 417 kN to 304 kN as shown in Figure 2. On the other side, 

the load corresponding to the λ factor which is obtained by the probabilistic analysis of SYLDA 

combining all input probabilistic parameters is equal to 326 kN. Consequently, the buckling load 

assessed by the developed probabilistic procedure is 7% higher than the deterministic one 

obtained with design allowable Young’s modulus and geometric imperfections with amplitude 

equal to 10% of the thickness. 

5.2. Probabilistic Buckling Analysis of SYLDA Shell with Cut-outs 

The probabilistic methodology is applied to the buckling analysis of SYLDA with cut-outs in 

order to realize a data collection of Λs(X). The normalized buckling load is, in particular, 

obtained from the division of the maximum load reached by the shell with imperfections by the 

maximum load reached by the nominally perfect shell, which is equal to 325 kN. The maximum 

load is considered rather than the local buckling load because the load-carrying capacity of the 

structure is here of interest. 

Table 4 lists the probabilistic buckling factor λ of SYLDA with cut-outs which is evaluated in the 

different analysis cases for a probability of 99%. The knockdown factor is not available for this 

shell because NASA monographs do not provide recommendations for cylindrical shells with 

cut-outs. 

From Table 4 it is possible to note that for SYLDA with cut-outs the λ value is not dominated by 

a specific source of imperfections, but is the result of the joint influence of all input parameters. 
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The load-shortening curve of SYLDA with cut-outs and without including imperfections is 

shown in the left graph of Figure 12. The dotted black line represents the maximum load of 325 

kN reached by the nominally perfect shell. In the right graph of Figure 12 the probability density 

function 
sΛ

f  Λs) of the normalized buckling load of SYLDA with cut-outs and combining all the 

input imperfections is illustrated. The dotted black line stands for the unitary normalized 

buckling load. The probabilistic buckling factor λ equal to 0.87, obtained for a probability of 

99%, is highlighted on the distribution 
sΛ

f  Λs). The Figure 12 shows also that λ value for 99% 

probability corresponds to a maximum load of SYLDA with cut-outs and imperfections equal to 

283 kN. 

Few conclusions can be drawn from the right graph of Figure 12. Firstly, the dispersion of Λs(X) 

caused by input probabilistic variables is low: the mean value and the coefficient of variation of 

Λs(X) are equal to 0.97 and 4%, respectively. It is likely due to the presence of the cut-outs whose 

effect prevails in determining the buckling response. The consequence of the truncation is here 

remarkable, because few samples of Λs(X) are higher than the unity. This outcome is mainly 

attributable to the boundary imperfections. If the profile of axial displacement generated by the 

Latin Hypercube Sampling has the lowest magnitude in the circumferential portion of loaded 

edge that coincides with the location of the cut-outs, the shell reaches a maximum load higher 

than the nominal one. 

A simulation obtained by the Latin Hypercube Method for the probabilistic analysis of the shell 

with boundary imperfections is here illustrated. 

Figure 13 reports the sampled boundary imperfections. A planar view, representing the unfolded 

shell, is provided in the top of the figure. The circumferential portion of the edge which 
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coincides with the position of the isolated cut-out is the least loaded. The consequence is that the 

shell reaches a higher load before the snap-through as shown in Figure 14. The maximum load is 

equal to 331 kN for 1.44 mm of shortening. 

Figure 15 illustrates the radial displacement contour of the shell corresponding to the three points 

reported on the load-shortening curve. The boundary imperfections do not modify the deformed 

configuration of the shell. 

The deterministic buckling analysis of SYLDA with cut-outs was carried out using longitudinal 

Young’s modulus equal to 150 GPa. The reduction of E11 from the mean value 171.42 GPa to 

the design allowable 150 GPa decreases the maximum load reached by SYLDA with cut-outs 

from 325 kN to 294 kN. When the axisymmetric geometric imperfections are superposed for ξ 

equal to 10% to the nominal geometry of the shell, the maximum load decreases from 294 kN to 

259 kN. By the probabilistic analysis, the load corresponding to the λ factor of SYLDA with cut-

outs and joint imperfections is 283 kN. The probabilistic maximum load is 9% higher than the 

deterministic one. 

5.3. Probabilistic Buckling Analysis of ISS Shell 

Table 5 summarizes the probabilistic buckling factor λ of ISS shell which is assessed for a 

requirement of probability equal to 99%. To obtain the data collection Λs(X), the data set of 

buckling load is normalized by the buckling load of the nominally perfect shell, which is equal to 

545 kN. 

