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1. Introduction

The utilization of FRP (Fiber-reinforced Polymers) strips as
reinforcements for structural elements instead of conventional
methods is nowadays rather diffused in the rehabilitation and seis-
mic upgrading of masonry buildings. The advantages are: limited
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invasiveness, speed of execution, and good performance at failure
[1–11]. The FRP strengthening technique entails however several
drawbacks, as for instance low vapor permeability, poor behavior
at elevated temperatures, incompatibility of resins on several sub-
strate materials, relative high cost of epoxy resins, and, last but not
least, no possibility to make the intervention reversible [12].

The use of inorganic matrices is a valid alternative to these
problems [11]. However, it is well known that cement based mate-
rials have low tensile strength and are not ideal to impregnate
fibers and yarns. In the last two decades, two innovative types of
reinforcements for cementitious matrices have been experimented
and studied. They are: short fibers (FRC, Fiber Reinforced Concrete
[13]) and continuous fibers in a fabric form (TRC, Textile Reinforced
Concrete).

Fabric reinforced cementitious matrix (FRCM) composites,
examined in this paper, are a particular type of TRC [14] where a
dry-fiber fabric is applied to a structure by means of a cementitious
mortar strengthened with short fibers randomly disposed. The
mechanical properties of FRCMs strongly depend on the bond
between the fibers and the matrix and may vary if the yarns of
the fabrics are pre impregnated with resin [15,16].

When compared with FRP composites, FRCM composites exhi-
bit several advantages, as a greater resistance to high temperatures
and ultraviolet radiations as well as a better compatibility with the
substrates [17,18]. Finally, the reversibility of the intervention is
much higher.

The typical failure mode of a FRP strip is the debonding from the
reinforced substrate.

Debonding is always associated to a brittle behavior [12,19,20]
and several numerical and analytical models are now available for
practitioners to evaluate the peak strength, the relevant slip, the
optimal anchorage lengths, etc.

Some specialized national codes and recommendations are also
available to design a rehabilitation intervention with FRPs. Such
recommendations are the results of a comprehensive and long
experimental round robin tests, numerical investigations and
semi-analytical approaches.

On the contrary, for FRCM composites, despite their increasing
and quick diffusion in practice, various aspects still need to be
studied. Several research groups are independently carrying on
programs aimed at (1) conceiving simple experimental set ups to
be standardized and (2) proposing numerical models (usually
based on non-linear FEs) capable of reasonably fitting experimen-
tal evidences and predicting the actual behavior of FRCM
composites.

From an experimental standpoint, it is important to notice that
recently a synergic collaboration among three European universi-
ties, permitted the publication of some preliminary experimental
results [21] (carried on independently) regarding the performance
of three reinforcement systems made out of steel, carbon and
basalt textiles embedded in inorganic matrices under uniaxial ten-
sile coupon testing and bond tests on brick and stone substrates.
The final aim is to have an insight into the behavior of such
strengthening material when subjected to standard condition,
putting the bases for a sort of round robin test already applied suc-
cessfully in the case of FRP strips [22].

From a numerical point of view the situation appears more frag-
mented. The research group of RWTH Aachen University seems the
most active in this field and it was probably the first to propose
advanced numerical tools (mainly based on FEs) [23–27] for TRC
composites subjected to various loading condition, including sto-
chastic modeling of imperfections (such as scatter of material
properties) under monotonic and cyclic loads.

In this context, the present work examines in detail the
strengthening with FRCM composites from a numerical point of
view focusing on tensile behavior. The analyses are based on
ad-hoc designed experimentation, and are oriented to provide a
mechanical understanding of the experimental behavior, in view
of the FRCM composites application to historical masonry
substrates.

A wide experimental program is ongoing at the Politecnico di
Milano on a series of FRCM coupons subjected to direct tensile tests,
with the final aim of proposing simple characterization tests to be
eventually standardized in newly conceived technical norms [7].

The typical stress–strain behavior observed, in agreement with
existing experimental works available in the literature, is a tri-lin-
ear curve, with a first phase that increases linearly according to
Young’s modulus of the mortar, a second phase where the cracks
in the mortar start to grow, and a last phase in which the mortar
is fully cracked and the curve assumes the same slope of the stiff-
ness of the fabric [28]. A quite wide experimental scatter of the
axial force–displacement curves was found, especially in the sec-
ond phase. This can be caused by many factors, the most important
being probably the disposition of the yarns in a non-straight shape.

In order to have an insight into the reasons at the base of the
relatively wide scatter observed, a comprehensive numerical
investigation was conducted by means of a FE discretization of
the coupons, where the yarns were modeled by means of elasto-
fragile truss elements and the reinforced mortar with either elas-
to-fragile or elasto-ductile plane-strain elements. In order to
numerically predict the experimentally observed scatter, different
kinds of imperfections (geometric and mechanic) are considered in
the model. It is worth noting that, whilst the idea is rather classic
since other researchers attempted in the recent past to account for
various sources of imperfections associated with the fabrication of
plain weave textile composites [29,30], it is the first time that the
procedure is systematically applied to FRCM coupons subjected to
direct tensile tests.

In particular, three different sets of simulations were per-
formed, labeled from 1 to 3. In Set 1, yarns geometry was assumed
deviating from the straight configuration. As a matter of fact, it was
quite difficult (or almost impossible) to measure the deviation of
the yarns from the mid-plane in the specimens. A reasonable
assumption was to adopt a sinusoidal shape that can be justified
by the geometry of the fabric with regular crossings of the warp
and weft yarns in the grids. The assumption was consistent also
with the method of preparation of the specimens, which does
not consider a preliminary pre-stressing of the yarns. The numeri-
cal investigation was conducted varying (a) the sinusoid wave-
length, (b) the maximum deviation from the straight
configuration and (c) the mechanical behavior of reinforced mortar
(elasto-brittle or elasto-ductile).

