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Abstract. We study the asymptotics for the lengths LN (q) of the instability tongues of Hill

equations that arise as iso-energetic linearization of two coupled oscillators around a single-
mode periodic orbit. We show that for small energies, i.e. q → 0, the instability tongues have

the same behavior that occurs in the case of the Mathieu equation: LN (q) = O(qN ). The

result follows from a theorem which fully characterizes the class of Hill equations with the same
asymptotic behavior. In addition, in some significant cases we characterize the shape of the

instability tongues for small energies. Motivation of the paper stems from recent mathematical

works on the theory of suspension bridges.
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1. Introduction

We consider a class of parameterized Hill equations of the following type,

(1.1) z′′(t) + (β + g(u(t, q)))z(t) = 0,

in which β represents the spectral parameter, and the periodic coefficient depends (through the
real analytic function g) on the solution u = u(t, q) of an initial-value problem for a nonlinear
conservative second order differential equation,

(1.2) u′′(t) + 4u(t) + f(u(t)) = 0, u(0) = q, u′(0) = 0.

In (1.2), q is a real parameter, and the function f is assumed to be real analytic in a neigh-
borhood of 0, with f(x) = O(x2), x → 0. Under this assumption, if q is sufficiently small, the
solution u(t, q) is periodic with period T (q). We shall refer to the period of the Hill equation
(1.1) as T (q), although in some cases the fundamental period of g(u(t, q)) could be a fraction of
T (q).1

We are interested in certain asymptotic properties of the instability region of equation (1.1),
which is the set of pairs of parameters (q, β) such that all solutions of (1.1) are unbounded.
According to the basic theory of the Hill equation [29, ch. II, Th. 2.1] [14, ch. 2, Th. 2.3.1],
for any admissible fixed value of q, the instability set in the β-axis is the union of an unbounded
interval (−∞, β+

0 (q)) with a countable family of, possibly empty, open intervals IN , N = 1, 2, . . . ,
whose endpoints β±N (q) are the T (q)-periodic eigenvalues for even N , or the T (q)-anti-periodic
eigenvalues for odd N . When β lies in the interior of the complementary set all solutions are
bounded. As functions of q, the curves β = β±N (q) form in the plane (q, β) the boundaries of the
so-called instability tongues (resonance tongues, Arnold’s tongues) of the Hill equation. These
tongues stem and bifurcate from a sequence of points on the β-axis corresponding to the double

1If f and g are odd and even functions respectively, the period of g(u(t, q)) is indeed T (q)/2. It is not possible
to exclude lower periods for exceptional values of q.
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eigenvalues β+
N (0) = β−N (0) = N2. Our main concern is the asymptotic behavior of β±N (q) as

q → 0. We consider two types of problems:

(I) The order of tangency of β±N (q) as q → 0, that is the decay rate to zero of the signed

length of the instability tongues LN (q) = β+
N (q)− β−N (q).

(II) The shape of the instability tongues for small values of q. We shall distinguish between
“trumpet shaped” tongues, containing a segment of the horizontal line β = βN (0), and
“horn shaped” ones, whose intersection with the horizontal line β = βN (0) is empty for
small q (see Fig. 2 in Section 4).

We postpone motivations and results on problem (II) to Section 4. Problem (I) is classical in
the standard theory of the Hill equation with two parameters. For instance, if we set f(u) ≡ 0
in (1.2) and g(u) = u, equation (1.1) reduces to the Mathieu equation z′′ + (β + q cos(2t))z =
0, for which the asymptotic length is known to be LN (q) = CNq

N + O(qN+1), with precise
determination of the coefficient CN 6= 0, see [22, 28]. For the standard two-parameters Hill
equation,

(1.3) z′′ + (β + qφ(t))z = 0,

where φ is a general L2 and π-periodic function, a classical result of Erdélyi [15] states that no
better estimate than LN (q) = O(q) can be expected. In the case when φ(t) is a trigonometric
polynomial of the form

φ(t) =

s∑
j=1

aj cos(2jt),

Levy and Keller [28] (see also [4] for a different approach) proved that the length of the N -th
resonance interval is at most CNq

r, where r is the integer part of N/s, and presented explicit
formulas for CN when N is a multiple of s (see also [23], and [37] for interesting extensions to
a generalized Ince equation). For the similar, and partly related, problem of the asymptotics of
LN as N →∞, we refer to [6, 2].

In this paper we prove the following theorem which shows that, for every equation (1.1)
coupled with (1.2), the instability tongues have at least the same order of tangency of the
Mathieu equation, that is LN (q) = O(qN ) as q → 0.

Theorem 1.1. Assume that the functions f , g are real analytic in a neighborhood of the origin,
with f(x) = O(x2) as x→ 0. Then, for every N ∈ N, there exists a (possibly vanishing) constant
CN , such that

(A) LN (q) = CNq
N +O(qN+1) as q → 0 .

It is not a simple task to compute the coefficient CN , but we shall provide a recursive formula
in Appendix A showing that CN is a polynomial of degree N in the derivatives of f and g up to
order N . We are unable to provide a uniform bound on the rest LN (q)−CNqN in terms of f , g
and N .

We stress the fact that CN is possibly vanishing because the coupled system (1.1)–(1.2) in-
cludes the classical Lamé equation2 corresponding, in our notations, to f(u) = −6u2, and
g(u) = −m(m + 1)u, m ∈ N. In this case, Ince [25] in 1940 showed that only finitely many,
precisely m, instability intervals (thus tongues) fail to vanish. Equivalently, for all but 2m + 1
eigenvalues, there exist two linearly independent periodic eigenfunctions (coexistence). We shall
briefly discuss this subject in Section 2.3 and Appendix B.

2We refer here to the Weierstrassian form of the Lamé equation (see [16, ch. XV, sect. 15.2] ) :

z′′ + (λ−m(m+ 1)P(t))z = 0,

where P is a suitable translation of a Weierstrass elliptic function.
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In order to prove Theorem 1.1, we need to rescale the time variable and the spectral parameter
so that equation (1.1) reduces to a Hill equation whose periodic coefficient has fixed period π
and depends analytically on the parameter q:

(1.4) z′′ + (λ+G(t, q))z = 0.

Once this is done, the theorem is a consequence of the following characterization of the periodic
coefficients G(t, q) in (1.4) for which the asymptotic relation (A) holds true.

Theorem 1.2. Assume that G(t, q) is an even π-periodic function, depending analytically on the
parameter q in a neighborhood of 0. Then the lengths of the instability tongues of equation (1.4)
satisfy the asymptotic estimate (A), if and only if G(t, q) admits the following power expansion,

(1.5) G(t, q) =

∞∑
n=1

Gn(t)qn,

in which the time coefficients are trigonometric polynomials of degree 2n; that is,

(1.6) Gn(t) =

n∑
k=0

Gk,n cos(2kt), Gk,n ∈ R.

In Theorem 1.2 we emphasize the inverse result that, as far as we know, is new even in the
standard case G(t, q) = qφ(t), when it simply states that if the instability tongues of (1.3) satisfy
(A), then either φ ≡ 0 or (1.3) is the Mathieu equation. For this reason we take the liberty
of naming generalized Mathieu equation, any Hill equation whose periodic coefficient admits an
expansion such as (1.5)–(1.6).

A Hill equation such as (1.1) arises quite naturally in physical applications as the variational
equation of periodic solutions in Hamiltonian systems with two degrees of freedom. A typical
example is provided by a two-mode conservative system of oscillators that, for a given regular
potential energy function Ψ, writes as follows,

u′′(t) +
∂

∂u
Ψ(u(t), z(t)) = 0,(1.7)

z′′(t) +
∂

∂z
Ψ(u(t), z(t)) = 0.(1.8)

If we assume the existence of a periodic single-mode motion, i.e. a periodic solution of
(1.7)–(1.8) in which one component, say u, is periodic and the other vanishes, the active mode
u = u(t, q) can be seen as parameterized by its initial value u(0) = q in the following way,

u′′(t) +
∂

∂u
Ψ(u(t), 0) = 0, u(0) = q, u′(0) = 0.

