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a b s t r a c t

For nuclear power plants (NPPs) to have long lifetimes, ageing is a major issue. Currently, ageing man-
agement for NPP systems is based on correlations built from generic experimental data. However, each
system has its own characteristics, operational history, and environment. To account for this, it is possible
to resort to prognostics that predicts the future state and time to failure (TTF) of the target system by
updating the generic correlation with specific information of the target system. In this paper, we present
an application of particle filtering for the prediction of degradation in steam generator tubes. With a case
study, we also show how the prediction results vary depending on the uncertainty of the measurement
data.
© 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nuclear power plants (NPPs) have a design life of 40e60 years,
and possibly more for new designs. Therefore, ageing management
is the most important issue [1]. Current ageing management relies
on methods for predicting future degradation states based on
generic information, such as historical failure data, experimental
data, and correlations derived from such data [2]. However, each
system has different characteristics, as well as operational histories
and environments, which influence the degradation process. If
specific information on a target system is available, this would be
useful for making predictions [3]. Prognostics methods to predict
the future state of the target system and its time to failure (TTF) can
integrate generic correlation with specific information related to
the target system [18e22].

Prognostics is one of the tasks of prognostics and health man-
agement (PHM), which also includes detection of anomalies and
diagnosis of faults [4]. PHM enables condition-based maintenance
(CBM), which can establish optimum maintenance, replacement,
by Elsevier Korea LLC. This is an
and parts supply plans, thereby preventing unexpected accidents.
Prognostics can be categorized into three types depending on

the information used. Fig. 1 represents the categorization of prog-
nostics [5]. Type 1 prognostics methods make use of historical
failure data to develop failure time distributions from historical TTF
data and predicts the TTF of generic components. Type 1 prog-
nostics includes Weibull analysis. Type 2 prognostics methods
consider stress factors, such as temperature, load, vibration, etc.,
and develop correlations among these factors and the state of the
components to predict the TTF for generic components under given
operational environments. Type 2 prognostics includes linear
regression models. Conventional ageing and integrity management
methods belong to Types 1 and 2 prognostics. Type 3 prognostics
reflects specific information of the specific components and include
the general path model (GPM) [6,7] and particle filtering [8,9]. In
this paper, we consider Type 3 prognostics and show how specific
information can be integrated with generic information by particle
filtering.

Prognostics has already been developed in various areas
requiring high safety and reliability, such as aviation, the military,
and railways [4,5]. However, there are not many cases of applica-
tions to NPPs, due to their strict maintenance policies.

This study modifies and updates the generic correlation (i.e.,
open access article under the CC BY-NC-ND license (http://creativecommons.org/
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Fig. 1. Categorization of prognostics.
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generic information) by using measurement data (i.e., specific in-
formation) from a target system or component so that different
characteristics of individual systems or components can be
considered. To accomplish this, we consider particle filtering as a
prognostics method. Particle filtering can update parameters of a
state estimation model by using newly observed data of the target
system or component, and can then predict the future system state
and its TTF with the updated model. In this paper, the prognostics
method of particle filtering is applied to the case study of steam
generator tubes. Through this case study, how to update the generic
correlation by using measurements data will be shown. Thus, the
effect of uncertainty in measurement is identified by a sensitivity
study. From the study, how the prediction results vary depending
on the uncertainty of the measurement data and how the uncer-
tainty works to balance the generic information and specific in-
formation are presented.

The paper is organized as follows. Section 2 illustrates the basis
of particle filtering and introduces the data from steam generator
tubes used for the case study. Section 3 presents the results of the
prognostics analysis. Lastly, Section 4 provides conclusions and
future perspectives.
2. Prognostics method and case study

2.1. Prognostics using particle filtering

Particle filtering is a model-basedmethod that predicts the state
of a target component by updating a degradation model with the
measurement data of the target [8,9]. It can be applied to complex,
non-linear systems since the prediction is performed by simulating
particles sampled by Monte Carlo simulation (MCS). In simple
words, it is a recursive filter that predicts the current and future
states by using information of the previous step based on the
assumption of the Markov process. Particle filtering predicts the
current state based on the previous step's information as a prior,
updates the predicted state with measurement data as a likelihood,
and finally, obtains a posterior of the current state. The posterior of
the current step is used as the prior in the next step as sequential
Bayesian updating.