In Set 2, the whole specimen was assumed with an initial defor-
mation due to a global bending of the coupon. This was detected in
some specimens before their introduction into the testing machine.
The curvature was certainly due to the shrinkage of the cementi-
tious matrix during curing. The presence of a geometrical imper-
fection can even be caused by the high slenderness of the
specimens. Indeed, one of the general indications recommended
to technicians is that particular care in the installation of the cou-
pon inside the testing machine should be adopted. Three values of
increasing curvature were investigated, which fully demonstrated
that an initial deviation from the straight configuration may have
a considerable effect on the overall force–displacement behavior
in tension.

In Set 3, the specimen was supposed initially cracked in differ-
ent positions, before being introduced in the testing machine and
tested. Again, the formation of micro-cracks is very likely even only
handling the coupons before and during their installation in the
experimental machine. This is due to the reduced mortar cross sec-
tion, the specimen slenderness and the relatively limited tensile
strength of the mortar.



Another objective of the present work was to study and com-
pare possible constitutive models for the cementitious matrix to
simulate the experiments. Three different material models were
used for the mortar in the FRCM specimens in tension. The first
model is an elastic perfectly-plastic Mohr Coulomb material with
limited ductility. The second and third are softening damaging
material with low and higher fracture energy.

From an overall analysis of simulations results, it can be
affirmed that numerical models are capable of satisfactory repro-
ducing experimental evidences and provide useful hints to justify
the relative large scatter of the data observed experimentally.

2. Experimental investigation

In this section, the results of a wide experimental program still ongoing at the
Testing Laboratory for Materials and Structures of the Politecnico di Milano are
summarized. Initially, the results of the mechanical characterization of the constit-
uent materials are presented, whereas in the second part of the section the exper-
imental behavior of FRCM systems under tension is discussed.

2.1. Mechanical properties of the components

Fabric reinforced cementitious matrix systems (FRCM) consist of two main ele-
ments, a cementitious mortar with a low dosage of dry polymers and a reinforcing
fiber grid. The system studied in this work is composed by a cementitious mortar
and a PBO (polyparaphenylene benzobisoxazole) fiber grid. The PBO fibers are orga-
nized in an unbalanced net made with 10 mm and 20 mm spaced rovings. The free
space between the rovings is 5 mm and 15 mm in the two directions and the nom-
inal equivalent thickness in the two fibers directions is 0.046 mm and 0.011 mm
respectively, see Fig. 1.

Tensile tests on dry rovings taken in the warp and weft directions were performed
according to EN ISO 10618 [3]. Even a strip of the grid including 4 yarns in the warp
direction was tested. Further details may be found in [7]. The tests were carried out
under displacement control with a testing speed of 0.5 mm/min. The average values
of the experimental results are summarized in Table 1. The observed failure mode
was in most of the cases limited to the outer filaments that are subjected to higher
stresses compared with the inner filaments. For this reason the obtained ultimate
stress is lower than the nominal value reported in the technical sheets.

Indirect tensile test (Brazilian test) were performed on the cementitious mortar
according to EN 12390-6 [4] and the results are reported in Table 1.

2.2. Mechanical characterization of the FRCM systems

As shown in the literature [5–7], it is today accepted that the constitutive
behavior of FRCM composites in tension could be idealized as tri-linear (Fig. 2). In
the first phase the material is uncracked and the composite exhibits a linear behav-
ior. The second phase starts with the first formation of a crack (point T1 in Fig. 2). In
this state there is a significant decrease of the stiffness and relatively thin cracks
appear gradually when the tensile stress increases and spread over the full length
of the specimen [7]. This causes several oscillations in the load–displacement (or
stress–strain) curves and a consequent larger variability of E2. The third phase
(starting in T2) is the crack-widening region, where only few new cracks appear
while the existing cracks become wider up to the final failure when the tensile
Fig. 1. PBO unbalanced net used in the present experimental tests.
strength of the textile is reached. In this phase, the only resistant part in the com-
posite is the fabric and, therefore, the stress–strain curve becomes almost linear and
should ideally reproduce the elastic modulus of the dry fibers. Fig. 2 represents the
typical stress–strain trilinear behavior of a FRCM subject to tensile test compared to
a tensile test of a specimen made with dry fibers.

Tensile coupons were made in a flat mold by applying a first layer of cementi-
tious mortar (with a thickness of approximately 5 mm), one layer of PBO mesh and
a second layer of cementitious mortar (5 mm). The coupons were cured for 28 days
and had nominal size of 400 � 40 � 10 mm (Fig. 3). As expected, a significant vari-
ability in the transversal section (both width and thickness) was observed with a
maximum deviation from the nominal section equal to +78/�137 mm2. This makes
impossible to define a specific volumetric reinforcement ratio for each specimen.
Therefore only one volumetric reinforcement ratio was adopted for the whole series
making reference to the nominal mortar area (400 mm2) and the resulting value
was equal to 0.0046.

Tensile tests were carried out according to AC 434 guidelines but a different
gripping mechanism was assumed as described in [7]. The test was executed under
displacement control at 0.3 mm/min. This was increased to 0.5 mm/min after the
end of the second phase. An extensometer with a gauge length of 100 mm was used
to measure the strains in the central area of the specimens (Fig. 4).