The linearization at a fixed energy level (iso-energetic linearization) of the system (1.7)–(1.8)
around the periodic orbit (u(·, q), 0) yields the Hill equation,

z′′(t) +
∂2

∂z2
Ψ(u(t), 0) z(t) = 0,

whose analysis, according to Floquet’s theory, determines the linearized stability or instability of
the single-mode periodic motion. Thus the results in this paper are relevant for the parametric
stability/instability analysis of the system (1.7)–(1.8) in the case when the energy of the coupled

oscillators system is small. Here we consider β = ∂2

∂z2 Ψ(0, 0) as a parameter, ∂2

∂u2 Ψ(0, 0) = 4

(possibly after a suitable rescaling of time), ∂
∂uΨ(u(t), 0) = 4u+ f(u), ∂2

∂z2 Ψ(u, 0) = β + g(u).
The main motivation for starting the study of problems (I) and (II) is the analysis of para-

metric torsional instability for some recent suspension bridge models, where a finite dimensional
projection of the phase space reduces the stability analysis at small energies of the model to



4 CLELIA MARCHIONNA AND STEFANO PANIZZI

the stability of a Hill equation such as (1.1). We refer the reader to Gazzola’s book [19], to the
papers [8, 9, 3, 10, 17], and to our previous works [30, 31]. Other interesting applications arise
in the study of the stability of nonlinear modes in some beam equations [18] or string equations
[12, 11]. In the latter case, we must observe that the eigenvalue problem takes a different form:
z′′ + β(u + g(u))z = 0. Our results, in particular Theorem 1.1, extend to this form as well but
in order to avoid redundancy of quite similar reasonings we do not include the proof.

The plan of the paper is the following: In Section 2, after introducing the problem in the
context of analytic perturbation theory, we prove Theorem 1.2. The direct part is an adaptation
of the argument in [28], whereas the converse makes use of a new inductive argument. In Section
3 we deal with our main result (Theorem 1.1) whose proof is, after rescaling, merely a verification
of the assumptions of Theorem 1.2; in addition to a few complementary results we briefly recall
the issue of the existence of finitely many tongues (coexistence). In Section 4 we discuss the
shape of the instability tongues depending on the first coefficients in the expansions of f and
g. Some examples that are relevant to the theory of suspended bridges are examined in Section
5, and some situations are shown in which only finitely many tongues do not vanish; some are
well-known while others are novel.

We include two appendices: Appendix A describes a recursive formula for the computation
of CN ; Appendix B elaborates on a few transformations of the Lamé equation relevant for this
work.

2. The generalized Mathieu Equation

In the first part of this section we consider the Hill equation (1.4), and the if part of Theorem
1.2. The inverse result will be proved in the second part of this section. The proof of the direct
result is a variation and a simplification of an argument in [28]. The inverse proof uses a new,
although simple, inductive procedure. Before proceeding with the proofs, we point out some
general issues on the analytic perturbation problem we are addressing.

The periodic eigenvalue problem for the Hill equation (1.4) is a regular perturbation problem
and may be cast in Kato’s abstract framework [26]. We assume that G(·, q) is π-periodic as
a function of t, and is analytic in a neighborhood of q = 0 as a function of q, with values in
L∞([0, π]), i.e.

(2.1) G(t, q) =

∞∑
n=1

qnGn(t), lim sup
n→∞

‖Gn‖1/n∞ <∞.

To avoid distinction among periodic (even eigenvalue numbers) and anti-periodic (odd eigen-
value numbers) eigenfunctions, we assume as reference space the Hilbert space H = L2([−π, π]),
in which we consider the family of self-adjoint operators with discrete spectrum,

A(q) = − d2

dt2
−
∞∑
n=1

qnGn,

with boundary conditions z(−π) = z(π), z′(−π) = z′(π). The Hilbert space H may be decom-
posed according to H = H+ ⊕H−, where H± denotes the subspace of even (+) functions, and
odd (−) functions, that is

H+ = span{cos kt : k ≥ 0}, H− = span{sin kt : k ≥ 1}.

Consequently, with obvious notation, we have A(q) = A(q)+ ⊕ A(q)−, so that the doubly
degenerate eigenvalues λN (0) = N2 turn out to be simple in H±. Owing to the Rellich–Kato
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perturbation theorem (see e.g. [35]), every perturbed eigenvalue λ±N (q) in H± depends analyti-
cally on q. We shall write the power series

(2.2) λ±N (q) = N2 +

∞∑
n=1

Λ±n (N) qn,

whose convergence radius rN can be estimated by Kato’s resolvent method: a lower bound for
rN is given by the solution of the following equation (see [26, ch. II, §3]),

∞∑
n=1

rnN‖Gn‖∞ = dN/2,

where dN is the isolation distance3 of λN (0) = λ±N (0), i.e. dN = N2 − (N − 1)2.
From now on in this section, to avoid proliferation of indices, we omit the dependence on

the eigenvalue number N , which we consider as fixed. We denote by Z±(t, q) the even (+) and
odd (−) normalized (see below (2.6)) eigenfunction corresponding to λ±N , whose power series
expansion is given by

(2.3) Z±(t, q) =

∞∑
n=0

qnz±n (t).

If we plug the power series expansions (2.2), (2.3) into the equation (1.4), we get the following
recursive sequence of differential equations,

z′′0 +N2z0 = 0,(2.4)

z′′n +N2zn +

n∑
s=1

Λszn−s +

n∑
s=1

Gs(t)zn−s = 0 n ≥ 1.(2.5)

The 2π-periodic solutions to (2.4)–(2.5) are not unique, unless we assume an additional con-
straint, such as the following,

(2.6)
1

2π

∫ π

−π
Z+(t, q) cos(Nt)dt =

1

2πi

∫ π

−π
Z−(t, q) sin(Nt)dt = 1.

2.1. Proof of Theorem 1.2: Direct problem. Here we assume that all coefficients Gn are
even π-periodic trigonometric polynomials of degree 2n such as in (1.6), and prove the property
(A). The proof is divided into two steps: first we consider the Fourier expansion of each z±n ,
and write down recursive formulas for Λ±n , z±n ; the rest of the proof relies mainly on a finite
propagation speed of disturbances property of the system (2.10)–(2.11), which can be expressed
either by the law of enlargement of supports or by the dual concept of domain of dependence,
and is contained in three Lemmas; the last one, Lemma 2.3, shows that for N ≥ 1 the order
of tangency of λ±N (q) at q = 0 is at least N − 1, that is Λ+

n (N) = Λ−n (N) in the expansion
(2.2), for n ≤ N − 1. Of course this is equivalent to the asymptotic estimate (A) with CN =
Λ+
N (N)− Λ−N (N).
The Fourier expansion of each z±n is:

(2.7) z±n (t) =

∞∑
k=−∞

z±k,ne
ikt, z±−k,n = ±z±k,n,

3The isolation distance is the distance of λN from the the rest of the spectrum. It can be raised by the
additional decomposition of H into periodic and anti-periodic functions, see [26, ch. VII, §3].
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where the first component of the pair of indices (k, n) ∈ Z× N refers to frequency, the latter to
the power of q, We note that, owing to (2.3), (2.6), and (2.7), we get the initial conditions at
level n = 0,

(2.8) z±k,0 = δk,N ± δk,−N ,
and the fact that the N -th Fourier coefficient of zn is zero for n ≥ 1, that is

(2.9) z±±N,n = 0, n ≥ 1.

By substituting (2.7) in (2.5), we obtain the following recursive system for z±k,n, and Λ±n
4,

(N2 − k2)zk,n = −1

2

n∑
s=1

s∑
i=0

Gi,s(zk−2i,n−s + zk+2i,n−s)−
n∑
s=1

Λszk,n−s,(2.10)

Λn = −1

2

n∑
s=1

s∑
i=0

Gi,s (zN−2i,n−s + zN+2i,n−s) .(2.11)

The second equation (2.11) is obtained either by taking the scalar product of (2.5) with eiNt

or by setting k = N in (2.10). We note that the symmetry relations z±k,n = ±z±k,n are satisfied,

since the system (2.10)–(2.11) is invariant under the transformation k 7→ −k, and in the same
way, one could get an equation equivalent to (2.11) by setting k = −N in (2.10).