The particle filtering algorithm can be explained by importance
sampling [8e10]. Importance sampling is a method that enables
the approximation of the required distribution by introducing an
arbitrarily chosen distribution, which is called the importance
distribution. It samples from the importance distribution and as-
signs a weight, which is a proportion of the importance distribu-
tion, to each sample. When approximating the posterior
distribution, importance sampling can be used as follows. The

weight of each sample qi is calculated using Equation (1).

w
�
qi
�
¼

f
�
qi
���y�

g
�
qi
� ¼

f
�
y
���qi�f�qi�
g
�
qi
� (1)

Here, f ðqi
���yÞ is the posterior distribution, y is an observation, and

gðqiÞ is the importance distribution. By Bayes' theorem, f ðqijyÞ ¼
f ðy

���qiÞf ðqiÞ. Since the prior distribution is already known and close

to the posterior, it can be used in the importance distribution. Then,
the weight in Equation (1) becomes the likelihood. Particle filtering
is performed by implementing importance sampling sequentially
whenever the observation is obtained.

The degradationmodel for particle filtering should be expressed
in a recurrence relation, as shown in Equation (2), in which the
current state xk of the kth time step is affected by the previous state
xk�1. Here, Q is the vector of model parameters and ε is an error
term.

xk ¼ f ðxk�1; Qk; εkÞ (2)

Prognostics using particle filtering consists of four stages: pre-
diction, update, resampling, and prognosis. In the prediction phase,
the current state xk is predicted using the information of the pre-
vious step. The model parametersQ are estimated as well. First, for
the model parameters Q at the kth step, n particles are generated
from f ðQkjQk�1Þ. This means that f ðQkÞ is estimated by f ðQk�1Þ,
which is a distribution of the model parameter at the (k-1)th step.
Because the model parameters are given as a distribution, the
system error ε can be handled. For the state x at the kth step, similar
to the model parameter, n particles are generated from f ðxkjxk�1Þ.
Then, xk is propagated through the model with Qk.

In the update phase, the measurement data yk is reflected. For
the measurement data yk, the likelihood of each particle of state x is
calculated. For example, if the state follows a normal distribution,
the likelihood function is determined using Equation (3), where
smeasure is the standard deviation of the measurement data repre-
senting its uncertainty. Then, the likelihood is normalized so that
the sum is equal to 1, as shown in Equation (4), and it is used as a
weight in the resampling phase.
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Fig. 2. Inverse transform sampling.
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In the resampling phase, xk and Qk are resampled according to
the weight obtained from the update phase. In this process, a
particle that has a lower weight is eliminated and a particle that has
a higher weight is sampled several times. For the sampling, we use
the inverse transform sampling method, as shown in Fig. 2 [10].
First, a random number is generated from the uniform distribution
with the range (0,1). Then, the particle is sampled by mapping the
random number to the cumulative density function (CDF) of the
weight. A total of n particles are resampled, and finally, the particles
give the posterior of xk and Qk. Then, recursively, the posterior
probability distribution of the kth step is used as the prior of the
(kþ1)th step.

The above procedures are represented in Fig. 3. As shown in the
figure, at the kth step, xk is predicted from the previous step's
posterior and it is updated by measurement data yk.

Fig. 4 shows different results of the update phase for different
levels of smeasure. The prior distribution is updated by resampling
according to the likelihood. By resampling, the distribution is
shifted to the particle having a large likelihood. If smeasure is infi-
nitely large (i.e., information of the measurement data is not reli-
able), the likelihood of the particles is given as follows by Equation
(3).
Fig. 3. Procedure of p
lim
smeasure/∞

L ¼
(
0 ; yk ¼ xik
0; yksxik

For high smeasure, particles have lower and almost identical
values of likelihood regardless of the measurement data yk. As a
result, all of the particles are resampled with almost the same
frequency and, therefore, the updated distribution is almost the
same as the original distribution. That is, the measurement data
does not convey relevant specific information.

In contrast, as smeasure tends toward zero (i.e., information of the
measurement data is reliable), the likelihood of the particles is as
follows.

lim
smeasure/0

L ¼
(
∞ ; yk ¼ xik
0; yksxik :

For low smeasure, the particles that are close to the measurement
data yk have a large likelihood, whereas the others have a small
likelihood. In other words, the likelihood is concentrated on the
particles that are closer to the measurement data. As a result, the
particles that are close to the measurement data are resampled
frequently and, therefore, the distribution is shifted to the mea-
surement data. That is, more specific information is conveyed.