A series of 11 tensile tests was examined to characterize the behavior of the
FRCM coupons under tensile tests. In all tests, the stress–strain (or force–displace-
ment) behavior was tri-linear, as shown in Fig. 5. The results present a rather large
variability in particular in the loads corresponding to points T1 and T2 (Fig. 2). This
may be caused by several factors: the irregularities of the cross section or warping
of the specimens and irregular positions of the reinforcement in the thickness. The
variability of moduli E1, E2 was mainly caused by the location of the first crack with
respect to the extensometer that can appear outside the gauge length. Table 2
shows the main results: mean values, minimum, maximum and the coefficient of
variation (StD/mean values). The elastic moduli of the three phases (E1, E2, E3)
reported in Table 2 were derived dividing the load by Afibers (fiber cross section)
because this is the only known geometric parameter that is not subject to possible
changes during the manufacturing of the FRCM composite. On the contrary, mortar
thickness and width show significant dispersions and are not a priori known. Only
the last two columns in Table 2 are referred to the composite cross section, for com-
parison with mortar mechanical properties.

The average stress in the mortar (r*
t1) at the point T1 (appearing of the first crack)

is 3.65 MPa with a standard deviation (StD) of 1.10. This value can be compared with
the maximum tensile strength of the mortar (4.75 MPa). The average slope of the
third phase (215.8 GPa) is very similar to the elastic modulus of the dry textile
(216 GPa).
3. Numerical models for test result interpretation

A series of simplified numerical models were used to interpret
the experimental results. Particular attention was focused on two
key features exhibited by the experimental evidences, namely
the clear tri-linear behavior and the relatively large scatter of the
load–displacements curves.

FRCM coupons were discretized into Finite Elements (FEs),
using four-noded non-linear elements in plane-stress for mortar
and two-noded truss elements to model the yarns. Bubble interpo-
lation functions are used for mortar to eventually avoid shear lock-
ing phenomena in presence of bending (here possible thanks to the
non-straight configuration of the yarns), in both the linear and
non-linear range. A plane-stress assumption appears reasonable
in this case, as a consequence of the free-stress conditions imposed
on lateral faces, despite the width of the specimen is much higher
(40 mm) than its thickness (10 mm). In this framework, the trans-
versal area of the yarns is constituted by the overall area of the sin-
gle yarns present in the coupon. Authors experienced engineering
not relevant differences with a full 3D model, which however
would require a much higher computational effort to be analyzed,
especially in the non-linear range.

The following three different sets of numerical simulations are
critically investigated, hereafter labeled as Set 1, Set 2 and Set 3
(see Figs. 6 and 7):

1. Set 1 is constituted by a family of numerical models where the
yarn is supposed not-straight and exhibits a shape which fol-
lows a sinusoidal law of the type y ¼ a sin px

2l

� �
, where a and l

stand for the amplitude and wavelength of the yarn, respec-
tively. Several different configurations are investigated in the



Table 1
Mechanical properties of PBO fibers and cementitious mortar.

Material Tensile test # Tests Average failure stress (MPa) C.o.V. (%) Elastic modulus (GPa) C.o.V. (%)

PBO Single roving in the warp direction 6 3905 3.2 215.9 20.8
Single roving in the weft direction 2 3430 – 276.6 –
Grid strip of width 4 cm (4 Rovings) 4 3397 7.2 – –

Mortar Brazilian test 7 4.75 4.05 >6 (Data sheet) –

Fig. 2. Typical behavior of FRCM under tension.
numerical analyses, studying 4 amplitudes (equal to 0.5, 1, 1.5
and 2 mm) and 3 wavelengths (equal to 20, 50 and 100 mm).
All permutations between amplitude and wavelength values
are also considered. The reason at the base of the choice of such
numerical parameters is twofold. Firstly, photos taken during
the preparation of the specimens suggest that a perfectly planar
configuration of the yarns is unlike, because the coupons are
prepared without assigning a pre-stress to the yarn and that
the possible wavelength l is a fraction of the coupon length
(i.e. 400 mm). Such preparation of the specimens is consistent
with the practical application of FRCMs on masonry walls,
where pre-stress may not be induced before installation. Wave-
lengths investigated in the numerical exercises cover therefore
a wide variability of different real configurations. Secondly, the
considered amplitudes seem the most probable, not only in
relation with the coupon thickness (10 mm) but also in light
of direct comparison with experimental results. Starting from
a trial and error best fit of the load–displacement curves, it is
possible to obtain a realistic estimate of the amplitudes to con-
sider, assuming for obvious geometric reasons the value
a = 2 mm as an unrealistic upper bound providing results not
totally in agreement with experimental evidences. An auto-
matic mesh generation routine was used in the pre-processing
phase to deal with automatically generated discretizations.
The routine checks the rate of distortion of the mesh in order
not to deal with unreliable meshes. Some numerical discretiza-
tion used are reported in Fig. 7 for the sake of completeness,
where an indication of the number of elements and nodes pres-
ent in each mesh is also reported. Non linear geometrical effects
are taken into account assuming a large displacements hypoth-
esis in the FE simulations reported hereafter, even if it is
expected small influence of geometrical deflection from the
unstressed configuration.

2. Set 2 considers specimens with curved long edges with a longi-
tudinal bent configuration, see Fig. 6. In particular, it is assumed
that long edges are shaped following a circumference arch, with
a priori assumed curvature radius. Yarns inside the specimens
are in this case assumed to follow the same curvature. Such sec-
ond hypothesis is consistent with the experimental observation
and the photographic documentation. This initial imperfection
can damage the specimen. In fact, it may occur that the instal-
lation of the bent coupons into the testing machine, as a conse-
quence of the slenderness of the specimens, can cause cracks.
Therefore this initial geometrical imperfection may result into
a premature mortar crack, with a change of the overall tri-linear
behavior, especially when dealing with the transition point
from a phase to the following.

3. In Set 3, the coupon is assumed straight and the yarns have a
pre-assigned curved configuration (a = 1 mm, l = 50 mm), but
some pre-assigned transversal cracks already open before the
application of the external load. Such situation was occasionally
observed at the end of the preparation of some specimens and
again is linked to the quite high slenderness of the coupons
combined with the relatively low tensile strength of the mortar.