As in [28], we need the following lemmas on the vanishing coefficients of system (2.10)–(2.11).

Lemma 2.1. The frequency index k of non vanishing coefficients must have the same parity of
N , that is z±k,n = 0 for odd k−N . The indices of non vanishing coefficients are contained in the
union of two forward cones:

SN = {(k, n) ∈ Z× N : |k −N | ≤ 2n} ∪ {(k, n) ∈ Z× N : |k +N | ≤ 2n}.
that is z±k,n = 0, if (k, n) belongs to the complementary set of SN .

Proof. The assertion on the parity of k − N is easily proved by induction, but it is obvious if
we think that for even/odd N , z±n is a periodic/anti-periodic function. The other assertion is
proved by induction on n. For n = 0 the assertion is true by the initial conditions (2.8). Assume
that it is true up to the level n− 1, that is z±h,m = 0, if (h,m) /∈ SN , and m ≤ n− 1. We remark

that, for a given pair of indices (k, n) ∈ Z × N, all the indices of zk−2i,n−s, zk+2i,n−s, zk,n−s in
formula (2.10) belong to the following backward cone:

(2.12) Ck,n = {(h, j) ∈ Z× N : |k − h| ≤ 2(n− j)} \ {(k, n)}.
By a simple but cumbersome check, we have that if the vertex (k, n) of Ck,n does not belong

to SN , then Ck,n ∩ SN = ∅, and j < n if (h, j) ∈ Ck,n. Thus we get zk,n = 0, if (k, n) /∈ SN .
�

Lemma 2.2. The domain of dependence of Λ±n is the backward cone CN,n, as defined in (2.12).
The domain of dependence of z±k,n is the backward cone Ck,n. This means that the value of z±k,n
is not influenced by any z±h,j if (h, j) /∈ Ck,n.

Proof. The assertion on the domain of dependence of Λ±n is verified by direct inspection of the
indices in (2.11). Let us verify the assertion on the cone of z±k,n. As we noted in the proof of

Lemma 2.1, every index of the z’s appearing in (2.10) belongs to Ck,n. We need to take care
of the domains of dependence of the terms Λ±s , with s ≤ n, appearing in formula (2.10). We

4The same tecnique applies also for N = 0, in order to compute λ+0 (q) =
∑∞

n=1 Λ+
n (0) qn, the upper bound

of the 0-th unbounded interval of instability. The formulas (2.10), (2.11) are also true, providing to start with

z+k,0 = δk,0, accordingly to (2.6).
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assume for the moment k ≥ 0. The case k = N is obvious. If |k−N | = 2h > 0, we remark that,
owing to Lemma 2.1, the summation

∑n
s=1 Λ±s z

±
k,n−s does not extended up to n. Indeed we have

z±k,0 = z±k,1 = · · · = z±k,h−1 = 0, since their indices do not belong to the support set SN , as it seen

by the inequality |k −N | = 2h > 2(n− s), s > n− h. Therefore summation can be replaced by
(intended to vanish if h ≥ n),

(2.13)

n−h∑
s=1

Λ±s z
±
k,n−s, 2h = |k −N |.

Since CN,s ⊂ CN,j if s ≤ j, the largest cone of dependence of the terms Λs in (2.13) is CN,n−h
corresponding to the largest index n−h. By definition of h, 2h = |N − k| ≤ 2|n− (n−h)| = 2h,
thus its vertex (N,n − h) belongs to Ck,n. It follows that the whole cone is contained in Ck,n.
This proves the assertion on the dependence cone of z±k,n, if k ≥ 0. The case k < 0 reduces to

the previous one by symmetry, since z±−k,n = ±z±k,n �

Figure 1. The shaded region represents the set R in which z+h,m = z−h,m. The
darker region is its intersection with a domain of dependence Ck,n, when k >
2n−N

The main issue in the proof of Theorem 1.2 consists in identifying the region in the plane
(k, n) in which z+k,n = z−k,n, this is set out by the following Lemma:

Lemma 2.3. Let R be the region below the line k = 2n−N , that is

R = {(k, n) ∈ Z× N : k > 2n−N}.

Then we have z+k,n = z−k,n, for every (k, n) ∈ R, and consequently Λ+
n = Λ−n for n ≤ N − 1.

Proof. Let us set

Rn = {(k, j) ∈ R : j ≤ n}.
We prove the assertion by induction on n. We have z+k,j = z−k,j for (k, j) ∈ R0, since the only

non vanishing term is z±N,0 = 1. Assume that z+k,j = z−k,j for every (k, j) ∈ Rn−1. Since the
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domain of dependence of z±k,n, with (k, n) ∈ Rn is contained in Rn−1, we get z+k,j = z−k,j for every

(k, j) ∈ Rn.
We observe that the domain of dependence CN,n of Λ±n is contained in R if n ≤ N − 1, thus

the rest of the assertion follows by formula (2.11) and Lemma 2.2.
�

Remark 2.4. Let G(t, q) be a function as in the assumptions of Theorem 1.2. If, for some
K > 1, we have Gi ≡ 0, for i = 1, . . . ,K − 1, then, in addition to (A), we have

LN (q) = O(qK), N ≤ K.

In fact, from formula (2.11) we have immediately that Λ±i = 0 for i < K, for i = 1, . . . ,K − 1.

Remark 2.5. Let m ≥ 1 be a fixed integer, and let us weaken the assumption on the π-periodic
coefficients Gn by requiring that they are polynomials of degree at most 2n, for n ≤ m (instead
of n ∈ N). Then Lemmas 1, and 2 hold true up to the level m. This means that in Lemma
1, the domain of dependence of z±k,n is still Ck,n, provided n ≤ m, while in Lemma 2, we have

z+k,n = z−k,n, for every (k, n) ∈ R, with n ≤ m. It follows that in Theorem 1.2, we still have

LN (q) = O(qN ) for the first m instability tongues.

For future reference, we report here the computation of the two first coefficients Λ±1 and Λ±2
of λ±N (q) in (2.2). By using (2.8), (2.9) and (2.11), we get the following expressions,

(2.14) Λ±1 (1) = −G0,1 ∓
1

2
G1,1, Λ±1 (N) = −G0,1, N = 0, N ≥ 2.

Λ±2 (1) = −G0,2 −
1

32
G2

1,1 ∓
1

2
G1,2,(2.15)

Λ±2 (2) = −G0,2 +
1

24
G2

1,1 ±
(
−1

2
G2,2 +

1

16
G2

1,1

)
,(2.16)

Λ±2 (N) = −G0,2 +
1

8(N2 − 1)
G2

1,1, N = 0, N ≥ 3.(2.17)

2.2. Proof of Theorem 1.2: Inverse problem. Here we consider the Hill equation (1.4)
under the general assumption that G is an even π periodic function satisfying (2.1) without
restrictions on the degree of Gn, and we prove the only if part of Theorem 1.2.

We remark that formula (2.11) for the coefficients in the expansion of the eigenvalues λ±N (q)
is now replaced by the the following summation

(2.18) Λ±n = −1

2

n∑
s=1

∞∑
i=0

Gi,s

(
z±N−2i,n−s + z±N+2i,n−s

)
.

First of all, let us prove that under assumption (A), G1 is a polynomial of degree at most 2.
Let N ≥ 1 be an arbitrary eigenvalue number, and let us apply formula (2.18) for n = 1. We
have

Λ±1 = −1

2

∞∑
i=0

Gi,1

(
z±N−2i,0 + z±N+2i,0

)
.

Since z±k,0 = δk,N ± δk,−N , we get

Λ±1 = −G0,1 ∓
1

2
GN,1,

thus Λ+
1 −Λ−1 = −GN,1. We infer that LN (q) = −GN,1q+O(q2) for every N ≥ 1. Owing to the

assumption (A), we conclude that GN,1 = 0 for N > 1, which proves the assertion.
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Now let us consider an integer m ≥ 2, and assume that

(2.19) Gn(t) =

n∑
k=0

Gk,n cos(2kt), for every n ≤ m− 1,

that is Gn is a polynomial of degree at most 2n for n ≤ m−1. We shall show that (2.19) leads to
LN = −GN,mqm + O(qm+1), for every N > m. Thanks to (A) we conclude that GN,m = 0, for
every N > m, which means that Gm is a polynomial of degree at most 2m. Thus the assertion
will follow by induction on m.