In the prognosis phase, the future state and time to failure are
predicted by using the updated model and current state. In this
phase, the model is no longer updated. The state xcurrent at the
current time is propagated by the model until the state reaches the
failure threshold. Then, the TTF distribution can be obtained from
the failure times of each particle whose state reaches the threshold.

2.2. Case study: steam generator tube ageing management

In a pressurized water reactor (PWR), a steam generator is
located at the boundary between the primary side and the sec-
ondary side [11]. The steam generator turns the secondary side's
feedwater into steam using the primary side's coolant heated in the
reactor core. Since it removes decay heat from the reactor core and
prevents leakage of radioactive materials, it is one of the most
important safety components. The steam generator is operated
under the extremely harsh conditions of high temperature and
high-pressure fluids, including some radioactive materials. Acci-
dents caused by stress corrosion cracking (SCC) andwear have been
reported [12]. Then, steam generator tube rupture (SGTR) is
considered, which is one of the initiating events in both
article filtering.



Fig. 4. Influence of measurement data with different uncertainties.

Fig. 5. Fitting data to the degradation model.
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deterministic and probabilistic safety assessments. The integrity of
the steam generator must be well managed for safety. Currently,
according to the Steam Generator Management Program (SGMP),
the integrity assessment for steam generators is divided into three
steps with respect to the preventive maintenance time [2]. The first
step is degradation assessment (DA), which is a preliminary
assessment before preventive maintenance. The second step is
condition monitoring assessment (CM), which assesses the current
state at preventive maintenance. The last step is operation assess-
ment (OA), which predicts the future state until the next preventive
maintenance. For OA as a prediction step, probabilistic integrity
assessment can be applied. This is performed with generic corre-
lations and input data for the specific steam generator.

Because of inaccessibility to the steam generator tube failure
data from the operating power plants, we generated simulation
data from a virtual steam generator by using the PASTA (Probabi-
listic Algorithm for Steam generator Tube Assessment) program
[13]. PASTA performs assessment of the integrity of steam gener-
ator tubes. It is a probabilistic assessment program that accounts
for the uncertainty of various variables. PASTA calculates burst
pressure as one criterion of tube integrity. Burst pressure is the
pressure that equipment can handle before rupturing or bursting.
Assessment is possible for axial, radial, and wear cracks; for axial
cracks, the burst pressure model is given in Equation (5) [13]:

PB ¼ 0:58
�
sy þ su

� t
Ri

�
1:104� L

Lþ 2t
h
	
; (5)

Where

PB: burst probability
sy: yield strength of the material
su: tensile strength of the material
Ri: inner radius of the tube
L: length of the crack
t: thickness of the tube
d: depth of the crack
Table 1
Training data set and results.

EFPY 1 2 3

a 0.0004 0.001 0.0028
ln a �7.82405 �6.90776 �5.87814

ln
da
dN

�7.41858 �6.31997 �5.62682

EFPY 8 9 10

a 0.0589 0.085 0.1217
ln a �2.83191 �2.4651 �2.1062

ln
da
dN

�3.64582 �3.30498 �3.16534
h: depth ratio of the crack ¼ d
t

The model is derived from data of burst experiments with
various crack sizes. For probabilistic modeling, PASTA considers the
uncertainty of yield, tensile strength, and crack inspection. MCS is
used to obtain the distribution of burst pressure. Then, the burst
probability is obtained as a ratio of the number of simulations that
are lower than the burst criterion to the total number of simula-
tions launched. Due to the limitation of failure data availability, we
assumed the data from PASTA is a field dataset and used it for
prognostics. In other words, some of the datawere used to calibrate
the generic model, while the rest were regarded as measurement
data acquired from the operating plant.

We generated 276 data sets of burst probability over time from
PASTA. Burst probability is obtained at every EFPY (effective full
4 5 6 7

0.0064 0.0135 0.0244 0.0361
�5.05146 �4.30507 �3.71317 �3.32146
�4.94766 �4.51899 �4.44817 �3.78099

11 12 13 14

0.1639 0.2176 0.2765 0.3448
�1.8085 �1.5251 �1.28554 �1.06479
�2.92434 �2.83191 �2.68385



Table 2
Results of the K-S test for the model parameters.