Fig. 3. FRCM specimens size (in mm).

Fig. 4. Tensile test set-up.
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To simulate the behavior under direct tensile test of such
already damaged specimens, notches with pre-assigned depth
and regularly stepped are introduced in the model. Step-length
and depth of the notches are assumed in the numerical model,
consistently with experimentally observed evidences. To simu-
late the presence of initial cracks reduced mechanical proper-
ties for the elements belonging to the notches are assumed, as
shown schematically in Fig. 7.
Fig. 5. Load–displacement curves, experimental results.
4. Mechanical models for the constituent materials

As stated in the introduction, the objective of the present work
is twofold: (1) to study and compare possible constitutive models
for the cementitious matrix to simulate the experiments, (2) to
examine the effects of possible initial imperfections in FRCM spec-
imens subject to tension.

Two different FE codes [31,32] were utilized. Code [31] puts at
user’s disposal less sophisticated material models (namely elastic-
perfectly plastic materials, eventually with limited ductility
checked with user supplied subroutines), whereas in code [32]
there is the possibility to deal with softening and damage in the
post peak range. Whilst such latter assumption appears more real-
istic for mortar, it requires a much higher computational effort and
experienced users. For this reason, it appears interesting to com-
pare the performance of [31], assessing the results obtained by
means of a comparison with both experimental evidences and
results provided by [32]. The use of commercial codes instead of
home-made models [33,34] was voluntary, with the precise final
aim to enable other researchers the reproduction of results with
similar models and for analogous experiments.

Three different material models were used for mortar belonging
to FRCM specimens in tension, hereafter labeled as Models (A), (B)
and (C). Model (A) is an elastic perfectly-plastic Mohr Coulomb
material with limited ductility, Model (B) is a softening damaging
material with a low fracture energy and Model (C) is the same of
Model (B), but with a much higher fracture energy.
Mechanical properties assumed for truss elements representing
yarns are depicted in Fig. 8. A typically elasto-fragile behavior was
adopted, since it well approximates what happens in reality during
tensile tests conducted on single yarns. The main mechanical prop-
erties (Young’s modulus and ultimate tensile stress) were derived
directly from the experimental tests conducted for the present
study (see Section 3). These are part of a wider experimental
project on FRCM composites described in [7].

As already mentioned, Model (A) was specifically conceived to
represent a fast and easy tool to be used in practical design, even
for parametric studies. This was possible using the FE program
[31]. In this case, the softening in the constitutive curves of the
cementitious matrix may not be considered rigorously, because
only elastic-perfectly plastic material models are available. In order
to circumvent this major limitation and to manage with softening
in the framework of elastic-perfectly plastic models, an approxi-
mation of the uniaxial mortar stress–strain curve with a stepped
function, as in Fig. 9, was adopted.

Since a Mohr–Coulomb failure criterion is adopted for mortar,
peak tensile strength ft is evaluated as ft = c/tanU, where c is the
peak cohesion and U is the friction angle, assumed constant during
all the deformation process.



Table 2
Tensile test experimental results on the FRCM system.

E1 (GPa) E2 (GPa) E3 (GPa) rt1 (MPa) rt2 (MPa) ru (MPa) et1 (%) et2 (%) eu (%) E*
1 (GPa) r*

t1 (MPa)

Average 1180.8 75.7 215.8 890.2 1099.6 3316.4 0.08 0.50 1.69 4.84 3.65
Min value 902.6 38.8 189.2 509.8 551.1 2485.1 0.04 0.24 1.27 3.70 2.09
Max value 1612.8 122.4 250.0 1119.5 164.6 4669.4 0.13 0.81 2.00 6.61 4.59
C.o.V (%) 19.6 33.1 9.20 15.2 12.6 14.0 30.9 33.7 18.2 19.6 15.2

Note:
rt1: tensile stress at point T1.
rt2: tensile stress at point T2.
et1: strain at point T1 from the extensometer.
et2: strain at point T2 from the extensometer.
ru: tensile stress at failure, point T3.
eu: strain at failure, point T3.
E*

1, r*
t1: parameters referred to the mortar area.

Fig. 6. Set 2 numerical exercise, geometric bent configuration.
Due to the fact that materials exhibiting softening are not avail-
able in the FE program [31], the degradation of mortar mechanical
properties is modeled with a stepped function, as depicted in Fig. 9
(model A) and as already successfully done in [1] using a non-com-
mercial FE code where the incremental problem is solved by means
of sequential quadratic programming.

In order to avoid the utilization of mathematical programming
and to interface directly with the commercial code [31], it was nec-
essary to implement a user supplied subroutine to check the lim-
ited ductility of the material during the loading process (i.e. to
model the softening behavior with a stepped function). Within
such approximation of the actual non-linear behavior, it is in
principle possible to deal with the problem of softening with the
recursive solution of FE problems with elastic-perfectly plastic
materials, as widely shown in [33,34], where the reader is referred
to for further details. Whilst the approximation shown in Fig. 9
may appear somehow rough, however the overall behavior of the
specimen is well approximated from an engineering standpoint.
In any case more refined discretization can provide better approx-
imations of the reality as extensively shown in [33], but without
adding essential practical information for the problem under study.

Parameters of the stepped functions reported in Fig. 9, are
obtained by least-squares best fitting on the exponential numerical
curve, assumed as target data. In Fig. 9, the uniaxial behaviors of
Model (B) and Model (C) are also represented (subfigure (a) refers
to the tensile stress–strain curve, whereas subfigure (b) to the
shear behavior).

Regarding the multi-axial behavior available in [31], an associ-
ated plasticity model is assumed for mortar obeying a classical
Mohr–Coulomb strength criterion. Associativity of the flow rule
appears adequate in this case considering that it is expected that
the tensile region is the most active. The parameters entering into
the model are ft, the tensile Mode-I strength of the mortar and the
friction angle U.