Let us consider the N -th eigenvalue branch λ±N , with N > m. Under assumption (2.19),
Lemma 2 and Lemma 3 hold true for all levels n ≤ m − 1 (see Remark 2.5), in particular
Λ+
n = Λ−n for n ≤ m− 1. Let us apply (2.18) for n = m. We have

(2.20) Λ±m = −1

2

m−1∑
s=1

s∑
i=0

Gi,s

(
z±N−2i,m−s + z±N+2i,m−s

)
− 1

2

∞∑
i=0

Gi,m

(
z±N−2i,0 + z±N+2i,0

)
The first term on the right-hand side of (2.20) does not depend on the determinations ±, since

all the indices (N ± 2i,m − s) are in the region R, up to the level m; let A be its value. Thus,
by the initial conditions at level n = 0, we get

Λ±m = A−G0,m ∓
1

2
GN,m.

It follows that LN = −GN,mqm + O(qm+1), for every N > m. This concludes the proof of
Theorem 1.2.

2.3. Existence of finitely many tongues. We point out that not only the instability tongues
can be thinner than predicted by the general result, but can even disappear. We will show some
examples of existence of finitely many tongues in Section 5.

The question of the existence of finitely many instability intervals (gaps) for the Hill equation,

z′′(t) + (β +Q(t))z(t) = 0

has been deeply investigated by many authors, and dates back to the work of Ince [24] on
the impossibility of the coexistence5 for the Mathieu equation, see [29, ch. VII], and [13] for
interesting extensions and a recent account of the subject. A detailed study of the coexistence
problem for the related Ince equation is provided by [36].

Starting from the introduction of the Lax pairs formulation of the KdV hierarchy as a com-
patibility relation with the Hill operator, research on the multiplicity of eigenvalues has come to
a remarkable and celebrated result, essentially thanks to the work of Lax [27] and Novikov [34]
around 1975 (see also [21]): at most n instability intervals fail to vanish if and only if Q satisfies
a differential equation of the form,

(2.21) Q(2n) +H(Q,Q′, . . . , Q(2n−2)) = 0,

where H is a polynomial of maximal degree n+ 2. It turns out that equation (2.21) is equivalent
to a linear combination of the first n-order stationary KdV equations. We refer to [20] for an
extensive bibliography, and a clear presentation of the modern theory.

In the starting case n = 1, there exists exactly one finite instability interval if and only if Q(t)
satisfies the equation Q′′ + AQ+ B + 3Q2 = 0 for suitable real constants A, B (the first proof
of the necessity of this condition is due to Hochstadt [23]).

For n > 1, in the rest of the paper we will refer to the following classical result of Ince [25, 16]
[29, ch. VII], on a particular class of elliptic coefficient of the Hill equation offering the simplest

5This is the name of the subject in classical literature. Coexistence means the existence of two linearly
independent eigenvalues, a condition equivalent to the vanishing of the instability interval.
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example for which all but n finite instability intervals disappear. Here we state the theorem in
a favorable form for our purposes, see Appendix B for a brief discussion.

Theorem 2.6 (The Ince theorem). Let Q be a non constant periodic solution of the differential
equation,

(2.22) Q′′ +AQ+B + 3Q2 = 0

where A, B are real numbers such that A2 − 12B > 0. Then, for every positive integer n, the
Hill equation,

z′′(t) +

(
β +

n(n+ 1)

2
Q(t)

)
z(t) = 0

has exactly n+ 1 instability intervals, including the unbounded one.

In Section 5 we will provide some examples of coupled equations (1.1)–(1.2) where equation
(1.1) can be written in the form,

z′′(t) + (β + γ Q(t, q)) z(t) = 0

with Q(t, q) satisfying (2.22) for every q. As a consequence, if γ =
n(n+ 1)

2
, only a finite number

of tongues fail to vanish.

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. In the first part we provide the asymptotic development
of the periodic solutions of equation (1.2) by removing secular terms as in the classical Poincaré–
Lindstedt method. In the second part we insert the development in the Hill equation (1.1), and
after an adequate normalization of the coefficients, we show that the assumptions of Theorem
1.2 are satisfied.

3.1. Expansion of the solution of equation (1.2). Let u(t, q) be the solution to the initial-
values problem (1.2). According to our assumptions on the function f , we write the Taylor series
of f in a neighborhood of 0:

f(x) =

∞∑
k=2

αkx
k, |x| < r0.

Let r1 be the least modulus of the singular points of the equation (1.2), that is r1 = min{|x| :
4x + f(x) = 0}, r0 = +∞ in case the set is empty. The parameter q will be subject to several
restrictions, the first one being |q| < min{r0, r1} so that the solution of (1.2) are periodic and
depend analytically on q. From now on we simply assume that the parameter q is small enough
so that our power series converge.

Let us denote by T (q) the period of u(t, q) and by ω(q) = π/T (q) its angular frequency. Both
depend analytically on q in some (in general) smaller neighborhood of 0, thus we can write the
following power series expansion (Ω0 = 1),

(3.1) Ω(q) = ω(q)2 =

∞∑
n=0

qnΩn.

If we rescale time in (1.2) by setting τ = ω(q)t, and the solution u(t, q) = qU(τ, q), so that
U(τ + π; q) = U(τ, q), the problem (1.2) reads as follows,

(3.2) Ω(q)U ′′(τ) + 4U(τ) +

∞∑
n=1

αn+1q
nU(τ)n+1 = 0, U(0) = 1, U ′(0) = 0.
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By the Poincaré expansion theorem (see [35, Th. 9.2]), U(τ, q) can be expressed, on the fixed
time interval [0, π] (thus on R), as a convergent power series with respect to q in a neighborhood
of 0, uniformly with respect to τ :

(3.3) u(t, q) = qU(τ, q) =

∞∑
n=1

qnun(τ).

The coefficients un in the expansion (3.3) are periodic and, by the initial conditions in (3.2),
we obtain that

(3.4) un(τ + π) = un(τ), u1(τ) = cos(2τ), un(0) = u′n(0) = 0, n ≥ 2.

If we plug the expansion (3.3) into the problem (3.2) we get, in addition to conditions (3.4),
the sequence of recurrent differential equations,

u′′1 + 4u1 = 0,(3.5)

u′′2 + 4u2 = −Ω1u
′′
1 − α2u

2
1,(3.6)

u′′3 + 4u3 = −Ω2u
′′
1 − Ω1u

′′
2 − 2α2u1u2 − α3u

3
1,(3.7)

and in general, for n > 3,

(3.8) u′′n + 4un = Fn(τ)

where

Fn(τ) = −
n−1∑
k=1

Ωku
′′
n−k −

n∑
k=2

αk
∑

i1+···+ik=n
ui1 · · ·uik

Periodic solutions of the n-th recurrent equation are possible if secular terms are removed from
the right-hand side of the equation, so that the coefficient of the resonant term in Fn(τ) vanishes.
This means that we have to impose that

∫ π
0
Fn(τ) cos(2τ) dτ = 0, which is the first step to obtain

the asymptotic expansions of ω(q), and subsequently of u(t), by the Poincaré–Lindstedt method
(see [35, ch. 10]).

By a simple inductive argument, we can show the following property of the coefficients un:

Proposition 3.1. The coefficients un(τ), n ≥ 1 in the power series (3.3) are even π-periodic
trigonometrical polynomials of degree 2n.

Proof. We prove the assertion by induction on n ∈ N. It is obviously true for n = 1, and let
us assume it is true for 1 ≤ j ≤ n − 1 (n ≥ 2). By a simple computation, it follows that the
multilinear terms in Fn(τ) of the n-th recursive differential equation, that is∑

i1+···+ik=n
ui1ui2 · · ·uik ,

and the term
∑n−1
k=1 Ωku

′′
n−k, are even π-periodic polynomials of degree ≤ 2n. Thus, once the

resonance has been removed, the source term Fn in the n-th equation has the following expression,

Fn(τ) =

n∑
k=0,k 6=1

ck cos(2kτ).