Maximum discrepancy P-value

m0 0.089 0.086
C0 0.078 0.179
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power year, 1 EFPY ¼ 18 months). We regarded the tube as being
ruptured when the burst probability exceeded 40%. In practice,
when the burst probability exceeds 40%, plugging or sleeving is
performed [11,14]. 209 sets were assumed to be historical or generic
failure data and were used to determine the model parameters,
while the remaining sets were assumed to be measurement data
and were used for testing. We divided the testing sets into four
cases according to the time window of observations. The cases
correspond to the accumulated data during 3, 6, 9, and 12 EFPY,
respectively.

3. Results

3.1. Estimation of TTF distribution

In this paper, Paris’ law [15] is assumed as the degradation
model:

da
dN

¼ CðDkÞm; Dk ¼ Ds
ffiffiffiffiffiffi
pa

p
; (6)

where a is the crack length, C and m are constants that depend on
the material and environment, Dk is the range of the stress in-
tensity factor, and Ds is the stress range. In this study, a is regarded
as the burst probability.

By taking the logarithms in Equation (6), we obtained Equation
(7). Then, the model parameters m=2 and ln CðDs ffiffiffi

p
p Þm are ob-

tained by fitting 209 training data sets.

ln
da
dN

¼ ln C þm ln
�
Ds

ffiffiffiffiffiffi
pa

p �
(7)
Fig. 6. Q-Q plots of the
¼ ln C
�
Ds

ffiffiffi
p

p �m þm
2
ln a

¼ m
0
ln aþ C

0

�
m

0 ¼ m
2
; C

0 ¼ ln C
�
Ds

ffiffiffi
p

p �m�
Table 1 shows the results with one of the training data sets,

where a is burst probability and dN ¼ 1 (EFPY).
Fig. 5 shows the result of fitting the data of Table 1 to Equation

(7). In the figure, the dots represent the training data and the line
represents the fitted equation. For this set, m0 is equal to 0.69 and C0

is equal to �1.676.
By fitting the 209 training data sets as above, the initial distri-

bution of the model parameters is obtained. Because we have no
information about the distribution, we simply assumed that the
parameters follow a Gaussian distribution, which is the most
commonly used distribution. Assuming that the model parameters
follow a Gaussian distribution, the means and standard deviations
of the parameters are obtained as:

m
0 � Nð0:671; 0:049Þ

C
0 � Nð�1:745; 0:156Þ:
To verify that the parameters follow the assumed distribution,

we performed the Kolmogorov-Smirnov (K-S) test, which is
commonly used for testing for normality [16]. Table 2 shows the
results of the K-S test for the model parameters.

Both assumed distributions are verified as acceptable distribu-
tions at the 5% significance level.

In addition, Fig. 6 shows Q-Q (quantile-quantile) plots for the
model parameters. A Q-Q plot is a graphical method for comparing
two probability distributions and is commonly used to compare a
data set to a theoretical model [17]. By using a Q-Q plot, it is
possible to intuitively identify whether the data follow a Gaussian
distribution. The linearity of the points in the figure suggests that
the data are normally distributed.
model parameters.



Fig. 7. Pseudocode of particle filtering.
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Fig. 8. Prognostic results using particle filtering with different amounts of measurement data.
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Table 3
Prognostic results using particle filtering with different amounts of measurement data.

Number of measurement data Mean Median 5th percentile 95th percentile

3 15.669 15.350 11.464 20.830
6 17.950 17.596 14.524 22.512
9 18.459 18.322 16.424 21.068
12 16.923 16.891 16.137 17.802

G. Kim et al. / Nuclear Engineering and Technology 50 (2018) 1314e1323 1321
To apply particle filtering, we transformed the degradation
model into a recurrence relation inwhich the current state depends
on the previous one:

ak ¼ CkðDs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pak�1

p ÞmkdN þ ak�1 (8)

¼ exp
�
C

0
k

�
ak�1

m
0
kdN þ ak�1:

We assumed that the likelihood function is a normal
Fig. 9. Prognostics results with different numbers of training data.

Fig. 10. The results of prognostics with differe
distribution (Equation (3)) with smeasure ¼ 0:01.
Fig. 7 provides the developed pseudocode of the particle

filtering.
Fig. 8 shows the results obtained using particle filtering with

differing amounts of measurement data from 3 EFPY to 12 EFPY.
The total number of particles is 10,000. In the figure, the dots, solid
line, and two dotted lines represent the measurement data,
threshold, mean, and the 5th and 95th percentiles of the estimated
burst probability, respectively. The horizontal line gives the
threshold value and the vertical line indicates the current time
when the measurement is finished. In addition, we present the
mean, median, and 5th and 95th percentile values of the obtained
TTF distribution in Table 3. As expected, the results show that un-
certainty decreases as the updated amount of measurement data
increases.