Assuming to keep the friction angle constant during computa-
tions, within the stepped function approximation adopted for ten-
sile behavior, Fig. 9(a), mortar under shear is expected to behave
similarly, see Fig. 9(b), with a degradation of the cohesion follow-
ing an exponential low ruled by the following formula:

cðj2Þ ¼ c0e
�c0

GII
f

j2

ð1Þ

being c0 the initial cohesion and friction angle and GII
f is the mode II

fracture energy.
j2 is a scalar variable ruling the amount of softening during a

pure shear deformation, which, in the framework of the classic
plasticity theory is defined as j2 ¼ ct � cel

t , being ct the total shear
strain and cel

t the elastic part (cel
t ¼ s=G).

In Model A, classic plasticity theory holds. Consequently, mate-
rials undergo the so-called associated flow rule and the total strain
rate may be additively decomposed into an elastic and a plastic
part. The first condition translates mathematically into the vecto-
rial equation _epl ¼ _krf , where _epl is the plastic strain rate vector,
_k is the plastic multiplier rate and f is the material strength domain.
The second condition is again a vectorial equation and reads as fol-
lows _e ¼ _epl þ _eel, where _e is the total strain rate and _eel is the elastic
strain rate vector. In order to have an insight into the elements
undergoing inelastic deformation and the amount of plasticization
(and hence to univocally identify the critical elements), a scalar
quantity called equivalent plastic strain is usually utilized, defined
as eeq ¼

R ffiffiffiffiffiffiffiffiffiffiffiffi
_eplT _epl

p
. Despite the fact that eeq > 0 by definition, since in

the numerical applications hereafter presented only the axial
stress is active, we present color patches in terms of a slightly mod-
ified version of eeq, which is kept negative when a compression
axial stress acts.

The approximation with a stepped function enables, on the
other hand, to carry on analyses with rigid elements and softening
interfaces by means of a numerical model adapted to the study of
FRCM elements recently presented in the literature [1,33,34],
within a quadratic programming approach.

Models (B) and (C) where produced using the FE program [32]
and adopting for mortar a Damage Plasticity Model (DPM) to accu-
rately reproduce the main features of such material embedded into
the FRCM systems. Generally, low tensile strength and softening
behavior in tension are the key aspects to deal with.

DPM is essentially a concrete damage-plasticity (CDP) material
already available in the standard software package, which enables
to investigate the non-linear behavior of isotropic softening mate-
rials under static and dynamic loads. The model is suitable for
modeling materials with distinct tensile and compressive strength,
and damage parameters (see Fig. 10).

The two damage parameters used are called dt e dc, the first
referred to tension and the latter to compression, Fig. 10. They can
vary between 0 (undamaged state) and 1 (totally damaged state)
and modify the uniaxial stress–strain behavior in the unloading



Fig. 7. Numerical FE discretization adopted to analyze FRCM subjected to tensile tests.
path, penalizing the stiffness of the descending branch by means of
the well known Hooke’s law asrt;c ¼ 1� dt;cð ÞE0 et;c � eple

t;c

� �
wherert

and rc are the uniaxial tensile and compressive stresses, E0 is the ini-
tial elastic modulus (undamaged state), ec and et are the total strain in
compression and tension and eple

c (eple
t ) are the total plastic strains in

compression (tension).
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Fig. 8. Uniaxial stress–strain behavior of the yarns.
The model assumes that the two main failure mechanisms are
tensile cracking and compressive crushing.

The strength domain is a Drucker Prager (DP) surface modified
with an ad-hoc parameter, which distorts the limit surface in the
deviatoric plane from a circle to a surface more similar to a
Mohr–Coulomb one. This parameter physically represents the ratio
between the distance from the hydrostatic axis of the maximum
compression and tension respectively. In the simulations this coef-
ficient was kept equal to 2/3, a value used to well approximate a
Mohr–Coulomb failure criterion.

The uniaxial inelastic behavior due to the damage part is eval-
uated with a multi-linear softening model in both tension and
compression, with strains depurated from the elastic part. The uni-
axial stress strain curves for Models (B) and (C) are depicted in
Fig. 9. It should be pointed out that Models (A) and (B) exhibit
the same fracture energy, whereas Model (C) is similar to an elastic
perfectly plastic material.
Fig. 9. Numerical uniaxial behavior assumed in the simulati

Fig. 10. Typical model for material non-linear be
As can be noted from Fig. 9, under tensile stresses, the curve
well approximates an exponential softening, which is typical of
mortar and follows a mode I failure. Typically, in this case the yield
function reads:

f 1 r;j1ð Þ ¼ r� f t j1ð Þ ð2Þ

where the yield value f t j1ð Þ deteriorates in agreement with the fol-
lowing formula:

f t j1ð Þ ¼ f t0e
�f t0

GI
f

j1

ð3Þ

where ft0 is the initial joint tensile strength and GI
f is the mode I

fracture energy.
Similarly to j2, j1 scalar rules the amount of softening, and is

defined as j1 ¼ et � eel
t , being et the total axial strain and eel

t the
elastic part of the axial strain.

While the simplified approach, Model (A) may result in a local
inaccuracy in reproducing the experimental evidences (second
phase in Fig. 5), drawbacks related to the utilization of the damage
Models (B) and (C) stand in a less effective robustness of the FE
model and in very demanding computations.

5. Numerical results

In Set 1, a family of numerical models was examined, where the
yarn is supposed not-straight.

The parametric investigation was conducted using Model (A),
after validation upon Models (B) and (C) for a case of technical rel-
evance, and varying the wave length and amplitude of the imper-
fections as described in Section 3.