Therefore, recalling that un(0) = u′n(0) = 0, the solution of the n-th problem, is given by

un(τ) =

n∑
k=0,k 6=1

ck
4− 4k2

cos(2kτ)−
n∑

k=0,k 6=1

ck
4− 4k2

cos(2τ),

which proves the assertion. �
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3.2. Hill Equation. Here we turn our attention to the periodic eigenvalues problem for the Hill
equation (1.1). We need to rewrite the equation in the form (1.4): we rescale the time variable,
τ = ω(q)t, set z(t) = Z(ω(q)t). Then, by introducing the new coefficients,

(3.9) λ(q) = β(q)/Ω(q), G(τ, q) = g(qU(τ, q))/Ω(q),

we get rid of the Ω(q) factor by absorbing it in a modified eigenvalues problem, so that we obtain
a Hill equation with fixed period π:

(3.10) Z ′′(τ) + (λ(q) +G(τ, q))Z(τ) = 0.

Lemma 3.2. Let g be a real analytical function in a neighborhood of 0, g(0) = 0, and let U(τ, q)
be the solution of problem (3.2). Then the following expansion holds true in a neighborhood of
the origin, uniformly with respect to τ ,

(3.11) G(τ, q) =

∞∑
n=1

qnGn(τ), τ ∈ R,

where Gn(τ) is an even π-periodic trigonometrical polynomial of degree 2n as in formula (1.6).

Proof. From our assumptions we may write, for q and x sufficiently small,

(3.12) g(x) =
∞∑
k=1

γkx
k,

1

Ω(q)
=

∞∑
n=0

κnq
n.

By composition of analytical functions, we obtain

g(qU(τ, q)) =

∞∑
n=1

qngn(τ),

where the coefficients gn(τ) are given by the following expressions,

(3.13) gn(τ) =

n∑
k=1

γk
∑

h1+···+hk=n

uh1
· · ·uhk

.

From Proposition 3.1, and by a simple computation, we get that gn(τ) is an even π-periodic
trigonometrical polynomial whose degree does not exceed 2n. The assertion follows since Gn,
owing to (3.9), (3.12) is a linear combination of gj , j ≤ n, that is

(3.14) Gn(τ) =

n∑
j=0

gj(τ)κn−j .

�

3.3. Conclusion of the proof of Theorem 1.1. Let us write the power series expansion of
β±N (q),

(3.15) β±N (q) = N2 +

∞∑
n=1

B±n (N)qn,

where, from (3.9), the coefficients are given by

(3.16) B±n (N) =

n∑
j=0

Λ±j (N) Ωn−j .

Owing to Lemma 2.3, the assumptions of Theorem 1.2 are satisfied by the equation (3.10).
It follows that for any eigenvalue number N , the coefficients in the expansion of λ±N satisfy
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Λ+
n (N) = Λ−n (N), for n < N , thus B+

n (N) = B−n (N), for n < N which proves the assertion. In
particular for the leading term in the expansion (A), we have

CN = B+
N (N)−B−N (N) = Λ+

N (N)− Λ−N (N).

�

3.4. Additional results. In certain cases it is possible to provide a more precise asymptotic
expansion of LN (q), as it is shown in the following Proposition.

Proposition 3.3. Let K ≥ 1 be the first non-vanishing power in the expansion (3.12) of g(x),
that is g(x) = γKx

K +O(xK+1), γK 6= 0. Then, for every 1 ≤ N ≤ K, we have

(3.17) LN (q) = CK,N q
K +O(qK+1),

In addition, CK,N 6= 0 when N and K have the same parity, whereas CK,N = 0 when K −N
is odd.

Proof. If K > 1, from formula (3.13), we get gn(τ) ≡ Gn(τ) ≡ 0, for n < K. Then, owing
to Remark 2.4, we have that Λn(N) = 0 for n < K. From formula (3.16), it follows that
B±n (N) = N2Ωn, for n < K. This proves that LN (q) = O(qK) for 0 < n < K.

Let K ≥ 1. By using condition (2.8), and formula (2.11), we can compute the coefficient
Λ±K(N) for N ≤ K. This reduces to

(3.18) Λ±K(N) = −1

2

K∑
i=0

Gi,K

(
z±N−2i,0 + z±N+2i,0

)
= −G0,K ∓

1

2
GN,K .

Then we have CK,N = Λ+
K(N) − Λ−K(N) = −GN,K . From formulas (3.13) and (3.14), we get

that

(3.19) GK(τ) = gK(τ) = γK(u1(τ))K = γK(cos(2τ))K .

Since GN,K is the 2N -th Fourier coefficient of GK(τ), we obtain

(3.20) GN,K =
2γK
π

∫ π/2

−π/2
cos(2τ)K cos(2Nτ)dτ .

This integral does not vanish if and only if K and N have the same parity, as it follows by
the following formula

2K−1 cos(2τ)K = cos(2Kτ) +K cos(2(K − 2)τ) +

(
K

2

)
cos(2(K − 4)τ) + · · · .

In particular, for K −N = 2m, we get the expression CK,N = − γK
2K−1

(
K

m

)
.

�

For example, if g(x) = γ4x
4 + O(x5), the second and fourth tongues have order of tangency

equal to 4, in particular they do not collapse to a single line, while the first and third tongues
have a contact of order at least 5.

As an immediate consequence, if g′(0) = γ1 6= 0, the first instability tongue never reduces to
a single curve:

Corollary 3.4. For every function f satisfying the assumptions of Theorem 1.1, if g′(0) 6= 0,
then the first instability tongue of equation (1.1) cannot collapse to a single line, that is L1(q) 6= 0.
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Remark 3.5. As we mentioned in the introduction, in our discussion of the instability tongues,
we assumed that equation (1.1) has the same period T (q) as u(t). As a matter of fact, the period
of g(u(t)) may be a fraction of T (q); this occurs for instance when f and g are odd and even
functions respectively, and the period of g(u(t)) is half the period of u(t). In this case, the potential
function 2u2+

∫ u
0
f(x) dx of equation (1.2) is an even function, thus u(t+T (q)/2) = −u(t) which

yields g(u(t+ T (q)/2)) = g(u(t)).
It follows that the real eigenvalues of the problem branch out only for even N , or in other

words LN (q) ≡ 0 for odd N . The asymptotic estimate (A) of Theorem 1 is of course satisfied
with CN = 0 for odd N .

4. Shape of the instability tongues

The purpose of this section is to characterize the form of instability tongues related to the
system (1.2)–(1.1) for small q. Applications to some significant cases related to the theory of
suspension bridges are provided in Section 5.

From the geometrical point of view, we observe that the instability tongues starting from
β±N (0) = N2 may be either “trumpet shaped” if one of the curves β = β±N (q) is decreasing and
the other increasing, or “horn shaped” if are both increasing or both decreasing. For instance,
in the case of the Mathieu equation (see also the following Proposition 4.1) it is well-known that
the first two tongues are trumpet shaped while the others are horn shaped for small values of q.

The question is relevant for stability analysis at small energies when we consider the parameter
β in (1.1) as fixed. In case of a trumpet shaped tongue, the line β = N2 falls into the instability
region (at least for q small), and the intersection of the tongue with a straight line β = const
close to N2, after a small interval of stability, intercepts a long interval of instability. Viceversa,
for a horn shaped tongue, the intersection with a straight line β = const close to N2 is at most
a very small segment.

In the following proposition, α and γ coefficients refer to the power series expansion of f and
g respectively.

Proposition 4.1. The asymptotic behavior of the instability tongues, up to second order in q is
the following:

The first tongue is always trumpet shaped if γ1 6= 0. It has an approximate length L1(q) =
−γ1(q + 1

12α2q
2) + o(q2), as q → 0.