The NASA knockdown factor of ISS is equal to 0.64. The corresponding load value is equal to 

349 kN. Such a factor is determined under the assumption that ISS can be considered as a 

laminated composite shell of seven plies in accordance with NASA monographs
1
. 
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Table 5 shows that the shell is more sensitive to the geometric imperfections than to other types 

of imperfections. The variability of the longitudinal Young’s modulus and the ply misalignment 

do not affect significantly the buckling load of the shell. The low sensitivity to an error of ply 

angles depends on the short length of the shell. The boundary imperfections cause a reduction of 

8%, whereas the individual influence of the geometric imperfections decreases the critical load 

by 16%. The buckling load of ISS considering the imperfections in combination is equal to 431 

kN. 

The histogram and the empirical probability density function of the observations of Λs(X) of ISS 

with combined input imperfections are shown in Figure 16. These two graphical representations 

are an estimate of the true probability density function of Λs(X). Few tests of Λs(X) present values 

greater than one: these cases correspond to the simulations in which the drawn sample of 

longitudinal Young’s modulus is higher than the nominal one, the drawn sample of imperfection 

amplitude is close to zero, the drawn samples of ply angle are close to zero (axial direction) and 

the variation of the imposed axial displacement is low. Besides, the empirical probability density 

function does not display a pronounced peak. It follows that a larger sample size would be 

needed to define if this outcome is due to lack of data or if it is an inherent characteristic of the 

shell response. 

The truncated Weibull distribution, which is verified to best fit the data collection of Λs(X), is 

also shown in Figure 16. The limitation of the Weibull distribution generates a truncated 

distribution that captures the location of the peak, but not its frequency. The left tail is besides 

larger than the one of the empirical distribution. The probabilistic buckling factor is also 
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displayed in the figure along with the NASA knockdown factor in order to show its position with 

respect to the data collection of Λs(X). 

6. Comparison of Probabilistic Buckling Factors with NASA knockdown 

factors 

Table 6 lists the NASA knockdown factor
1
 estimated for the scaled models of SYLDA and ISS. 

The probabilistic buckling factors λ of SYLDA, SYLDA with cut-outs and ISS evaluated with 

the presented methodology are also reported. They are obtained in the analysis cases that 

consider the input imperfections in combination for a probability of 99%. The resulting λ values 

of the scaled models of SYLDA and of ISS are mainly caused by the influence of the 

axisymmetric geometric imperfections, whereas the scaled model of SYLDA with cut-outs is 

less imperfection sensitive since the cut-outs dominate the buckling response. 

The probabilistic buckling factor, which is assessed by the developed probabilistic approach, 

does not cover the factor of safety that is commonly used for the dimensioning and the design 

verification of structures. 

The probabilistic buckling factors determined by the discussed methodology are based on a 

random sample of population. This sample consists of a collection of N values of buckling load 

that are numerically generated. The variability of the results due to the sample constraint needs to 

be quantified by constructing statistical intervals around the estimated λ value. The probabilistic 

buckling factors depend also on the specified level of probability and on the modeling adopted 

for the input random variables. 
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7. Conclusions 

A probability-based methodology for a first assessment of the structural reliability of cylindrical 

shells is developed by combining two reliability analysis methods, the Strength-Stress 

Interference Method and the Latin Hypercube Method. The methodology aims to be a unified 

framework for the probabilistic buckling analysis of axially compressed shells. The goal is to 

determine the probabilistic buckling factor for a given probability level that the shell withstands 

axial compression without undergoing buckling. This factor is a measurement of the sensitivity 

of the shell to the sources of input imperfections, but is highly affected by the required standard 

of probability, by the modeling of the input random parameters and by the adopted sample size 

that is here set to 100 in order to decrease computational time and costs. 

The probabilistic methodology is applied to the buckling analysis of three sandwich composite 

cylindrical shells made of the same materials, but with different stacking sequence and geometric 

dimensions. One of the shells presents three circular cut-outs. The probabilistic buckling factor, 

which is assessed for a probability of 99%, defines the sensitivity of the three sandwich shells to 

four sources of imperfections, whose influence is here evaluated independently and in 

combination. In particular, geometric imperfections, boundary imperfections, variability of 

longitudinal Young’s modulus and ply misalignment are here investigated. 