Additionally, to identify the effect of the number of training data
sets on the prediction accuracy, we performed a sensitivity study
for the number of training data sets. We constructed the model
with 10, 50, 100, 150, and 200 training sets, and Fig. 9 shows the
results of prognostics from the constructed models. In the figure,
the results show a similar tendency among all cases, except for the
casewith a very small number of training data sets. If the number of
training data sets is above a certain number, then it does not
significantly affect the prediction result.
3.2. Sensitivity analysis with respect to measurement uncertainty

Particle filtering is a method for using specific information as
well as generic information. It reflects specific information to the
generic correlation and updates its parameters. From the viewpoint
of a Bayesian update, the prognostics result using the generic
nt uncertainty in the measurement data.



Fig. 11. Likelihood with various uncertainties of measurement.
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information corresponds to prior information, while that of
updating the specific information belongs to posterior information.
In this case, the specific information takes the role of the likelihood.
Obviously, the confidence of prior information and likelihood affect
the result of prognostics. Therefore, for optimized results, balancing
the uncertainty of prior information and the likelihood is impor-
tant. In the above section, Fig. 4 explained how the prior informa-
tion and the likelihood contribute on the TTF and its standard
deviation. The control of the uncertainty of prior information and
the likelihood is done by adjusting the uncertainty of measurement
smeasure, which affects the update phase. Fig. 10 shows the results
for various levels of uncertainty in the measurement data repre-
sented by smeasure. As the uncertainty gets smaller, the significance
of the likelihood becomes larger, which means the measurement is
dominant in determining the prognostics results. In contrast, when
uncertainty in the measurement data is larger, the prior generic
information is more important and weighs more in the posterior.
Each model is updated until 6 EFPY with the same uncertainty in
the measurement data, smeasure ¼ 0:01. Then, at 7 EFPY, the
updating is done with the different levels of uncertainty, as indi-
cated in the legend. Correspondingly, in the figure, we see that with
large uncertainty, the updated model is closer to the original model
(non-update), whereas, with smaller uncertainty, the updated
model is closer to the measurement data at 7 EFPY.

Fig. 11 shows the predicted distribution and likelihood for the
measurement data. The figure is a histogram of predicted particles
and the bold line is the fitted normal distribution. With small un-
certainty in the measurement data, the likelihood is concentrated
on the particles that are close to the measurement value by Equa-
tion (2). Therefore, the posterior distribution is also close to the
measurement. With large uncertainty, the likelihood is scattered
out to all particles regardless of measurement data. Therefore, the
posterior distribution is closer to the prior distribution.
4. Conclusions

Basically, ageing and integrity management of components and
systems in NPPs are based on the controlled generic information
and plant-specific data from periodic inspection. Due to the high
standards for ensuring safety, it is hard to find the applications of
particle filtering method in nuclear fields, which is commonly used
for updatingmodel parameters in various engineering applications.
Therefore, this paper introduced the particle filtering method and
demonstrated its procedure through case studies. Particle filtering
is a model-based method that allows updating of a generic corre-
lation (i.e., based on generic information) with measurement data
(i.e., specific information) to predict the TTF. Advanced condition
monitoring technologies can allow for the effective use of specific
information for the individual components and systems, so the
knowledge update process on the basis of observation such as the
particle filtering is expected to be an emerging trend even in safety-
critical fields.

The development of themethodwas exemplified by a case study
regarding steam generator tube degradation considering Paris' raw.
Thus, the effect of measurement uncertainty was evaluated by a
sensitivity study. The sensitivity study demonstrated how to up-
date the model while balancing between generic and specific in-
formation according to their uncertainty. Nevertheless, there are
some limitations. In practice, it is not easy to define the uncertainty
for existing and new information because of various error factors
such as malfunctioning of measuring instrument, human error and
so on. Furthermore, it is not clear whether a plant-specific data can
modify a degradation evaluation model at a decision-making sit-
uation due to managerial or regulatory characteristics, which needs
inter-disciplinary study along with field tests.
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