The second tongue has an approximate length L2(q) = ( 1
8γ

2
1 − 1

24γ1α2 − 1
2γ2)q2 + o(q2), as

q → 0. It may be either trumpet or horn shaped, depending on the parameters.
As for the next tongues, they are generically horn shaped, with the exception of very partic-

ular values of the parameters for which B±j (N) = 0, j < N .

Although it does not geometrically correspond to a tongue, we may consider also the case
N = 0, when the (even) periodic eigenvalue β = β+

0 (q) forms the right boundary of an unbounded
region of instability. In this case we have

β+
0 (q) =

[γ1
8

(α2 − γ1)− γ2
2

]
q2 +O(q3),

thus the line β = 0 lies or not in the instability region, at least for small values of q, depending
on the sign of B+

2 (0) = γ1(α2 − γ1)/8− γ2/2.
The proof of Proposition 4.1 is a consequence of the following two lemmas. Let us start with

direct computation of the first coefficients of Ω, and U in (3.1), (3.2), in the case when α2, α3

are not both vanishing, which is the most interesting for applications.
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Figure 2. Instability tongues of Mathieu equation. The first two tongues are
trumpet shaped, the others horn shaped

Lemma 4.2. From the first recurrent equations (3.5), (3.6), (3.7), we have the following expres-
sions,

Ω1 = 0, u2(τ) = α2

(
−1

8
+

1

12
cos 2τ +

1

24
cos(4τ)

)
,(4.1)

Ω2 = − 5

96
α2
2 +

3

16
α3.(4.2)

Proof. Since u1(τ) = cos 2τ , equation (3.6) reads as

u′′2 + 4u′′2 = 4Ω1 cos 2τ − α2

2
− α2

2
cos 4τ,

thus elimination of the resonant term, and an easy check yields formula (4.1). Then equation
(3.7), after substitution, becomes

u′′3 + 4u3 =

(
4Ω2 +

5

24
α2
2 −

3

4
α3

)
cos(2τ)− α2

2

12
− α2

2

12
cos(4τ)−

(
α3

4
+
α2
2

24

)
cos(6τ),

and if one removes the resonant term, will get formula (4.2). �

Next from equation (3.10), we compute the approximation of the tongues, up to second power
in q. This approximation is significant if γ1, γ2 are not both vanishing.

Lemma 4.3. The first two coefficients in the expansion (3.15) have the following expressions,

B±1 (1) = ∓1

2
γ1, B±1 (N) = 0, for N > 1 or N = 0,

B±2 (1) = Ω2 +
1

8
γ1α2 −

1

2
γ2 −

1

32
γ21 ∓

1

24
γ1α2,

B±2 (2) = 4Ω2 +
1

8
γ1α2 −

1

2
γ2 +

1

24
γ21 ∓

1

48

(
γ1α2 − 3γ21 + 12γ2

)
,

B±2 (N) = N2Ω2 +
1

8
γ1α2 −

1

2
γ2 +

1

8(N2 − 1)
γ21 , for N > 2 or N = 0.

Proof. We go back to (3.10) and observe that the first terms of G(τ, q) in (3.14) are given by

(4.3) G1(τ) = g1(τ) = γ1u1(τ), G2(τ) = g2(τ) = γ1u2(τ) + γ2u
2
1(τ)
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being κ0 = 1, κ1 = 0 in (3.14), and g1(τ), g2(τ) as in (3.13).
Then we insert u1(τ) = cos(2τ) and u2(τ) as in in (4.3) of Proposition 4.2, and obtain the

following coefficients

G0,1 = 0, G1,1 = γ1,

G0,2 = −1

8
γ1α2 +

1

2
γ2, G1,2 =

1

12
γ1α2, G2,2 =

1

24
γ1α2 +

1

2
γ2.

Finally, since Λ±0 (N) = N2, Ω0 = 1, Ω1 = 0, we have in (3.16)

B±1 (N) = Λ±1 (N), B±2 (N) = Λ±2 (N) +N2Ω2,

and by simple substitutions in (2.15), (2.16), (2.17), we have the assertion. �

One may wonder if there exists some universal upper bound for the number of trumpet shaped
tongues. In the following proposition we provide a negative answer, by showing that, with a
suitable choice of the functions f , g, the number of trumpet shaped tongues can be arbitrarily
large.

Proposition 4.4. Let K ≥ 1 be an odd integer, and let αK+1, γK be the first non-vanishing
coefficients in the power series expansion of f and g respectively. Then the tongues corresponding
to odd N , for 1 ≤ N ≤ K, are trumpet shaped, and their order of tangency at q = 0 is exactly
K.

Proof. For K = 1 the statement follows from Proposition 4.1. Let us consider K ≥ 3. We claim
that in the power series (3.1) of Ω(q), we have Ωj = 0 for 1 ≤ j ≤ K.

Since αj = 0, and for 2 ≤ j ≤ K, by a simple inductive argument applied to the recursive
equations (3.8), we have that uj = 0 for 1 ≤ j ≤ K, and Ωj = 0 for 1 ≤ j ≤ K − 1.

It remains to prove that ΩK = 0. The equation for uK+1 reduces to

u′′K+1 + 4uK+1 = 4ΩKu1 − αK+1u
K+1
1 ,

and the coefficient ΩK is computed by removing the resonance term cos(2t) in the right-hand
side term. Therefore we get

4ΩK = αK+1
2

π

∫ π/2

−π/2
uK+1
1 (τ) cos(2τ) dτ = αK+1

2

π

∫ π/2

−π/2
cosK+2(2τ) dτ.

The claim is proved, since this integral vanishes when K is odd.6

Now, from formula (3.16), it follows that B±j (N) = Λ±j (N), for 1 ≤ j ≤ K, N ≤ K. In

addition, since G(τ, q) = g(qU(τ, q))/Ω(q) = γKq
K cos(2τ)K + O(qK+1), owing to Remark 2.4,

we get

B±j (N) = Λ±j (N) = 0 (1 ≤ j < K).

On the other hand, from formula (3.18) in Proposition 3.3, we have

B±K(N) = Λ±K(N) = −G0,K ∓
1

2
GN,K ,

where GN,K , as computed by formula (3.19) is not zero, if N has the same parity of K. Finally,
for odd K, we get

G0,K =
γK
π

∫ π/2

−π/2
cosK(2τ) dτ = 0.

The conclusion is that B±j (N) = 0, for 1 ≤ j ≤ K − 1, and B+
K(N) = −B−K(N) 6= 0, which

proves the assertion. �

6We remark that for even K this last integral is not vanishing, therefore ΩK 6= 0
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Remark 4.5. In many applications the function g is proportional to the derivative of f , i.e.
g(x) = γ̃f ′(x). In these cases we obviously have γn = 0 ⇐⇒ αn+1 = 0

Under this assumption, Proposition 4.4 yields examples of trumpet shaped tongues with the
same order of tangency.

5. Applications to suspension bridges and examples

In this section we come back to the problem that gave rise to our investigations, and we
illustrate a few results related to problem (II) (see introduction).

An important issue in the mathematical modeling of suspension bridges is the phenomenon
of energy transfer from flexural to torsional modes of vibration along the deck of the bridge.
According to a recent field of research [3, 8, 19, 17, 10] internal nonlinear resonances giving
rise to the onset of instability may occur even when the aeroelastic coupling is disregarded. In
particular, in the fish-bone bridge model ([19, ch. 3], or [30]), the non-linear coupling between
flexural and torsional oscillation of the bridge is described by the function F(x), which represents
in the PDEs system the restoring action of the pre-stressed hangers.7 A first expression of such
F was proposed in [32, 33]:

F(x) = k
[
(x+ x0)+ − x0

]
.

Under this assumption, the PDEs system acts as a linear uncoupled system for sufficiently
low energy.

Anyway, other expression of F have been proposed in [30, 7, 31] and some of these are nonlinear
and analytical function in a neighborhood of the origin. In that case some instability zone for
low energy may be expected.