The discussed procedure entails the advantage to be versatile. It is applicable to the buckling 

analysis of laminated composite shells and sandwich composite shells, and can be used to predict 

the buckling load of shells taking into account imperfections of different types. The methodology 

would be useful in predicting the lower bound buckling load of shell, once a database of 
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measured imperfections pertinent to the shell of interest is available. The measured data should 

include all of the relevant imperfections, which greatly affect the buckling response. For 

instance, imperfections concerning the manufacturing processes, the loading conditions and the 

boundary conditions should be taken into account. Moreover, the database should be large 

enough to result in a statistically valid estimate of the probabilistic buckling factor. 
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Table 1. Hexcel IM7/8552 UD carbon prepreg. 

Property Value 

Longitudinal modulus, E11 150000 MPa 

Transverse modulus, E22  9080 MPa 

Shear modulus, G12 5290 MPa 

Poisson’s ratio, ν12 0.32 

Density, ρ  1570 kg/m
3
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Table 2. EVONIK Rohacell WF200. 

Property Value 

Young modulus of core, E  350 MPa 

Shear modulus, G 150 MPa 

Poisson’s ratio, ν 0.33 

Density, ρ  205 kg/m
3
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Table 3. Probabilistic buckling factors and corresponding loads of SYLDA. 

Analysis case Probabilistic 

buckling 

factor, λ 

Load [kN] 

Nominal analysis case  459 

Probabilistic analysis with geometric 

imperfections 

0.73 335 

Probabilistic analysis with variability in 

longitudinal Young’s modulus 

0.92 422 

Probabilistic analysis with ply misalignment 0.97 445 

Probabilistic analysis with boundary 

imperfections 

0.89 409 

Probabilistic analysis with combined 

imperfections 

0.71 326 
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Table 4. Probabilistic buckling factors and corresponding loads of SYLDA with cut-outs. 

Analysis case Probabilistic 

buckling 

factor, λ 

Load [kN] 

Nominal analysis case  325 

Probabilistic analysis with geometric imperfections 0.90 293 

Probabilistic analysis with variability in longitudinal Young’s 

modulus 

0.93 302 

Probabilistic analysis with ply misalignment 0.97 315 

Probabilistic analysis with boundary imperfections 0.94 306 

Probabilistic analysis with combined imperfections 0.87 283 
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Table 5. Probabilistic buckling factors and corresponding loads of ISS. 

Analysis case Probabilistic 

buckling 

factor, λ 

Load [kN] 

Nominal analysis case  545 

Probabilistic analysis with geometric imperfections 0.84 456 

Probabilistic analysis with variability in longitudinal Young’s 

modulus 

0.96 523 

Probabilistic analysis with ply misalignment 0.99 540 

Probabilistic analysis with boundary imperfections 0.92 501 

Probabilistic analysis with combined imperfections 0.79 431 
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Table 6. NASA knockdown factors and probabilistic buckling factors of the three sandwich 

shells. 

 SYLDA SYLDA with cut-outs ISS 

NASA knockdown factor
1 

0.57 N/A 0.64 

Probabilistic buckling factor, λ 0.71 0.87 0.79 
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Figure 1. Finite element mesh and amplified geometric imperfection shape of three sandwich 

shells. 
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Figure 2. Load-shortening curves of SYLDA with geometric imperfections. 
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Figure 3. Deformed configurations of SYLDA with geometric imperfections at 2.50 mm. 
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Figure 4. Load-shortening curves of SYLDA with cut-outs and geometric imperfections. 
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Figure 5. Deformed configurations of SYLDA with cut-outs and geometric imperfections at 2.50 

mm. 
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Figure 6. Load-shortening curves of ISS with geometric imperfections. 
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Figure 7. Deformed configurations of ISS with geometric imperfections at 2.50 mm. 
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Figure 8. Block diagram of developed probabilistic procedure. 
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Figure 9. Quantile-quantile plot of data collection of Λs(X) of SYLDA. 
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Figure 10. Empirical and Gaussian cumulative density functions of data collection of Λs(X) of 

SYLDA. 
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Figure 11. Probability Re(λ) that SYLDA does not buckle. 
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Figure 12. Load-shortening curve and distribution of Λs(X) of SYLDA with cut-outs. 
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Figure 13. Non-uniform axial displacement applied to loaded edge of SYLDA with cut-outs. 
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Figure 14. Load-shortening curve of SYLDA with cut-outs and boundary imperfections. 
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Figure 15. Deformed configurations for different imposed displacements ΔU of SYLDA with 

cut-outs and boundary imperfections. 
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Figure 16. Histogram, empirical and Weibull probability density functions of data collection of 

Λs(X) of ISS. 
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