The numerical results in terms of global load–displacement
curves are compared with the experimentally obtained envelope
ons for mortar. (a) Tensile behavior. (b) Shear behavior.

havior in uniaxial tension and compression.



in Fig. 11. The obtained load–displacement curves exhibit, analo-
gously to experimental data, a behavior which may be roughly
considered similar to a tri-linear curve, identified by different val-
ues of stiffness.

The first phase is characterized by the un-cracked mortar state,
the second phase corresponds to the crack formation and growth,
whereas the third phase is the crack-opening region. Numerical
results appear in satisfactory agreement with experimental data,
generally falling within the experimental upper and lower bounds.

The following remarks are worth noting:

� Phase II (second segment of the tri-linear curve) is not clearly
visible in the numerical simulations using Model (A). These lat-
ter force–displacement curves, instead, exhibit a rather clear
vertical drop of the load bearing capacity. Such peculiar
response is clearly linked to the stress–strain relationship
adopted in the tensile region ruled by a stepped strength
decrease, see Model (A) in Fig. 9(a). Authors experienced that,
when a multi-linear continuous damage-softening low is uti-
lized, Model (B) in Fig. 9(a) and with a fracture energy equal
to that adopted in Model (A), the two models produce similar
results. When larger values of fracture energies are utilized in
the damage model, Model (C), the drop of the load bearing
capacity at the transition between Phase I and II is much less
evident and a better approximation of the experimental behav-
ior is achieved. A comparison among the curves obtained with
Models (A), (B) and (C) for a = 1 mm and l = 50 mm is depicted
in Fig. 12. As already pointed out, in absence of an experimental
characterization for mortar fracture energies, two fracture ener-
gies were considered within software [32], the first exactly
equal to that assumed in Model (A), the second much larger.
As expected, the agreement between the results provided by
the FE codes is fully consistent with the approximations intro-
duced in Model (A) (stepped function). The satisfactory fitting
obtained, at least from an engineering point of view, enables
to perform simulations by means of the stepped function
approximation, which is particularly indicated when a strong
reduction of the computational time is needed. In fact, FE Model
(C) gives a very good reproduction of Phase II real behavior,
with a drop of strength that obviously tends to decrease
because of the larger mortar fracture energy. This can be veri-
fied from the curves reported in Fig. 12 in the interval between
0 and 2 mm.
Fig. 11. Load–displacement curves: Set 1 s
� The role played by the geometric parameters a and l becomes
quite clear when the force–displacement curves depicted in
Fig. 11 are analyzed in detail. A regular trend exhibited by the
numerical curves may be observed, especially within the transi-
tion range between Phase II and Phase III. In particular, the max-
imum yarn curvature, expressed as vmax ¼max y00= 1þ y02

� �3
2,

appears a paramount parameter influencing the overall stiffness
of the specimens, a decrease of stiffness being associated to high
curvatures of the yarns. For relatively large displacements, the
numerical models show a perceivable recovery of the stiffness,
directly proportional to vmax, clearly due to a progressive
approximation of the yarns to the straight configuration. Such
physically intuitive phenomenon is kept by the numerical mod-
els, where geometric non linearity is accounted for. To confirm
such behavior, in Fig. 13(a) and (b), respectively, the final con-
figuration and the transversal displacement of the yarns at the
end of the simulations (failure point) are shown for
a = 0.5 mm for four different lengths l = 100, 50, 20 and
10 mm. X and Y scales are maintained in all sub-figures. As
can be noted, almost all specimens tend to approximate the
straight configuration, compare the Y values of Fig. 13(a) and
(b), with transversal maximum displacements all around
0.4 mm. Consistently, near failure, all models, whilst being char-
acterized at the beginning by different maximum curvatures,
tend to recover the stiffness of the straight yarns in tension
being the mortar completely cracked. Conversely, when the
mortar is still in its elastic regime, i.e. in the Phase I, all numer-
ical models exhibit a stiffness equal to the mortar one, being the
contribution of the yarn negligible.
� A detailed analysis of the stresses acting on both yarns and

mortar allows having a further insight into the role player by
the curvature. Some selected plots of the yarns curvature
(for a = 0.5, 1.0, 1.5 and 2.0 mm with l = 100 mm) are provided
in Fig. 14, whereas all the curvatures explored in the numeri-
cal campaign are provided in Table 3. According to the simula-
tions done, it can be noted that mortar transversal sections
that are called to undergo stress concentrations are located
in correspondence of the maximum curvature. In Figs. 15
and 16 for the same samples (l constantly equal to 100 mm
and a = 0.5, 1, 1.5 and 2 mm), gray-scale patches of the hori-
zontal normal stress in the mortar elements are shown, at
two different levels of external applied load, approximately
corresponding to Phase I (Fig. 15) and Phase III (Fig. 16). As
imulations produced with Model (A).