The second step in the cited papers is to reduce the PDE-system to an ODEs one, through
a Galerkin projection. If, for sake of simplicity, our aim is to study the interaction between a
single torsional mode and a single flexural one (the first ones, for example), the instability at a
given energy level of a pure flexural solution is equivalent to the instability of an Hill equation
like (1.1). More precisely, we are led to study a system of two coupled equations (the linearized
system around the pure flexural solution). Such ODEs system can be written in the form (1.1)–
(1.2)8 where the function f(x) in (1.2) is strictly related to the function F in the PDEs model
and the functions g and f in (1.1)–(1.2) satisfy g(x) = γ̃f ′(x), γ̃ > 0, (see [8, 30]).

Our work proves that the thickness of the instability tongues gets thinner and thinner for
growing N , then the most significant instability zones correspond to the first tongues; moreover,
the parameter β being constant in the applications, the shape of the tongues is also important,
because entering deeply an instability zone is more destructive than being near to its border.

Now we present some simple examples of application of Proposition 4.1.

Example 1. Our first example is given by the following system,

u′′(t, q) + 4u(t, q) + αu2(t, q) = 0, u(0; q) = q, u′(0; q) = 0,

z′′(t) + (β + 2γ̃αu(t, q))z(t) = 0.

Owing to Propositions 4.2, we know that the first tongue is trumpet shaped and length
L1(q) = −2γ̃αq +O(q2). The second tongue is trumpet shaped if and only if

γ̃ < −1,
1

2
< γ̃ < 1, γ̃ >

5

2
.

7In the cited works F is written as f ; we changed the font to avoid confusion
8The coefficient 4 in (1.2) can always be fixed with a suitable rescaling in time.
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We can also prove that coexistence may occur for special values of the parameters; precisely

if γ̃ = n(n+1)
12 (n ∈ N) , then there exist only n instability tongues, or equivalently there exist

2n+ 1 simple eigenvalues.
In fact, if we set γ = 2γ̃α for sake of simplicity, and plug Q(t) = γu(t) into (2.22), we get

u′′ +Au+B/γ + 3γu2 = 0,

which is satisfied with the choice A = 4, B = 0, γ = α/3. Thus the result follows by Theorem
2.6.

The following formula (see [37, Th. 5.3]) shows that the simple eigenvalues are the lowest
ones:

CN =
(−1)N αN

8N−1 ((N − 1)!)2

N−1∏
k=0

(
2γ̃ − k(k + 1)

6

)
.

In addition CN 6= 0 for every N , if γ̃ does not take one of the values n(n+ 1)/12.

Example 2. Our second example has been discussed for fixed values of the parameter γ̃ in [18]
(γ̃ = 1/3), and [8] (γ̃ = 3). It is provided by the following coupled system,

u′′(t, q) + 4u(t, q) + αu3(t, q) = 0, u(0; q) = q, u′(0; q) = 0,

z′′(t) + (β + 3γ̃αu2(t, q))z(t) = 0.

We observe that this second example falls within the conditions of Remark 3.5, so that the
coefficient g(u) has fundamental period T (q)/2. Thus the genuine instability tongues branch off
from the β-axis at βN (0) = (2N)2, N ∈ N.

The first tongue is trumpet shaped if and only if

1

3
< γ̃ < 1.

Coexistence may occur for some values of the parameters; precisely if γ̃ = n(n+1)
6 , then there

exist only n instability tongues (in particular if γ̃ = 1
3 , there is only the first one).

To prove this last assertion, let us set γ = 3γ̃α and Q(t) = γu2(t), and plug it into (2.22). We
obtain

(5.1) (u′)2 + uu′′ +
A

2
u2 +

B

2γ
+

3

2
γu4 = 0.

The first equation multiplied by u′ yields the identity,

(u′)2 + 4u2 +
α

2
u4 = 2E(q),

where E(q) = 4q2 + αq4/2 is the energy of u. By replacing (u′)2 in (5.1), we get

uu′′ + (
A

2
− 4)u2 + (

3

2
γ − α

2
)u4 + (2E − B

2γ
) = 0.

Choosing B = 4γE we get rid of the constant term. Finally by setting A = 16, γ = α,
equation (2.22) is satisfied.

Example 3. In [31] we numerically studied the behavior of the ODEs system for some other
functions. One of those was

f̃(x) = mx+m
√
x2 + (h/m)2 − h = mx+

m2

2h
x2 +O(x4),
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where m, h, are positive constants. The corresponding non linear perturbations f and g in the
linearized system (1.1)–(1.2) become, after the rescaling:

f(x) = αx2 +O(x4), g(x) = 2γ̃αx+O(x3),

where α is a suitable positive constant.
The asymptotic behavior of the first two tongues for this choice of non-linearity is identical

to the one of the first example. Besides we have no information about the coexistence.
Looking at these examples, we can note that the role of the parameter γ̃ which depends on the

structural constants in the PDEs model, is the most relevant for the shape of the first tongues.
Our last example about coexistence is inspired by the examples 1 and 2 and appears to be

novel.

Example 4. Let us consider the following coupled system

u′′(t) + 4u(t) + f(u(t)) = 0, u(0) = q, u′(0) = 0,

z′′(t) + (β + g(u(t)))z(t) = 0,

with f(x) = α2x
2 + α3x

3, g(x) = γ1x+ γ2x
2.

This system has exactly 2n+1 simple eigenvalues (the first ones) if f and g satisfy the following
conditions:

f(x) = αx2 +
α2

18
x3, g(x) =

n(n+ 1)

6
f ′(x) α ∈ R, α 6= 0, n ∈ N.

The verification is cumbersome but follows the lines of the two first examples.

Appendix A. Recursive formulas for the computation of CN

Our goal here is to provide a recursive formula for the computation of the leading coefficient
CN in the asymptotics of LN (q).

Proposition A.1. Let us consider equation (1.4) when G(t, q) is given by (1.5)–(1.6). For
0 ≤ p ≤ N , let the numbers rp(N) be recursively defined by the rule,

(A.1) rp(N) = − 1

8p(N − p)

p∑
s=1

Gs,s rp−s(N), r0(N) = 2.

Then the following formula holds true,

(A.2) ΛN (N)+ − ΛN (N)− = −1

2

N−1∑
p=0

GN−p,N−p rp(N).

Proof. Let us set ∆zk,n = z+k,n − z
−
k,n, where z±k,n are defined by (2.7). Owing to formula (2.11)

for n = N , we have

ΛN (N)+ − ΛN (N)− = −1

2

N∑
s=1

s∑
i=0

Gi,s (∆zN−2i,N−s + ∆zN+2i,N−s) .

Thanks to Lemma 2.3, the only non-vanishing terms of the right-hand side are those having
index along the line k = 2n −N (we refer to the notations of Lemma 2.3), that is ∆zN−2i,N−s
for i = s. Therefore we get

ΛN (N)+ − ΛN (N)− = −1

2

N∑
s=1

Gs,s ∆zN−2s,N−s.
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By using the notation rN−s(N) = ∆zN−2s,N−s, and by inverting the order of summation, we
get (A.2).

As for the formula (A.1), we note that rp(N) = ∆z−N+2p,p, and that the pair (−N + 2p, p)
lies on the line k = 2n−N . Owing to formula (2.10) with k = −N + 2p, n = N , with analogous
considerations we get,

4p(N − p)rp(N) = 4p(N − p)∆z−N+2p,p = −1

2

p∑
s=1

Gs,s ∆z−N+2p−2s,p−s

= −1

2

p∑
s=1

Gs,s rp−s(N).

This proves the assertion since, thanks to (2.8), r0(N) = ∆z−N,0 = z+−N,0 − z
−
−N,0 = 2. �

Remark A.2. It is clear from (A.1)–(A.2) that ΛN (N)+ − ΛN (N)− is a polynomial of degree
N in the diagonal coefficients Gj,j, 1 ≤ j ≤ N . It is not difficult (but cumbersome) to show that
it takes the form

(A.3) −GN,N + PN (G1,1, . . . , GN−1,N−1),

where PN is a linear combination of

N−1∏
j=1

G
pj
j,j with

N−1∑
j=1

jpj = N.

In particular, the monomial of degree N is given by

(−1)N

((N − 1)!)2 8N−1
GN1,1,

in accordance with the known asymptotic expansion of the Mathieu equation [28].