Fig. 12. Load–displacement curves obtained with Models (A), (B) and (C) (a = 1 mm, l = 50 mm).
can be noted, stress peaks are concentrated on sections where
the curvature reaches the maximum absolute value. Typically,
such vertical sections are those associated to the formation of
transversal cracks, which in the numerical model are regularly
stepped, as a consequence of the sinusoidal shape of the yarn.
In Phase I, the mortar is still in the elastic phase, as demon-
strated by the linear distribution of stresses along the trans-
versal section. As expected, the peak stresses are slightly
lower than the mortar ultimate strength. The slight different
values of stresses exhibited by the model between the extra-
dos and intrados are obviously a consequence of the transver-
sal bending of the specimens, due to yarn sinusoidal shape.
These effects become more evident for shorter wave lengths.
Near failure, Fig. 16, an almost constant stress distribution
can be found on the transversal sections, but with values sen-
sibly lower, being the mortar almost completely cracked.
When a yarn with lower wavelength is considered (l equal
to 20 mm and a = 0.5, 1, 1.5 and 2 mm), the stress distribution
on mortar transversal sections becomes sensibly more irregu-
lar, both at the end of Phase I (Fig. 17) and near failure-Phase
III, see Fig. 18. A quite visible bending of the specimen is expe-
rienced, with mortar elements undergoing normal compres-
sion stresses at the intrados near failure. Such behavior is
not surprising, because the load carrying capacity is all com-
mitted to yarns subjected to tensile stresses.
� The equivalent plastic strain provided by Model (A) at two lev-
els of the external load, see Fig. 19 where the results for three
different values of a and l are depicted, confirms again that
cracks propagate on transversal sections, where the curvature
reaches its maximum value, with a clear bending effect induced
by the non-straightness of the yarn. Similar results are found
with Model (B), as shown in Fig. 20, where the damage variable
near failure is depicted (elements with a damage state greater
than 0.8 are in practice almost completely cracked). A work in
progress by the authors is oriented at experimentally determin-
ing the actual shape of the yarn to directly interface with the FE
code without any a priori assumption, with the aim of fitting
precisely the position of the cracks. Failure (end of Phase III)
occurs for rupture of the yarns, i.e. according to the constitutive
model assumed, when the stress in the yarn reaches its peak
value, see Fig. 8. As it is possible to notice from Fig. 21, where
the stress acting on yarns at three different load levels corre-
sponding to Phase I, II and III, is depicted, excluding specimen
regions near boundaries, stress exhibits again non negligible
peaks in correspondence of vmax and more marked stress–
concentrations for small wavelengths. As expected, excluding
elements near vertical edges, when mortar is totally cracked,
failure occurs for rupture of the yarns in the weakened transver-
sal sections. The numerically determined failure loads are in full
agreement with the experimental results, see Fig. 11.
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Fig. 13. (a) Undeformed and deformed shape of the yarn in the specimens at failure for a = 0.5 mm l = 100, 50, 20 and 10 mm. (b) Transversal displacement.
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Fig. 14. Yarns curvature for a = 0.5, 1.0, 1.5 and 2.0 mm with l = 100 mm.
� In Set 1, in order to have an insight into the effects induced on
numerical models by experimental data variability, with
reference to the peak tensile value adopted for mortar, three
different numerical simulations were repeated, the first assum-
ing the average experimental strength. In the other two models
the strength was assumed equal to the average +/� six StD.



Table 3
Maximum curvatures (1/mm) explored in the numerical simulations.

a l (mm) 20 mm 50 mm 100 mm

0.5 0.01232 0.001972 0.000493
1.0 0.02464 0.003944 0.000986
1.5 0.03697 0.005916 0.001479
2.0 0.04929 0.007888 0.001972

(a)

Fig. 15. (a) Stress distribution on the section E–I (curvature peak) at load = 1.7 kN (P

(a)

Fig. 16. (a) Stress distribution on the section E–I (curvature peak) at load = 6.88 kN (P
Looking at a detail of the global force–displacement curve near
the transition between Phase I and Phase II reported in Fig. 22
for a = 0.5 mm and l = 100 mm (similar behaviors are obtained
with different amplitudes and wavelengths) it can be seen that
small differences occur, with an activation slightly anticipated
or retarded, as expected, when the mortar presents higher or
lower tensile strengths. Obviously, an uncertainty on mortar
(b)

hase I). (b) Stress patches for four different combinations of a and l parameters.

(b)

hase III). (b) Stress patches for four different combinations of a and l parameters.



(a) (b)

Fig. 17. (a) Stress distribution on the section E-I (curvature peak) at load = 1.7 kN (Phase I). (b) Stress patches for four different combinations of a and l parameters.
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Fig. 18. (a) Stress distribution on the section E-I (curvature peak) at load = 6.68 kN (Phase III). (b) Stress patches for four different combinations of a and l parameters.
tensile strength turns out to have effect exclusively on Phase II,
being mortar in Phase I purely in the elastic regime and in Phase
III completely cracked.
� Let us indicate with K1 the initial slope of the tri-linear curve in

the force–displacement diagram of Fig. 5, with K2 the slope of
the intermediate region and with K3 the final slope. From the
large set of results obtained, it is particularly interesting to com-
pare the ratios K3/K1 and K2/K1, defined as the stiffness of the
curves thought as they rigorously followed a tri-linear behavior,
at different wavelength and amplitude values. Results are sum-
marized in Fig. 23, where it is possible to notice that (1) increas-
ing the amplitude and decreasing the wavelength, the ratio K2/
K1 visibly decreases. This was largely expected, because K1 is
essentially independent from both geometry and mechanical
properties of the yarn, whereas K2 is strongly influenced by
the actual position of the yarn in correspondence of cracked sec-
tions. K3/K1 ratio, as expected, is always constant; this is
because, within the hypothesis of geometrical non linearity
adopted, the yarn tends to the straight configuration near fail-
ure, see Fig. 13, and therefore all the specimens exhibit at failure
the same stiffness of the yarn when subjected to tensile
stresses.
� The second set of simulations, Set 2, is done on specimens

assumed already bent before their introduction into the testing
machine. A geometrical imperfection is very likely, because of
the reduced thickness of the specimen (10 mm) when com-
pared with its length. Numerical simulations exhibit in this sec-
ond case a behavior that is similar to that found for Set 1. In



a =0.5 mm l =100 mm 

a =1.5 mm l =50 mm 

a =2.0 mm l =20 mm 

(a) (b)

Fig. 19. Plastic strain with sign (<0 compression > 0 tension) distribution into three specimens with different values of a and l. (a) Load = 3.0 kN. (b) Load = 8.0 kN.

(a)

(b)

Fig. 20. Damage map obtained with Model (B). (a) Load = 3.0 kN. (b) Load = 6.8 kN.
particular, the curvature of the whole specimens plays a similar
role of the curvature imposed to the yarn in straight specimens.
Load displacement curves so obtained at three different
curvatures of the specimens are summarized in Fig. 24 for the
sake of completeness. In this case, crack occurs in correspon-
dence of the transversal central section, as a consequence of
the maximum eccentricity of the external load F. Reasonable
values of eccentricity are selected, in agreement with



(a)

(b)

(c)

Fig. 21. Normal stress distribution on yarn for four different combinations of a and l parameters. (a) load = 1.7 kN, (b) 3.0 kN, -c: 6.75 kN.
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Fig. 22. Detail of the global force–displacement curve at the transition between
Phase I and Phase II for different values of mortar tensile strength (a = 0.5 mm and
l = 100 mm).
experimentally observed situations. While results very similar
to those found for Set 1 are here experienced macroscopically,
the failure mode is less in agreement with experimental evi-
dences, showing a formation of equally stepped cracks on the
specimens, different from test to test and probably linked to
the imperfect pose of the yarn inside the mortar matrix, as pre-
viously discussed.
� Due to the high slenderness, specimens must be handled with

extreme care, and it may occasionally occur that they micro-
crack before their installation on the testing machines. Micro-
cracks are not always immediately visible but may play a cru-
cial role in the tests, with a strong reduction of the strength in
Phase II. A reasonable numerical approximation of such situa-
tion may be reproduced introducing notches to simulate the
cracks, Set 3. Such numerical simulations were performed
assuming very low mechanical properties for the elements in
correspondence of the notches. These analyses should be
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Fig. 24. Set 2 simulations. Load–displacement curves, comparison between experimental and numerical results.

Fig. 25. Set 3 simulations. Load–displacement curves, comparison between exper-
imental and numerical results.
repeated case by case, every time a specimen appears cracked
before the test, and with a precise survey of position and depth
of the cracks. A simulation with artificially generated and
equally stepped notches was studied using Model (A), see
Fig. 25, where the global force–displacement curves obtained
by means of three different series of artificially generated
notched meshes are depicted. Again and as expected, the results
are similar to those obtained with Set 1. In particular the
notches, because equally stepped, play the same role of the yarn
wavelength. The notches depth produces effects similar to those
obtained with the yarn geometric imperfections. As expected, in
this case, cracks propagate on all notched transversal sections,
as confirmed by the propagation of the equivalent plastic strain
depicted in figures from Figs. 26–28.

6. Closing remarks

In this paper, the final results of a wide investigation on the
behavior of Fabric reinforced cementitious matrix coupons under
tensile tests conducted by means of 2D FE models have been pre-
sented. In order to examine the causes of the experimentally
observed scatter, a simplified numerical modeling strategy has
been proposed. Experimental observations gave useful hints to
detect the factors that mainly influence the global behavior of
the specimens tested. To separately analyze their effect, three
series of simulations were performed. In all the analyses, FRCM
specimens were modeled using for mortar four-noded non-linear
plane-stress elements and for yarns two-noded truss elements.

In Set 1, a non-straight configuration of the yarn inside the
specimens was assumed, geometrically described by a sinusoidal
function, characterized by two variable parameters, the amplitude
and the wavelength. In Set 2, an initial deformed configuration of
the coupon due to a global bending applied before mechanical test-



Fig. 26. Equivalent plastic strain with sign (<0 compression > 0 tension) distribution into one specimen of Set 3, a = 1 mm l = 100 mm. (a) Load = 3.0 kN. (b) Load = 6.5 kN.

Fig. 27. Equivalent plastic strain with sign (<0 compression > 0 tension) distribution into one specimen of Set 3, a = 1 mm l = 50 mm. (a) Load = 3.0 kN. (b) Load = 6.5 kN.

Fig. 28. Equivalent plastic strain with sign (<0 compression > 0 tension) distribution into one specimen of Set 3, a = 1 mm l = 20 mm. (a) Load = 3.0 kN. (b) Load = 6.5 kN.
ing was assumed, the specimen shape following a circumference
arch. The last series of simulation, Set 3, was characterized by
the assumption of an initially cracked condition of the cementi-
tious matrix.

All the analyses gave important information on the experimen-
tal behavior of FRCM under tension and the imperfections consid-
ered separately in the three sets reasonably explain the
experimentally observed scatter of the results.

The following concluding remarks are worth noting:

– The presence of a non-planar configuration of the yarns inside
the coupon can influence stress and strain distributions in the
specimens, with more perceivable effects at high curvatures of
the yarn. Numerical simulations showed also that this latter
parameter has effects on the overall stiffness of the specimens.
– As expected, another key factor influencing the global behavior
of the specimens is the stress–strain relationship in tension
adopted for mortar. Low fracture energy coincides with a visible
drop of the load bearing capacity in Phase II, whereas higher
fracture energy results in a more ductile behavior.

– Set 2 simulations demonstrated, in agreement with intuition,
that an increase in the initial specimen curvature is linked to
a sensible decrease of the stiffness and strength in Phase II.
Increasing the external load, the coupon tends progressively
to return into a straight configuration, justifying the same stiff-
ness found near failure.

– Finally, the presence of equally stepped micro-cracks (Set 3 sim-
ulations) generally explains a reduction of stiffness at the tran-
sition between Phase II and III and, obviously, a lower load
bearing capacity.



The present study was conducted with the aim of analyzing the
effects that three sets of imperfections can produce on the global
behavior of FRCM specimens subjected to tensile tests. It is partic-
ularly important to increase the knowledge about the behavior of
such materials, also with reference to imperfections, that can be
accidentally produced during the preparation phase of the cou-
pons, but that are very common when these materials are used
for retrofitting of existing structures.
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