Let us now consider equation (1.1). In order to compute G(τ, q) = g(qU(τ, q))/Ω(q), we
have to go back to Section 3, and look at the expansion (3.11), whose coefficients are given by
(3.13)–(3.14).

We need a notation: given any trigonometrical polynomial F (τ), let P2n[F ] be its cos(2nτ)-
coefficient, i.e P2n[F ] = 1/π

∫ π
−π F (τ) cos(2nτ)dτ . Owing to formula (3.14) (recall that κ0 = 1)

we have that

Gn,n = P2n[Gn] = P2n[gn].

Proposition A.3. Under the assumptions of Theorem 1.1, let us consider the expansion (3.3)

in Section 3. Let us set An =
1

2
P2n[un] (n ≥ 1), and define the generating functions,

ψ(q) =

∞∑
n=1

Anq
n, Ψ(q) =

1

2

∞∑
n=1

Gn,nq
n.

Then ψ(q) solves the differential equation

(A.4) q2ψ′′(q) + qψ′(q)− ψ(q) =
1

4
f(ψ(q)),

with the initial conditions ψ(0) = 0, ψ′(0) = 1
2 . In addition, we have

(A.5) Ψ(q) = g(ψ(q)).
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The introduction of the generating functions is just for compactness of notations. The differ-
ential equation (A.4), and formula (A.5) are equivalent to the following recursive formulas:

(A.6) A1 =
1

2
, 4(n2 − 1)An =

n∑
m=2

αm
∑

h1+···+hm=n

Ah1
· · ·Ahm

(n ≥ 2),

(A.7)
1

2
Gn,n =

n∑
m=1

γm
∑

h1+···+hm=n

Ai1 · · ·Aim .

Proof. Let us set ζ = e2iτ . By definition of An, we have

un = An(ζn + ζ−n) + l.o.t.

where by l.o.t. we denote powers of ζ with modulus less than n. By plugging this expansion into
the recursive equation (3.8), we get

4(n2 − 1)An(ζn + ζ−n) =

n∑
k=2

αk
∑

i1+···+ik=n
Ai1(ζh1 + ζ−h1) · · ·Ai1(ζhk + ζ−hk) + l.o.t.

=

n∑
k=2

αk
∑

i1+···+ik=n
Ai1 · · ·Aik(ζn + ζ−n) + l.o.t.

Neglecting the l.o.t., we obtain formula (A.6) for n ≥ 2. Multiplying (A.6) by qn and summing
up, we obtain formula (A.4) since

∞∑
n=2

(n2 − 1)Anq
n = q2ψ′′(q) + qψ′(q)− ψ(q).

Let us now consider the coefficient Gn,n = P2n[gn], where gn is given by formula (3.13).
Proceeding as before, we have

1

2
Gn,n(ζn + ζ−n) =

n∑
m=1

γm
∑

h1+···+hm=n

Ai1 · · ·Aim(ζn + ζ−n) + l.o.t.

which yields formula (A.7) �

In the simplest non-trivial example, f(x) = αx2, g(x) = x, we have

(A.8) Gn,n =
n

8n−1

(α
6

)n−1
,

as we may directly verify from (A.6)–(A.7) which reduce to

G1 = 1, (n2 − 1)Gn,n =
α

8

n∑
j=1

Gj,jGn−j,n−j (n ≥ 2).

In fact upon substitution (A.8), and simplification, we obtain the well-known identity,

(n2 − 1)n

6
=

n∑
j=1

j(n− j).
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Appendix B. The forms of the Ince theorem

We think that it could be useful for the reader to have some general information about the
classical Lamé equation and the Ince theorem. First of all the Lamé equation has five different
forms, and this can be a bit confusing: we have the “Jacobian” form and the “Weierstrassian”
form, that are Hill equations, two algebraic forms, and the trigonometric form which is of Ince’s
type. Here we present the first two versions.

The Jacobian form is given by the following equation,

(B.1) y′′(x) + (λ− n(n+ 1) k2 sn2(x))y(x) = 0,

where sn(x) is the Jacoby elliptic sine function of modulus k2, and n ∈ R (see e.g. [29, 7.3]).
The Weierstrassian form is

w′′(z) + (β − n(n+ 1)℘(z))w(z) = 0 (z ∈ C),

where the Weierstrass function ℘(z) = ℘(z; g2, g3) has a double pole in z = 0, and solves the
following differential equation,

(B.2) (P ′)2 = 4P 3 − g2P − g3 = 4(P − e1)(P − e2)(P − e3).

Under the assumption that both the invariant g2, g3 and the roots ei are real, with e3 <
e2 < e1, ℘(z) has two semi-periods: ω = ω1 which is real, and ω′ = ω3, which is pure imaginary
(another symbolism that emphasizes the periods is ℘(z) = ℘(z|ω, ω′)). A complete description
of elliptic functions and their properties can be found in [1, 38].

Anyway, if we are interested only in real solution of (B.2), its general integral is given by
℘(t+ ω3 + c), where ω3 ∈ iR, c ∈ R, and the Weierstrassian form of the Hill equation becomes,

(B.3) w′′(t) + (β − n(n+ 1)℘(t+ ω3))w(t) = 0 (t ∈ R).

In [38, ch. XXII, 23.4] (also the formulas in [1, 18.9] can be helpful) we can find how to
transform equation (B.3) into (B.1). The simplest identity that shows the connection between
the two forms is,

℘(t+ ω3) = e3 + (e2 − e3)sn2(
√
e1 − e3 t);

then, with the rescaling x =
√
e1 − e3 t, it is easy to pass from (B.3) to (B.1), being k2 = e2−e3

e1−e3
exactly the modulus of sn(x).

The classical Ince theorem, with the Lamé equation in Jacobian form, is presented in [29] and
its proof uses the equivalence between the Jacobian and trigonometrical forms of this equation
(we can find also the substitutions that transform a form into another one, with the exception of
the Weierstrassian form, in [5, 9.1]). The alternative version of the Ince theorem in Weierstrassian
form is widely cited (see for example [20] ) and has its merits:

Theorem B.1. Let ℘(t) = ℘(t|ω1, ω3) be the elliptic Weierstrass function with periods ω1 ∈ R,
ω3 ∈ iR, and let

(B.4) Q̃(t) = −n(n+ 1)℘(t+ ω3 + c), c ∈ R.

be the Lamé–Ince potentials.
Then, for every positive integer n, the Hill equation

w′′ + (λ+ Q̃)w = 0

has exactly n+ 1 instability intervals, including the unbounded one.

Now we show that Theorem 2.6 in Section 2 is no more than a simple consequence of Theorem
B.1, which means that for n = 1 the necessary and sufficient condition (2.22) and the Ince theorem
are equivalent. This is no longer true for n > 1, where a Lamé–Ince potential satisfies all the
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KdV equations of order k ≥ n, but it is well known that such potentials, for n > 1, don’t describe
all the solutions of the KdV hierarchy.

Again we point out that this is not a new result (see [29, Th. 7.13], where it is presented
without proof).

Proof of Theorem 2.6. Let Q be a periodic not constant solution of (2.22), then it also solves
the following equation,

(Q′)2 + 2Q3 +AQ3 + 2BQ = 2E,

with A2

12 −B > 0 and E such that the roots of the equation

2Q3 +AQ2 + 2BQ− 2E = 2(Q−Q1)(Q−Q2)(Q−Q3) = 0

are real distinct numbers. Operating the following substitution

Q = −2P − 1

6
A,

we obtain that P satisfies (B.2). Then we have Q(t) = −A6 − 2℘(t+ω3 + c), for a suitable c ∈ R.
Then the Hill equation

z′′ + (β +Q(t))z = 0

becomes

z′′ + (β − A

6
− 2℘(t+ ω3 + c))z = 0,

that satisfies the Ince Theorem for n = 1, with λ = β − A
6 , Q̃ = −2℘.

Let us define Qn = n(n+1)
2 Q(t), with Q(t) satisfying (2.22). Then

Qn = −n(n+ 1)A

12
− n(n+ 1)℘(t+ ω3 + c)

satisfies the hypotheses of the Ince theorem for every positive integer n, bar a translation, ab-
sorbed by the eigenvalue λ. �
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